Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Table of contents
Textbook solutions

All Solutions

Page 128: Check Your Understanding

Exercise 1
Step 1
1 of 5
$$
begin{align*}
text{a);;} dfrac{1}{3}+dfrac{5}{4}&=dfrac{1(4)+5(3)}{3(4)}\\&=dfrac{4+15}{12}\\&=dfrac{19}{12}end{align*}
$$
Use general the rule:

$$
dfrac{a}{b}+dfrac{c}{d}=dfrac{ad+bc}{bd}
$$

Step 2
2 of 5
$$
begin{align*} {text{b)};;;} dfrac{2x}{5}+dfrac{6x}{2}&=dfrac{(2x)(2)+(6x)(5)}{5(2)}\\&=dfrac{4x+30x}{10}\\&=dfrac{34x}{10}\\&=dfrac{2(17x)}{2(5)}\\&=dfrac{17x}{5}end{align*}
$$
Use the general the rule:

$$
dfrac{a}{b}+dfrac{c}{d}=dfrac{ad+bc}{bd}
$$

Step 3
3 of 5
c) $dfrac{5}{4x^2}+dfrac{1}{7x^3}$

$=dfrac{5(7x)}{(4x^2)(7x)}+dfrac{1(4)}{(7x^3)(4)}$

$=dfrac{5(7x)}{28x^3}+dfrac{4}{28x^3}$

$=dfrac{35x+4}{28x^3}$ ; $xneq 0$

Make the denominator the same by multiplying both numerator and denominator with a certain factor, then perform the operation in the numerator.

$$
dfrac{a}{c}pm dfrac{b}{c}= dfrac{apm b}{c}
$$

Step 4
4 of 5
d) $dfrac{2}{x}+dfrac{6}{x^2}$

$=dfrac{2(x)}{x(x)}+dfrac{6}{x^2}$

$=dfrac{2x}{x^2}+dfrac{6}{x^2}$

$=dfrac{2x+6}{x^2}$ ; $xneq 0$

Make the denominator the same by multiplying both numerator and denominator with a certain factor, then perform the operation in the numerator.

$$
dfrac{a}{c}pm dfrac{b}{c}= dfrac{apm b}{c}
$$

Result
5 of 5
a) $dfrac{19}{12}$

b) $dfrac{17x}{5}$

c) $dfrac{35x+4}{28x^3}$ ; $xneq 0$

d) $dfrac{2x+6}{x^2}$ ; $xneq 0$

Exercise 2
Step 1
1 of 5
a) $dfrac{5}{9}-dfrac{2}{3}$

$=dfrac{5}{9}-dfrac{2(3)}{3(3)}$

$=dfrac{5}{9}-dfrac{6}{9}$

$=dfrac{5-6}{9}$

$$
=-dfrac{1}{9}
$$

Make the denominator the same by multiplying both numerator and denominator with a certain factor, then perform the operation in the numerator.

$$
dfrac{a}{c}pm dfrac{b}{c}= dfrac{apm b}{c}
$$

Step 2
2 of 5
b) $dfrac{5y}{3}-dfrac{y}{2}$

$=dfrac{(5y)(2)}{3(2)}-dfrac{y(3)}{2(3)}$

$=dfrac{(5y)(2)}{6}-dfrac{3y}{6}$

$=dfrac{5y-3y}{6}$

$=dfrac{2y}{6}$

$=dfrac{2y}{2(3)}$

$=dfrac{y}{3}$

Make the denominator the same by multiplying both numerator and denominator with a certain factor, then perform the operation in the numerator.

$$
dfrac{a}{c}pm dfrac{b}{c}= dfrac{apm b}{c}
$$

Step 3
3 of 5
c) $dfrac{5}{3x^2}-dfrac{7}{5}$

$=dfrac{5(5)-7(3x^2)}{(3x^2)(5)}$

$=dfrac{25-21x^2}{15x^2}$

Use the general rule for rational expressions:

$$
dfrac{a}{b}-dfrac{c}{d}=dfrac{ad-bc}{bd}
$$

Step 4
4 of 5
d) $dfrac{6}{3xy}-dfrac{5}{y^2}$

$=dfrac{6(y)}{3xy(y)}-dfrac{5(3x)}{y^2(3x)}$

$=dfrac{6y}{3xy^2}-dfrac{5(3x)}{3xy^2}$

$$
=dfrac{6y-15x}{3xy^2}
$$

Make the denominator the same by multiplying both numerator and denominator with a certain factor, then perform the operation in the numerator.

$$
dfrac{a}{c}pm dfrac{b}{c}= dfrac{apm b}{c}
$$

Result
5 of 5
a) $-dfrac{-1}{9}$

b) $dfrac{7y}{6}$

c) $dfrac{25-21x^2}{15x^2}$ ; $xneq 0$

d) $dfrac{6y-15x}{3xy^2}$ , $yneq 0$

Exercise 3
Step 1
1 of 4
a) Using the $LCD=
(x-3)(5x-1)
,$ the given expression, $dfrac{3}{x-3}-dfrac{7}{5x-1}
,$ is equivalent to

$$
begin{align*}
&
dfrac{3}{x-3}cdotdfrac{5x-1}{5x-1}-dfrac{7}{5x-1}cdotdfrac{x-3}{x-3}
\\&=
dfrac{3(5x-1)}{(x-3)(5x-1)}-dfrac{7(x-3)}{(5x-1)(x-3)}
\\&=
dfrac{15x-3-7x+21}{(x-3)(5x-1)}
\\&=
dfrac{8x+18}{(x-3)(5x-1)}
\\&=
dfrac{2(4x+9)}{(x-3)(5x-1)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{2(4x+9)}{(x-3)(5x-1)}
text{, }xneleft{ dfrac{1}{5},3 right}
.$

Step 2
2 of 4
b) The factored form of the given expression, $dfrac{2}{x+3}+dfrac{7}{x^2-9}
,$ is

$$
begin{align*}
dfrac{2}{x+3}+dfrac{7}{(x+3)(x-3)}
.end{align*}
$$

Using the $LCD=
(x+3)(x-3)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{2}{x+3}cdotdfrac{x-3}{x-3}+dfrac{7}{(x+3)(x-3)}
\\&=
dfrac{2(x-3)+7}{(x+3)(x-3)}
\\&=
dfrac{2x-6+7}{(x+3)(x-3)}
\\&=
dfrac{2x+1}{(x+3)(x-3)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{2x+1}{(x+3)(x-3)}
text{, }xneleft{ -3,3 right}
.$

Step 3
3 of 4
c) The factored form of the given expression, $dfrac{5}{x^2-4x+3}-dfrac{9}{x^2-2x+1}
,$ is

$$
begin{align*}
dfrac{5}{(x-3)(x-1)}-dfrac{9}{(x-1)(x-1)}
.end{align*}
$$

Using the $LCD=
(x-1)(x-1)(x-3)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{5}{(x-3)(x-1)}cdotdfrac{x-1}{x-1}-dfrac{9}{(x-1)(x-1)}cdotdfrac{x-3}{x-3}
\\&=
dfrac{5(x-1)-9(x-3)}{(x-3)(x-1)(x-1)}
\\&=
dfrac{5x-5-9x+27}{(x-3)(x-1)(x-1)}
\\&=
dfrac{-4x+22}{(x-3)(x-1)(x-1)}
\\&=
dfrac{-2(2x-11)}{(x-3)(x-1)(x-1)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{-2(2x-11)}{(x-3)(x-1)(x-1)}
text{, }xneleft{ 1,3 right}
.$

Result
4 of 4
a) $dfrac{2(4x+9)}{(x-3)(5x-1)}
text{, }xneleft{ dfrac{1}{5},3 right}$

b) $dfrac{2x+1}{(x+3)(x-3)}
text{, }xneleft{ -3,3 right}$

c) $dfrac{-2(2x-11)}{(x-3)(x-1)(x-1)}
text{, }xneleft{ 1,3 right}$

Exercise 4
Step 1
1 of 4
a) Substituting $x=5$ in the given expression, $dfrac{2}{(x^2-9)}+dfrac{3}{(x-3)}
,$ results to

$$
begin{align*}
&
dfrac{2}{(5^2-9)}+dfrac{3}{(5-3)}
\\&=
dfrac{2}{25-9}+dfrac{3}{2}
\\&=
dfrac{2}{16}+dfrac{3}{2}
\\&=
dfrac{1}{8}+dfrac{3}{2}
.end{align*}
$$

Using the $LCD=
8
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{1}{8}+dfrac{3}{2}cdotdfrac{4}{4}
\\&=
dfrac{1}{8}+dfrac{12}{8}
\\&=
dfrac{13}{8}
.end{align*}
$$

Step 2
2 of 4
b) The factored form of the given expression, $dfrac{2}{(x^2-9)}+dfrac{3}{(x-3)}
,$ is

$$
begin{align*}
&
dfrac{2}{(x+3)(x-3)}+dfrac{3}{(x-3)}
.end{align*}
$$

Using the $LCD=
(x+3)(x-3)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{2}{(x+3)(x-3)}+dfrac{3}{(x-3)}cdotdfrac{x+3}{x=3}
\\&=
dfrac{2+3(x+3)}{(x+3)(x-3)}
\\&=
dfrac{2+3x+9}{(x+3)(x-3)}
\\&=
dfrac{3x+11}{(x+3)(x-3)}
.end{align*}
$$

Step 3
3 of 4
c) Substituting $x=5$ in the expression of Item b, $dfrac{3x+11}{(x+3)(x-3)}
,$ results to

$$
begin{align*}
&
dfrac{3(5)+11}{(5+3)(5-3)}
\\&=
dfrac{15+11}{(8)(2)}
\\&=
dfrac{26}{16}
\\&=
dfrac{cancel2(13)}{cancel2(8)}
\\&=
dfrac{13}{8}
.end{align*}
$$

The value $dfrac{13}{8}$ is the same value derived in Item a.

Result
4 of 4
a) $dfrac{13}{8}$

b) $dfrac{3x+11}{(x+3)(x-3)}$

c) same value

Exercise 5
Step 1
1 of 5
a) Using the $LCD=
12
,$ the given expression, $dfrac{2x}{3}+dfrac{3x}{4}-dfrac{x}{6}
,$ is equivalent to

$$
begin{align*}
&
dfrac{2x}{3}cdotdfrac{4}{4}+dfrac{3x}{4}cdotdfrac{3}{3}-dfrac{x}{6}cdotdfrac{2}{2}
\\&=
dfrac{8x}{12}+dfrac{9x}{12}-dfrac{2x}{12}
\\&=
dfrac{15x}{12}
\\&=
dfrac{cancel3cdot5x}{cancel3cdot4}
\\&=
dfrac{5x}{4}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{5x}{4}
text{, no restriction}
.$

Step 2
2 of 5
b) Using the $LCD=
10t^4
,$ the given expression, $dfrac{3}{t^4}+dfrac{1}{2t^2}-dfrac{3}{5t}
,$ is equivalent to

$$
begin{align*}
&
dfrac{3}{t^4}cdotdfrac{10}{10}+dfrac{1}{2t^2}cdotdfrac{5t^2}{5t^2}-dfrac{3}{5t}cdotdfrac{2t^3}{2t^3}
\\&=
dfrac{30}{10t^4}+dfrac{5t^2}{10t^4}-dfrac{6t^3}{10t^4}
\\&=
dfrac{-6t^3+5t^2+30}{10t^4}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{-6t^3+5t^2+30}{10t^4}
text{, }tne0
.$

Step 3
3 of 5
c) Converting the terms to an equivalent fraction that uses the $LCD=
60y^4
,$ the given expression, $dfrac{2x}{3y}-dfrac{x^2}{4y^3}+dfrac{3}{5y^4}
,$ is equivalent to

$$
begin{align*}
&
dfrac{2x}{3y}cdotdfrac{20y^3}{20y^3}-dfrac{x^2}{4y^3}cdotdfrac{15y}{15y}+dfrac{3}{5y^4}cdotdfrac{12}{12}
\\&=
dfrac{40xy^3}{60y^4}-dfrac{15x^2y}{60y^4}+dfrac{36}{60y^4}
\\&=
dfrac{-15x^2y+40xy^3+36}{60y^4}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{-15x^2y+40xy^3+36}{60y^4}
text{, }yne0
.$

Step 4
4 of 5
d) Converting the terms to an equivalent fraction that uses the $LCD=
mn
,$ the given expression, $dfrac{n}{m}+dfrac{m}{n}-m
,$ is equivalent to

$$
begin{align*}
&
dfrac{n}{m}cdotdfrac{n}{n}+dfrac{m}{n}cdotdfrac{m}{m}-mcdotdfrac{mn}{mn}
\\&=
dfrac{n^2}{mn}+dfrac{m^2}{mn}-dfrac{m^2n}{mn}
\\&=
dfrac{n^2+m^2-m^2n}{mn}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{n^2+m^2-m^2n}{mn}
text{, }mne0text{, }nne0
.$

Result
5 of 5
a) $dfrac{5x}{4}
text{, no restriction}$

b) $dfrac{-6t^3+5t^2+30}{10t^4}
text{, }tne0$

c) $dfrac{-15x^2y+40xy^3+36}{60y^4}
text{, }yne0$

d) $dfrac{n^2+m^2-m^2n}{mn}
text{, }mne0text{, }nne0$

Exercise 6
Step 1
1 of 7
a) Converting the terms to an equivalent fraction that uses the $LCD=
a(a-4)
,$ the given expression, $dfrac{7}{a-4}+dfrac{2}{a}
,$ is equivalent to

$$
begin{align*}
&
dfrac{7}{a-4}cdotdfrac{a}{a}+dfrac{2}{a}cdotdfrac{a-4}{a-4}
\\&=
dfrac{7a}{a(a-4)}+dfrac{2a-8}{a(a-4)}
\\&=
dfrac{7a+2a-8}{a(a-4)}
\\&=
dfrac{9a-8}{a(a-4)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{9a-8}{a(a-4)}
text{, }aneleft{ 0,4 right}
.$

Step 2
2 of 7
b) Converting the terms to an equivalent fraction that uses the $LCD=
3x-2
,$ the given expression, $dfrac{4}{3x-2}+6
,$ is equivalent to

$$
begin{align*}
&
dfrac{4}{3x-2}+6cdotdfrac{3x-2}{3x-2}
\\&=
dfrac{4}{3x-2}+dfrac{18x-12}{3x-2}
\\&=
dfrac{4+18x-12}{3x-2}
\\&=
dfrac{18x-8}{3x-2}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{18x-8}{3x-2}
text{, }xnedfrac{2}{3}
.$

Step 3
3 of 7
c) Converting the terms to an equivalent fraction that uses the $LCD=
(x+4)(x+3)
,$ the given expression, $dfrac{5}{x+4}+dfrac{7}{x+3}
,$ is equivalent to

$$
begin{align*}
&
dfrac{5}{x+4}cdotdfrac{x+3}{x+3}+dfrac{7}{x+3}cdotdfrac{x+4}{x+4}
\\&=
dfrac{5x+15}{(x+4)(x+3)}+dfrac{7x+28}{(x+4)(x+3)}
\\&=
dfrac{12x+43}{(x+4)(x+3)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{12x+43}{(x+4)(x+3)}
text{, }xneleft{ -4,-3 right}
.$

Step 4
4 of 7
d) Converting the terms to an equivalent fraction that uses the $LCD=
(2n-3)(n-5)
,$ the given expression, $dfrac{6}{2n-3}-dfrac{4}{n-5}
,$ is equivalent to

$$
begin{align*}
&
dfrac{6}{2n-3}cdotdfrac{n-5}{n-5}-dfrac{4}{n-5}cdotdfrac{2n-3}{2n-3}
\\&=
dfrac{6n-30}{(2n-3)(n-5)}-dfrac{8n-12}{(2n-3)(n-5)}
\\&=
dfrac{6n-30-8n+12}{(2n-3)(n-5)}
\\&=
dfrac{-2n-18}{(2n-3)(n-5)}
\\&=
dfrac{-2(n+9)}{(2n-3)(n-5)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{-2(n+9)}{(2n-3)(n-5)}
text{, }nneleft{ dfrac{3}{2},5 right}
.$

Step 5
5 of 7
e) Converting the terms to an equivalent fraction that uses the $LCD=
(x+4)(x-6)
,$ the given expression, $dfrac{7x}{x+4}+dfrac{3x}{x-6}
,$ is equivalent to

$$
begin{align*}
&
dfrac{7x}{x+4}cdotdfrac{x-6}{x-6}+dfrac{3x}{x-6}cdotdfrac{x+4}{x+4}
\\&=
dfrac{7x^2-42x}{(x+4)(x-6)}+dfrac{3x^2+12x}{(x+4)(x-6)}
\\&=
dfrac{10x^2-30x}{(x+4)(x-6)}
\\&=
dfrac{10x(x-3)}{(x+4)(x-6)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{10x(x-3)}{(x+4)(x-6)}
text{, }nneleft{ -4,6 right}
.$

Step 6
6 of 7
f) The factored form of the given expression, $dfrac{7}{2x-6}+dfrac{4}{10x-15}
,$ is

$$
begin{align*}
&
dfrac{7}{2(x-3)}+dfrac{4}{5(2x-3)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
10(x-3)(2x-3)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{7}{2(x-3)}cdotdfrac{5(2x-3)}{5(2x-3)}+dfrac{4}{5(2x-3)}cdotdfrac{2(x-3)}{2(x-3)}
\\&=
dfrac{35(2x-3)}{10(x-3)(2x-3)}+dfrac{8(2x-3)}{10(x-3)(2x-3)}
\\&=
dfrac{70x-105}{10(x-3)(2x-3)}+dfrac{16x-24}{10(x-3)(2x-3)}
\\&=
dfrac{86x-129}{10(x-3)(2x-3)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{86x-129}{10(x-3)(2x-3)}
text{, }xneleft{ dfrac{3}{2},3 right}
.$

Result
7 of 7
a) $dfrac{9a-8}{a(a-4)}
text{, }aneleft{ 0,4 right}$

b) $dfrac{18x-8}{3x-2}
text{, }xnedfrac{2}{3}$

c) $dfrac{12x+43}{(x+4)(x+3)}
text{, }xneleft{ -4,-3 right}$

d) $dfrac{-2(n+9)}{(2n-3)(n-5)}
text{, }nneleft{ dfrac{3}{2},5 right}$

e) $dfrac{10x(x-3)}{(x+4)(x-6)}
text{, }nneleft{ -4,6 right}$

f) $dfrac{86x-129}{10(x-3)(2x-3)}
text{, }xneleft{ dfrac{3}{2},3 right}$

Exercise 7
Step 1
1 of 7
a) The factored form of the given expression, $dfrac{3}{x+1}+dfrac{4}{x^2-3x-4}
,$ is

$$
begin{align*}
&
dfrac{3}{x+1}+dfrac{4}{(x-4)(x+1)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
(x+1)(x-4)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{3}{x+1}cdotdfrac{x-4}{x-4}+dfrac{4}{(x-4)(x+1)}
\\&=
dfrac{3x-12}{(x+1)(x-4)}+dfrac{4}{(x+1)(x-4)}
\\&=
dfrac{3x-8}{(x+1)(x-4)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{3x-8}{(x+1)(x-4)}
text{, }xneleft{ -1,4 right}
.$

Step 2
2 of 7
b) The factored form of the given expression, $dfrac{2t}{t-4}-dfrac{5t}{t^2-16}
,$ is

$$
begin{align*}
&
dfrac{2t}{t-4}-dfrac{5t}{(t-4)(t+4)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
(t-4)(t+4)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{2t}{t-4}cdotdfrac{t+4}{t+4}-dfrac{5t}{(t-4)(t+4)}
\\&=
dfrac{2t^2+8t}{(t-4)(t+4)}-dfrac{5t}{(t-4)(t+4)}
\\&=
dfrac{2t^2+3t}{(t-4)(t+4)}
\\&=
dfrac{t(2t+3)}{(t-4)(t+4)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{t(2t+3)}{(t-4)(t+4)}
text{, }tneleft{ -4,4 right}
.$

Step 3
3 of 7
c) The factored form of the given expression, $dfrac{3}{t^2+t-6}+dfrac{5}{(t+3)^2}
,$ is

$$
begin{align*}
&
dfrac{3}{(t+3)(t-2)}+dfrac{5}{(t+3)(t+3)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
(t+3)(t+3)(t-2)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{3}{(t+3)(t-2)}cdotdfrac{t+3}{t+3}+dfrac{5}{(t+3)(t+3)}cdotdfrac{t-2}{t-2}
\\&=
dfrac{3t+9}{(t+3)(t+3)(t-2)}+dfrac{5t-10}{(t+3)(t+3)(t-2)}
\\&=
dfrac{8t-1}{(t+3)(t+3)(t-2)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{8t-1}{(t+3)(t+3)(t-2)}
text{, }tneleft{ -3,2 right}
.$

Step 4
4 of 7
d) The factored form of the given expression, $dfrac{4x}{x^2+6x+8}-dfrac{3x}{x^2-3x-10}
,$ is

$$
begin{align*}
&
dfrac{4x}{(x+4)(x+2)}-dfrac{3x}{(x-5)(x+2)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
(x+4)(x+2)(x-5)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{4x}{(x+4)(x+2)}cdotdfrac{x-5}{x-5}-dfrac{3x}{(x-5)(x+2)}cdotdfrac{x+4}{x+4}
\\&=
dfrac{4x^2-20x}{(x+4)(x+2)(x-5)}-dfrac{3x^2+12x}{(x+4)(x+2)(x-5)}
\\&=
dfrac{x^2-32x}{(x+4)(x+2)(x-5)}
\\&=
dfrac{x(x-32)}{(x+4)(x+2)(x-5)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{x(x-32)}{(x+4)(x+2)(x-5)}
text{, }xneleft{ -4,-2,5 right}
.$

Step 5
5 of 7
e) The factored form of the given expression, $dfrac{x-1}{x^2-9}+dfrac{x+7}{x^2-5x+6}
,$ is

$$
begin{align*}
&
dfrac{x-1}{(x+3)(x-3)}+dfrac{x+7}{(x-3)(x-2)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
(x+3)(x-3)(x-2)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{x-1}{(x+3)(x-3)}cdotdfrac{x-2}{x-2}+dfrac{x+7}{(x-3)(x-2)}cdotdfrac{x+3}{x+3}
\\&=
dfrac{(x-1)(x-2)}{(x+3)(x-3)(x-2)}+dfrac{(x+7)(x+3)}{(x+3)(x-3)(x-2)}
\\&=
dfrac{(x^2-3x+2)+(x^2+10x+21)}{(x+3)(x-3)(x-2)}
\\&=
dfrac{2x^2+7x+23}{(x+3)(x-3)(x-2)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{2x^2+7x+23}{(x+3)(x-3)(x-2)}
text{, }xneleft{ -3,2,3 right}
.$

Step 6
6 of 7
f) The factored form of the given expression, $dfrac{2t+1}{2t^2-14t+24}+dfrac{5t}{4t^2-8t-12}
,$ is

$$
begin{align*}
&
dfrac{2t+1}{2(t^2-7t+12)}+dfrac{5t}{4(t^2-2t-3)}
\\&=
dfrac{2t+1}{2(t-3)(t-4)}+dfrac{5t}{4(t-3)(t+1)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
4(t-3)(t-4)(t+1)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{2t+1}{2(t-3)(t-4)}cdotdfrac{2(t+1)}{2(t+1)}+dfrac{5t}{4(t-3)(t+1)}cdotdfrac{t-4}{t-4}
\\&=
dfrac{2(2t+1)(t+1)}{4(t-3)(t-4)(t+1)}+dfrac{5t(t-4)}{4(t-3)(t-4)(t+1)}
\\&=
dfrac{2(2t^2+3t+1)}{4(t-3)(t-4)(t+1)}+dfrac{5t^2-20t}{4(t-3)(t-4)(t+1)}
\\&=
dfrac{4t^2+6t+2}{4(t-3)(t-4)(t+1)}+dfrac{5t^2-20t}{4(t-3)(t-4)(t+1)}
\\&=
dfrac{9t^2-14t+2}{4(t-3)(t-4)(t+1)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{9t^2-14t+2}{4(t-3)(t-4)(t+1)}
text{, }tneleft{ -1,3,4 right}
.$

Result
7 of 7
a) $dfrac{3x-8}{(x+1)(x-4)}
text{, }xneleft{ -1,4 right}$

b) $dfrac{t(2t+3)}{(t-4)(t+4)}
text{, }tneleft{ -4,4 right}$

c) $dfrac{8t-1}{(t+3)(t+3)(t-2)}
text{, }tneleft{ -3,2 right}$

d) $dfrac{x(x-32)}{(x+4)(x+2)(x-5)}
text{, }xneleft{ -4,-2,5 right}$

e) $dfrac{2x^2+7x+23}{(x+3)(x-3)(x-2)}
text{, }xneleft{ -3,2,3 right}$

f) $dfrac{9t^2-14t+2}{4(t-3)(t-4)(t+1)}
text{, }tneleft{ -1,3,4 right}$

Exercise 8
Step 1
1 of 4
a) The factored form of the given expression, $dfrac{3}{4x^2+7x+3}-dfrac{5}{16x^2+24x+9}
,$ is

$$
begin{align*}
&
dfrac{3}{(4x+3)(x+1)}-dfrac{5}{(4x+3)(4x+3)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
(4x+3)(4x+3)(x+1)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{3}{(4x+3)(x+1)}cdotdfrac{4x+3}{4x+3}-dfrac{5}{(4x+3)(4x+3)}cdotdfrac{x+1}{x+1}
\\&=
dfrac{12x+9}{(4x+3)(4x+3)(x+1)}-dfrac{5x+5}{(4x+3)(4x+3)(x+1)}
\\&=
dfrac{7x+4}{(4x+3)(4x+3)(x+1)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{7x+4}{(4x+3)(4x+3)(x+1)}
text{, }xneleft{ -1,-dfrac{3}{4} right}
.$

Step 2
2 of 4
b) The factored form of the given expression, $dfrac{a-1}{a^2-8a+15}-dfrac{a-2}{2a^2-9a-5}
,$ is

$$
begin{align*}
&
dfrac{a-1}{(a-3)(a-5)}-dfrac{a-2}{(2a+1)(a-5)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
(a-3)(a-5)(2a+1)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{a-1}{(a-3)(a-5)}cdotdfrac{2a+1}{2a+1}-dfrac{a-2}{(2a+1)(a-5)}cdotdfrac{a-3}{a-3}
\\&=
dfrac{(a-1)(2a+1)}{(a-3)(a-5)(2a+1)}-dfrac{(a-2)(a-3)}{(a-3)(a-5)(2a+1)}
\\&=
dfrac{(2a^2-a-1)-(a^2-5a+6)}{(a-3)(a-5)(2a+1)}
\\&=
dfrac{2a^2-a-1-a^2+5a-6}{(a-3)(a-5)(2a+1)}
\\&=
dfrac{a^2+4a-7}{(a-3)(a-5)(2a+1)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{a^2+4a-7}{(a-3)(a-5)(2a+1)}
text{, }aneleft{ -dfrac{1}{2},3,5 right}
.$

Step 3
3 of 4
c) The factored form of the given expression, $dfrac{3x+2}{4x^2-1}+dfrac{2x-5}{4x^2+4x+1}
,$ is

$$
begin{align*}
&
dfrac{3x+2}{(2x+1)(2x-1)}+dfrac{2x-5}{(2x+1)(2x+1)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
(2x+1)(2x+1)(2x-1)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{3x+2}{(2x+1)(2x-1)}cdotdfrac{2x+1}{2x+1}+dfrac{2x-5}{(2x+1)(2x+1)}cdotdfrac{2x-1}{2x-1}
\\&=
dfrac{(3x+2)(2x+1)}{(2x+1)(2x+1)(2x-1)}+dfrac{(2x-5)(2x-1)}{(2x+1)(2x+1)(2x-1)}
\\&=
dfrac{(6x^2+7x+2)+(4x^2-12x+5)}{(2x+1)(2x+1)(2x-1)}
\\&=
dfrac{10x^2-5x+7}{(2x+1)(2x+1)(2x-1)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{10x^2-5x+7}{(2x+1)(2x+1)(2x-1)}
text{, }xneleft{ -dfrac{1}{2},dfrac{1}{2} right}
.$

Result
4 of 4
a) $dfrac{7x+4}{(4x+3)(4x+3)(x+1)}
text{, }xneleft{ -1,-dfrac{3}{4} right}$

b) $dfrac{a^2+4a-7}{(a-3)(a-5)(2a+1)}
text{, }aneleft{ -dfrac{1}{2},3,5 right}$

c) $dfrac{10x^2-5x+7}{(2x+1)(2x+1)(2x-1)}
text{, }xneleft{ -dfrac{1}{2},dfrac{1}{2} right}$

Exercise 9
Step 1
1 of 5
a) The given expression, $dfrac{2x^3}{3y^2}timesdfrac{9y}{10x}-dfrac{2y}{3x}
,$ is equivalent to

$$
begin{align*}
&
dfrac{2x^3(9y)}{3y^2(10x)}-dfrac{2y}{3x}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel{2x}cdot x^2(cancel{3y}cdot3)}{cancel{3y}cdot y(cancel{2x}cdot5)}-dfrac{2y}{3x}
\\&=
dfrac{3x^2}{5y}-dfrac{2y}{3x}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
15xy
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{3x^2}{5y}cdotdfrac{3x}{3x}-dfrac{2y}{3x}cdotdfrac{5y}{5y}
\\&=
dfrac{9x^3}{15xy}-dfrac{10y^2}{15xy}
\\&=
dfrac{9x^3-10y^2}{15xy}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{9x^3-10y^2}{15xy}
text{, }xne0text{, }yne0
.$

Step 2
2 of 5
b) The given expression, $dfrac{x+1}{2x-6}divdfrac{2(x+1)^2}{2-x}+dfrac{11}{x-2}
,$ is equivalent to

$$
begin{align*}
&
dfrac{x+1}{2x-6}cdotdfrac{2-x}{2(x+1)^2}+dfrac{11}{x-2}
\\&=
dfrac{x+1}{2(x-3)}cdotdfrac{-(x-2)}{2(x+1)(x+1)}+dfrac{11}{x-2}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{cancel{x+1}}{2(x-3)}cdotdfrac{-(x-2)}{2(cancel{x+1})(x+1)}+dfrac{11}{x-2}
\\&=
dfrac{-(x-2)}{4(x-3)(x+1)}+dfrac{11}{x-2}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
4(x-3)(x+1)(x-2)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{-(x-2)}{4(x-3)(x+1)}cdotdfrac{x-2}{x-2}+dfrac{11}{x-2}cdotdfrac{4(x-3)(x+1)}{4(x-3)(x+1)}
\\&=
dfrac{-(x^2-4x+4)}{4(x-3)(x+1)(x-2)}+dfrac{44(x^2-2x-3)}{4(x-3)(x+1)(x-2)}
\\&=
dfrac{-x^2+4x-4+44x^2-88x-132}{4(x-3)(x+1)(x-2)}
\\&=
dfrac{43x^2-84x-136}{4(x-3)(x+1)(x-2)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{43x^2-84x-136}{4(x-3)(x+1)(x-2)}
text{, }xne{-1,2,3}
.$

Step 3
3 of 5
c) The given expression, $dfrac{p+1}{p^2+2p-35}+dfrac{p^2+p-12}{p^2-2p-24}timesdfrac{p^2-4p-12}{p^2+2p-15}
,$ is equivalent to

$$
begin{align*}
&
dfrac{p+1}{(p+7)(p-5)}+dfrac{(p+4)(p-3)}{(p-6)(p+4)}timesdfrac{(p-6)(p+2)}{(p+5)(p-3)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{p+1}{(p+7)(p-5)}+dfrac{(cancel{p+4})(cancel{p-3})}{(cancel{p-6})(cancel{p+4})}timesdfrac{(cancel{p-6})(p+2)}{(p+5)(cancel{p-3})}
\\&=
dfrac{p+1}{(p+7)(p-5)}+dfrac{p+2}{p+5}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
(p+7)(p-5)(p+5)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{p+1}{(p+7)(p-5)}cdotdfrac{p+5}{p+5}+dfrac{p+2}{p+5}cdotdfrac{(p+7)(p-5)}{(p+7)(p-5)}
\\&=
dfrac{p^2+6p+5}{(p+7)(p-5)(p+5)}+dfrac{p^3+4p^2-31p-70}{(p+7)(p-5)(p+5)}
\\&=
dfrac{p^3+5p^2-25p-65}{(p+7)(p-5)(p+5)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{p^3+5p^2-25p-65}{(p+7)(p-5)(p+5)}
text{, }pne{ -7,-5,5 }
.$

Step 4
4 of 5
d) The given expression, $dfrac{5m-n}{2m+n}-dfrac{4m^2-4mn+n^2}{4m^2-n^2}divdfrac{6m^2-mn-n^2}{3m+15n}
,$ is equivalent to

$$
begin{align*}
&
dfrac{5m-n}{2m+n}-dfrac{4m^2-4mn+n^2}{4m^2-n^2}cdotdfrac{3m+15n}{6m^2-mn-n^2}
\\&=
dfrac{5m-n}{2m+n}-dfrac{(2m-n)(2m-n)}{(2m+n)(2m-n)}cdotdfrac{3(m+5n)}{(3m+n)(2m-n)}
.end{align*}
$$

Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to

$$
begin{align*}
&
dfrac{5m-n}{2m+n}-dfrac{(cancel{2m-n})(cancel{2m-n})}{(2m+n)(cancel{2m-n})}cdotdfrac{3(m+5n)}{(3m+n)(cancel{2m-n})}
\\&=
dfrac{5m-n}{2m+n}-dfrac{3(m+5n)}{(2m+n)(3m+n)}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
(2m+n)(3m+n)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{5m-n}{2m+n}cdotdfrac{3m+n}{3m+n}-dfrac{3(m+5n)}{(2m+n)(3m+n)}
\\&=
dfrac{15m^2+2mn-n^2}{(2m+n)(3m+n)}-dfrac{3m+15n}{(2m+n)(3m+n)}
\\&=
dfrac{15m^2+2mn-n^2-3m-15n}{(2m+n)(3m+n)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{15m^2+2mn-n^2-3m-15n}{(2m+n)(3m+n)}
text{, }mneleft{ -dfrac{n}{2},-dfrac{n}{3} right}
.$

Result
5 of 5
a) $dfrac{9x^3-10y^2}{15xy}
text{, }xne0text{, }yne0$

b) $dfrac{43x^2-84x-136}{4(x-3)(x+1)(x-2)}
text{, }xne{-1,2,3}$

c) $dfrac{p^3+5p^2-25p-65}{(p+7)(p-5)(p+5)}
text{, }pne{ -7,-5,5 }$

d) $dfrac{15m^2+2mn-n^2-3m-15n}{(2m+n)(3m+n)}
text{, }mneleft{ -dfrac{n}{2},-dfrac{n}{3} right}$

Exercise 10
Step 1
1 of 5
a) Converting the terms to an equivalent fraction that uses the $LCD=
10
,$ the given expression, $dfrac{3m+2}{2}+dfrac{4m+5}{5}
,$ is equivalent to

$$
begin{align*}
&
dfrac{3m+2}{2}cdotdfrac{5}{5}+dfrac{4m+5}{5}cdotdfrac{2}{2}
\\&=
dfrac{15m+10}{10}+dfrac{8m+10}{10}
\\&=
dfrac{23m+20}{10}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{23m+20}{10}
text{, no restriction}
.$

Step 2
2 of 5
b) Converting the terms to an equivalent fraction that uses the $LCD=
4x^3
,$ the given expression, $dfrac{5}{x^2}-dfrac{3}{4x^3}
,$ is equivalent to

$$
begin{align*}
&
dfrac{5}{x^2}cdotdfrac{4x}{4x}-dfrac{3}{4x^3}
\\&=
dfrac{20x}{4x^3}-dfrac{3}{4x^3}
\\&=
dfrac{20x-3}{4x^3}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{20x-3}{4x^3}
text{, }xne0
.$

Step 3
3 of 5
c) Converting the terms to an equivalent fraction that uses the $LCD=
(y+1)(y-2)
,$ the given expression, $dfrac{2}{y+1}-dfrac{3}{y-2}
,$ is equivalent to

$$
begin{align*}
&
dfrac{2}{y+1}cdotdfrac{y-2}{y-2}-dfrac{3}{y-2}cdotdfrac{y+1}{y+1}
\\&=
dfrac{2y-4}{(y+1)(y-2)}-dfrac{3y+3}{(y+1)(y-2)}
\\&=
dfrac{-y-7}{(y+1)(y-2)}
.end{align*}
$$

Hence, the simplified form of the given expression and its restrictions are $dfrac{-y-7}{(y+1)(y-2)}
text{, }yne{ -1,2 }
.$

Step 4
4 of 5
d) The factored form of the given expression, $dfrac{2x}{x^2+x-6}+dfrac{5}{x^2+2x-8}
,$ is

$$
begin{align*}
&
dfrac{2x}{(x+3)(x-2)}+dfrac{5}{(x+4)(x-2)}
.end{align*}
$$

Using the $LCD=
(x+3)(x-2)(x+4)
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{2x}{(x+3)(x-2)}cdotdfrac{x+4}{x+4}+dfrac{5}{(x+4)(x-2)}cdotdfrac{x+3}{x+3}
\\&=
dfrac{2x^2+8x}{(x+3)(x-2)(x+4)}+dfrac{5x+15}{(x+3)(x-2)(x+4)}
\\&=
dfrac{2x^2+13x+15}{(x+3)(x-2)(x+4)}
\\&=
dfrac{(2x+3)(x+5)}{(x+3)(x-2)(x+4)}
.end{align*}
$$

Since the denominator of the original equation cannot be zero, then the simplified form with its restriction is $dfrac{(2x+3)(x+5)}{(x+3)(x-2)(x+4)}
text{, }xneleft{ -4,-3,2 right}
.$

Result
5 of 5
a) $dfrac{23m+20}{10}
text{, no restriction}$

b) $dfrac{20x-3}{4x^3}
text{, }xne0$

c) $dfrac{-y-7}{(y+1)(y-2)}
text{, }yne{ -1,2 }$

d) $dfrac{(2x+3)(x+5)}{(x+3)(x-2)(x+4)}
text{, }xneleft{ -4,-3,2 right}$

Exercise 11
Step 1
1 of 3
Solving for $R$ in the given equation, $dfrac{1}{R}=dfrac{1}{s}+dfrac{1}{t}
,$ results to

$$
begin{align*}
dfrac{1}{R}&=dfrac{1}{s}+dfrac{1}{t}
\\
Rstleft(dfrac{1}{R}right)&=left(dfrac{1}{s}+dfrac{1}{t}right)Rst
\\
st&=Rt+Rs
\\
st&=R(t+s)
\\
dfrac{st}{t+s}&=R
\\
R&=dfrac{st}{t+s}
.end{align*}
$$

With $s$ increased by $1$ unit and $t$ decreased by $1$ unit, the given equation becomes $dfrac{1}{R’}=dfrac{1}{s+1}+dfrac{1}{t-1}
.$ Solving for $R’$ results to

$$
begin{align*}
R'(s+1)(t-1)left( dfrac{1}{R’} right) &=left( dfrac{1}{s+1}+dfrac{1}{t-1} right) R'(s+1)(t-1)
\\
(s+1)(t-1)&=R'(t-1)+R'(s+1)
\\
st-s+t-1&=R'[(t-1)+(s+1)]
\\
st-s+t-1&=R'(t+s)
\\
dfrac{st-s+t-1}{t+s}&=R’
\\
R’&=dfrac{st-s+t-1}{t+s}
.end{align*}
$$

Step 2
2 of 3
Subtracting $R’$ and $R,$ then the change in resistance is

$$
begin{align*}
&
dfrac{st-s+t-1}{t+s}-dfrac{st}{t+s}
\\&=
dfrac{st-s+t-1-st}{t+s}
\\&=
dfrac{-s+t-1}{t+s}
\\&=
dfrac{t-s-1}{t+s}
.end{align*}
$$

Result
3 of 3
$$
dfrac{t-s-1}{t+s}
$$
Exercise 12
Step 1
1 of 3
a) Using $speed=dfrac{distance}{time},$ then

$$
begin{align*}
speed_1&=dfrac{2x}{3}
\\&text{and}\\
speed_2&=dfrac{x+100}{2}
.end{align*}
$$

The difference in the two speeds is

$$
begin{align*}
&
dfrac{2x}{3}-dfrac{x+100}{2}
.end{align*}
$$

Converting the terms to an equivalent fraction that uses the $LCD=
6
,$ the expression above is equivalent to

$$
begin{align*}
&
dfrac{2x}{3}cdotdfrac{2}{2}-dfrac{x+100}{2}cdotdfrac{3}{3}
\\&=
dfrac{4x}{6}-dfrac{3x+300}{6}
\\&=
dfrac{x-300}{6}
.end{align*}
$$

Step 2
2 of 3
b) With $speed_2>speed_1,$ then

$$
begin{align*}
dfrac{x+100}{2}&>dfrac{2x}{3}
.end{align*}
$$

Using the properties of inequality, the inequality above is equivalent to

$$
begin{align*}
6left( dfrac{x+100}{2} right) &>left( dfrac{2x}{3} right)6
\\
3(x+100)&>2x(2)
\
3x+300&>4x
\
3x-4x&>-300
\
-x&>-300
\
x&<(-300)(-1)
&text{ (reverse the inequality)}
\
x&<300
.end{align*}
$$

Hence, the speed for the second trip was greater than the speed for the first trip when $x<300
.$

Result
3 of 3
a) $dfrac{x-300}{6}$

b) $x<300$

Exercise 13
Step 1
1 of 2
We are given with the formula for the sound intensity as a function of distance

$$
begin{equation*} I=frac{k}{d^2} end{equation*}
$$

When Matthew moves $x$ meters farther from the stage, the new intensity $I_2$ is

$$
begin{equation*} I_2=frac{k}{(d+x)^2}end{equation*}
$$

The decrease in intensity is $I-I_2$

$$
begin{equation*} I-I_2=frac{k}{(d)^2}-frac{k}{(d+x)^2}; ;; dneq 0, xneq dend{equation*}
$$

Use the general algebraic rule: $dfrac{a}{b}-dfrac{c}{d}=dfrac{ad-bc}{bd}$

$$
begin{align*} I_2-I&=frac{[k(d+x)^2]-k(d^2)}{d^2(d+x)^2}\
&=frac{[k(d^2+2dx+x^2)]-kd^2}{d^2(d+x)^2}\
&=frac{(kd^2+2kdx+kx^2)-kd^2}{d^2(d+x)^2}\
I_2-I&=frac{2kdx+kx^2}{d^2(d+x)^2} ; , ;dneq 0 , ; -x\
end{align*}
$$

Result
2 of 2
$$
dfrac{2kdx+kx^2}{d^2(d+x)^2},; dneq 0,;-x
$$
Exercise 14
Step 1
1 of 5
a.i) An example of a pair of rational expressions where the lowest common denominator is one of the denominators is

$$
begin{align*}
dfrac{x}{6}
text{ and }
dfrac{2x}{3}
end{align*}
$$

since their $LCD$ is $6.$

Step 2
2 of 5
a.ii) An example of a pair of rational expressions where the lowest common denominator is the product of the denominators is

$$
begin{align*}
dfrac{x}{2}
text{ and }
dfrac{2x}{3}
end{align*}
$$

since their $LCD$ is $2times3=6.$

Step 3
3 of 5
a.iii) An example of a pair of rational expressions where the lowest common denominator is neither one of the denominators nor the product of the denominators is

$$
begin{align*}
dfrac{x}{4}
text{ and }
dfrac{x}{6}
end{align*}
$$

since their $LCD$ is $12
.$

Step 4
4 of 5
b) To determine the $LCD$ of two simplified rational functions with different quadratic denominators, factor first the quadratic expressions. The $LCD$ is composed of the factors common to both quadratic equations (with highest exponent) and of factors not common to both denominators (with highest exponent.)

For example, the factored form of the rational expressions $dfrac{1}{x^2+2x+1}$ and $dfrac{1}{x^2+3x+2}$ is

$$
begin{align*}
dfrac{1}{(x+1)^2}
text{ and }
dfrac{1}{(x+1)(x+2)}
.end{align*}
$$

The $LCD$ is composed of the common factor (with the highest exponent), $(x+1)^2,$ and the factor not common to both denominators (with highest exponent), $(x+2).$ Hence, the $LCD$ is $(x+1)^2(x+2)
.$

Result
5 of 5
a.i) $dfrac{x}{6}
text{ and }
dfrac{2x}{3}$

a.ii) $dfrac{x}{2}
text{ and }
dfrac{2x}{3}$

a.iii) $dfrac{x}{4}
text{ and }
dfrac{x}{6}$

b) see explanation and example

Exercise 15
Step 1
1 of 3
a) Combining the left side of the given equation, $dfrac{1}{n(n+1)}=dfrac{1}{n}-dfrac{1}{n+1}
,$ results to

$$
begin{align*}
dfrac{1}{n(n+1)}&=dfrac{1}{n}cdotdfrac{n+1}{n+1}-dfrac{1}{n+1}cdotdfrac{n}{n}
\\
dfrac{1}{n(n+1)}&=dfrac{n+1}{n(n+1)}-dfrac{n}{n+1}
\\
dfrac{1}{n(n+1)}&=dfrac{n+1-n}{n(n+1)}
\\
dfrac{1}{n(n+1)}&=dfrac{1}{n(n+1)}
text{ (TRUE)}
.end{align*}
$$

Since, the solution above ended with a TRUE statement, then the original equation is an identity. That is, the difference between reciprocals of consecutive positive integers is the reciprocal of their product.

Step 2
2 of 3
b) Let $z=1,y=2,$ and $x=2.$ Then

$$
begin{align*}
dfrac{1}{2}&=dfrac{1}{1}-dfrac{1}{2}
\\
dfrac{1}{2}&=dfrac{2}{2}-dfrac{1}{2}
\\
dfrac{1}{2}&=dfrac{1}{2}
text{ (TRUE)}
.end{align*}
$$

Let $z=5,y=6,$ and $x=30.$ Then

$$
begin{align*}
dfrac{1}{30}&=dfrac{1}{5}-dfrac{1}{6}
\\
dfrac{1}{30}&=dfrac{1}{5}cdotdfrac{6}{6}-dfrac{1}{6}cdotdfrac{5}{5}
\\
dfrac{1}{30}&=dfrac{6}{30}-dfrac{5}{30}
\\
dfrac{1}{30}&=dfrac{1}{30}
text{ (TRUE)}
.end{align*}
$$

Result
3 of 3
a) see solution

b) see examples

Exercise 16
Step 1
1 of 3
a) Let $a$ be the first integer, and $(a+2)$ be the next even/odd integer. Then

$$
begin{align*}
&
dfrac{1}{a}+dfrac{1}{a+2}
\\&=
dfrac{1}{a}cdotdfrac{a+2}{a+2}+dfrac{1}{a+2}cdotdfrac{a}{a}
\\&=
dfrac{a+2}{a(a+2)}+dfrac{a}{a(a+2)}
\\&=
dfrac{2a+2}{a(a+2)}
.end{align*}
$$

Showing that the sum of the squares of the numerator and the denominator is a perfect square results to

$$
begin{align*}
&
(2a+2)^2+(a(a+2))^2
\&=
(4a^2+8a+4)+(a^2(a^2+4a+4))
\&=
(4a^2+8a+4)+(a^4+4a^3+4a^2)
\&=
a^4+4a^3+8a^2+8a+4
\&=
a^4+8a^2+4+4a^3+8a
\&=
a^4+4a^2+4a^2+4+4a^3+8a
\&=
a^4+4a^2+4+4a^3+4a^2+8a
\&=
(a^2)^2+(2a)^2+(2)^2+2(a^2)(2a)+2(a^2)(2)+2(2a)(2)
\&=
(a^2+2a+2)^2
.end{align*}
$$

Hence, the sum of the squares of the numerator and the denominator is a perfect square.

Step 2
2 of 3
The Pythagorean Triples are $2a+2,a(a+2),$ and $(a^2+2a+2)$. If $a=1,$ the triples are ${ 4,3,5 }$ since

$$
begin{align*}
2a+2&Rightarrow
2(1)+2Rightarrow4
\
a(a+2)&Rightarrow
1(1+2)Rightarrow3
\
a^2+2a+2&Rightarrow
1^2+2(1)+2Rightarrow5
.end{align*}
$$

Result
3 of 3
a) $2x+2$, $x^2+2x$, and $x^2+2x+2$ are Pythagorean triples.

b) Example: when $x=1$, Pythagorean triple: 3, 4, 5

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Introduction to Functions
Page 2: Getting Started
Section 1-1: Relations and Functions
Section 1-2: Function Notation
Section 1-3: Exploring Properties of Parent Functions
Section 1-4: Determining the Domain and Range of a Function
Section 1-5: The Inverse Function and Its Properties
Section 1-6: Exploring Transformations of Parent Functions
Section 1-7: Investigating Horizontal Stretches, Compressions, and Reflections
Section 1-8: Using Transformations to Graph Functions of the Form y 5 af [k(x 2 d)] 1 c
Page 78: Chapter Self-Test
Chapter 2: Equivalent Algebraic Expressions
Page 82: Getting Started
Section 2-1: Adding and Subtracting Polynomials
Section 2-2: Multiplying Polynomials
Section 2-3: Factoring Polynomials
Section 2-4: Simplifying Rational Functions
Section 2-5: Exploring Graphs of Rational Functions
Section 2-6: Multiplying and Dividing Rational Expressions
Section 2-7: Adding and Subtracting Rational Expressions
Page 134: Chapter Self-Test
Chapter 3: Quadratic Functions
Page 138: Getting Started
Section 3-1: Properties of Quadratic Functions
Section 3-2: Determining Maximum and Minimum Values of a Quadratic Function
Section 3-3: The Inverse of a Quadratic Function
Section 3-4: Operations with Radicals
Section 3-5: Quadratic Function Models: Solving Quadratic Equations
Section 3-6: The Zeros of a Quadratic Function
Section 3-7: Families of Quadratic Functions
Section 3-8: Linear-Quadratic Systems
Page 204: Chapter Self-Test
Page 206: Cumulative Review
Page 167: Check Your Understanding
Page 170: Practice Questions
Page 198: Check Your Understanding
Page 202: Practice Questions
Chapter 4: Exponential Functions
Page 212: Getting Started
Section 4-1: Exploring Growth and Decay
Section 4-2: Working with Integer Exponents
Section 4-3: Working with Rational Exponents
Section 4-4: Simplifying Algebraic Expressions Involving Exponents
Section 4-5: Exploring the Properties of Exponential Functions
Section 4-6: Transformations of Exponential Functions
Section 4-7: Applications Involving Exponential Functions
Page 270: Chapter Self-Test
Chapter 5: Trigonometric Ratios
Page 274: Getting Started
Section 5-1: Trigonometric Ratios of Acute Angles
Section 5-2: Evaluating Trigonometric Ratios for Special Angles
Section 5-3: Exploring Trigonometric Ratios for Angles Greater than 90°
Section 5-4: Evaluating Trigonometric Ratios for Any Angle Between 0° and 360°
Section 5-5: Trigonometric Identities
Section 5-6: The Sine Law
Section 5-7: The Cosine Law
Section 5-8: Solving Three-Dimensional Problems by Using Trigonometry
Page 340: Chapter Self-Test
Chapter 6: Sinusoidal Functions
Page 344: Getting Started
Section 6-1: Periodic Functions and Their Properties
Section 6-2: Investigating the Properties of Sinusoidal Functions
Section 6-3: Interpreting Sinusoidal Functions
Section 6-4: Exploring Transformations of Sinusoidal Functions
Section 6-5: Using Transformations to Sketch the Graphs of Sinusoidal Functions
Section 6-6: Investigating Models of Sinusoidal Functions
Section 6-7: Solving Problems Using Sinusoidal Models
Page 406: Chapter Self-Test
Page 408: Cumulative Review
Chapter 7: Discrete Functions: Sequences and Series
Page 414: Getting Started
Section 7-1: Arithmetic Sequences
Section 7-2: Geometric Sequences
Section 7-3: Creating Rules to Define Sequences
Section 7-4: Exploring Recursive Sequences
Section 7-5: Arithmetic Series
Section 7-6: Geometric Series
Section 7-7: Pascal’s Triangle and Binomial Expansions
Page 470: Chapter Self-Test
Chapter 8: Discrete functions: Financial Applications
Page 474: Getting Started
Section 8-1: Simple Interest
Section 8-2: Compound Interest: Future Value
Section 8-3: Compound Interest: Present Value
Section 8-4: Annuities: Future Value
Section 8-5: Annuities: Present Value
Section 8-6: Using Technology to Investigate Financial Problems
Page 536: Chapter Self-Test
Page 538: Cumulative Review