All Solutions
Page 128: Check Your Understanding
begin{align*}
text{a);;} dfrac{1}{3}+dfrac{5}{4}&=dfrac{1(4)+5(3)}{3(4)}\\&=dfrac{4+15}{12}\\&=dfrac{19}{12}end{align*}
$$
$$
dfrac{a}{b}+dfrac{c}{d}=dfrac{ad+bc}{bd}
$$
begin{align*} {text{b)};;;} dfrac{2x}{5}+dfrac{6x}{2}&=dfrac{(2x)(2)+(6x)(5)}{5(2)}\\&=dfrac{4x+30x}{10}\\&=dfrac{34x}{10}\\&=dfrac{2(17x)}{2(5)}\\&=dfrac{17x}{5}end{align*}
$$
$$
dfrac{a}{b}+dfrac{c}{d}=dfrac{ad+bc}{bd}
$$
$=dfrac{5(7x)}{(4x^2)(7x)}+dfrac{1(4)}{(7x^3)(4)}$
$=dfrac{5(7x)}{28x^3}+dfrac{4}{28x^3}$
$=dfrac{35x+4}{28x^3}$ ; $xneq 0$
$$
dfrac{a}{c}pm dfrac{b}{c}= dfrac{apm b}{c}
$$
$=dfrac{2(x)}{x(x)}+dfrac{6}{x^2}$
$=dfrac{2x}{x^2}+dfrac{6}{x^2}$
$=dfrac{2x+6}{x^2}$ ; $xneq 0$
$$
dfrac{a}{c}pm dfrac{b}{c}= dfrac{apm b}{c}
$$
b) $dfrac{17x}{5}$
c) $dfrac{35x+4}{28x^3}$ ; $xneq 0$
d) $dfrac{2x+6}{x^2}$ ; $xneq 0$
$=dfrac{5}{9}-dfrac{2(3)}{3(3)}$
$=dfrac{5}{9}-dfrac{6}{9}$
$=dfrac{5-6}{9}$
$$
=-dfrac{1}{9}
$$
$$
dfrac{a}{c}pm dfrac{b}{c}= dfrac{apm b}{c}
$$
$=dfrac{(5y)(2)}{3(2)}-dfrac{y(3)}{2(3)}$
$=dfrac{(5y)(2)}{6}-dfrac{3y}{6}$
$=dfrac{5y-3y}{6}$
$=dfrac{2y}{6}$
$=dfrac{2y}{2(3)}$
$=dfrac{y}{3}$
$$
dfrac{a}{c}pm dfrac{b}{c}= dfrac{apm b}{c}
$$
$=dfrac{5(5)-7(3x^2)}{(3x^2)(5)}$
$=dfrac{25-21x^2}{15x^2}$
$$
dfrac{a}{b}-dfrac{c}{d}=dfrac{ad-bc}{bd}
$$
$=dfrac{6(y)}{3xy(y)}-dfrac{5(3x)}{y^2(3x)}$
$=dfrac{6y}{3xy^2}-dfrac{5(3x)}{3xy^2}$
$$
=dfrac{6y-15x}{3xy^2}
$$
$$
dfrac{a}{c}pm dfrac{b}{c}= dfrac{apm b}{c}
$$
b) $dfrac{7y}{6}$
c) $dfrac{25-21x^2}{15x^2}$ ; $xneq 0$
d) $dfrac{6y-15x}{3xy^2}$ , $yneq 0$
(x-3)(5x-1)
,$ the given expression, $dfrac{3}{x-3}-dfrac{7}{5x-1}
,$ is equivalent to
$$
begin{align*}
&
dfrac{3}{x-3}cdotdfrac{5x-1}{5x-1}-dfrac{7}{5x-1}cdotdfrac{x-3}{x-3}
\\&=
dfrac{3(5x-1)}{(x-3)(5x-1)}-dfrac{7(x-3)}{(5x-1)(x-3)}
\\&=
dfrac{15x-3-7x+21}{(x-3)(5x-1)}
\\&=
dfrac{8x+18}{(x-3)(5x-1)}
\\&=
dfrac{2(4x+9)}{(x-3)(5x-1)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{2(4x+9)}{(x-3)(5x-1)}
text{, }xneleft{ dfrac{1}{5},3 right}
.$
,$ is
$$
begin{align*}
dfrac{2}{x+3}+dfrac{7}{(x+3)(x-3)}
.end{align*}
$$
Using the $LCD=
(x+3)(x-3)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{2}{x+3}cdotdfrac{x-3}{x-3}+dfrac{7}{(x+3)(x-3)}
\\&=
dfrac{2(x-3)+7}{(x+3)(x-3)}
\\&=
dfrac{2x-6+7}{(x+3)(x-3)}
\\&=
dfrac{2x+1}{(x+3)(x-3)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{2x+1}{(x+3)(x-3)}
text{, }xneleft{ -3,3 right}
.$
,$ is
$$
begin{align*}
dfrac{5}{(x-3)(x-1)}-dfrac{9}{(x-1)(x-1)}
.end{align*}
$$
Using the $LCD=
(x-1)(x-1)(x-3)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{5}{(x-3)(x-1)}cdotdfrac{x-1}{x-1}-dfrac{9}{(x-1)(x-1)}cdotdfrac{x-3}{x-3}
\\&=
dfrac{5(x-1)-9(x-3)}{(x-3)(x-1)(x-1)}
\\&=
dfrac{5x-5-9x+27}{(x-3)(x-1)(x-1)}
\\&=
dfrac{-4x+22}{(x-3)(x-1)(x-1)}
\\&=
dfrac{-2(2x-11)}{(x-3)(x-1)(x-1)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{-2(2x-11)}{(x-3)(x-1)(x-1)}
text{, }xneleft{ 1,3 right}
.$
text{, }xneleft{ dfrac{1}{5},3 right}$
b) $dfrac{2x+1}{(x+3)(x-3)}
text{, }xneleft{ -3,3 right}$
c) $dfrac{-2(2x-11)}{(x-3)(x-1)(x-1)}
text{, }xneleft{ 1,3 right}$
,$ results to
$$
begin{align*}
&
dfrac{2}{(5^2-9)}+dfrac{3}{(5-3)}
\\&=
dfrac{2}{25-9}+dfrac{3}{2}
\\&=
dfrac{2}{16}+dfrac{3}{2}
\\&=
dfrac{1}{8}+dfrac{3}{2}
.end{align*}
$$
Using the $LCD=
8
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{1}{8}+dfrac{3}{2}cdotdfrac{4}{4}
\\&=
dfrac{1}{8}+dfrac{12}{8}
\\&=
dfrac{13}{8}
.end{align*}
$$
,$ is
$$
begin{align*}
&
dfrac{2}{(x+3)(x-3)}+dfrac{3}{(x-3)}
.end{align*}
$$
Using the $LCD=
(x+3)(x-3)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{2}{(x+3)(x-3)}+dfrac{3}{(x-3)}cdotdfrac{x+3}{x=3}
\\&=
dfrac{2+3(x+3)}{(x+3)(x-3)}
\\&=
dfrac{2+3x+9}{(x+3)(x-3)}
\\&=
dfrac{3x+11}{(x+3)(x-3)}
.end{align*}
$$
,$ results to
$$
begin{align*}
&
dfrac{3(5)+11}{(5+3)(5-3)}
\\&=
dfrac{15+11}{(8)(2)}
\\&=
dfrac{26}{16}
\\&=
dfrac{cancel2(13)}{cancel2(8)}
\\&=
dfrac{13}{8}
.end{align*}
$$
The value $dfrac{13}{8}$ is the same value derived in Item a.
b) $dfrac{3x+11}{(x+3)(x-3)}$
c) same value
12
,$ the given expression, $dfrac{2x}{3}+dfrac{3x}{4}-dfrac{x}{6}
,$ is equivalent to
$$
begin{align*}
&
dfrac{2x}{3}cdotdfrac{4}{4}+dfrac{3x}{4}cdotdfrac{3}{3}-dfrac{x}{6}cdotdfrac{2}{2}
\\&=
dfrac{8x}{12}+dfrac{9x}{12}-dfrac{2x}{12}
\\&=
dfrac{15x}{12}
\\&=
dfrac{cancel3cdot5x}{cancel3cdot4}
\\&=
dfrac{5x}{4}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{5x}{4}
text{, no restriction}
.$
10t^4
,$ the given expression, $dfrac{3}{t^4}+dfrac{1}{2t^2}-dfrac{3}{5t}
,$ is equivalent to
$$
begin{align*}
&
dfrac{3}{t^4}cdotdfrac{10}{10}+dfrac{1}{2t^2}cdotdfrac{5t^2}{5t^2}-dfrac{3}{5t}cdotdfrac{2t^3}{2t^3}
\\&=
dfrac{30}{10t^4}+dfrac{5t^2}{10t^4}-dfrac{6t^3}{10t^4}
\\&=
dfrac{-6t^3+5t^2+30}{10t^4}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{-6t^3+5t^2+30}{10t^4}
text{, }tne0
.$
60y^4
,$ the given expression, $dfrac{2x}{3y}-dfrac{x^2}{4y^3}+dfrac{3}{5y^4}
,$ is equivalent to
$$
begin{align*}
&
dfrac{2x}{3y}cdotdfrac{20y^3}{20y^3}-dfrac{x^2}{4y^3}cdotdfrac{15y}{15y}+dfrac{3}{5y^4}cdotdfrac{12}{12}
\\&=
dfrac{40xy^3}{60y^4}-dfrac{15x^2y}{60y^4}+dfrac{36}{60y^4}
\\&=
dfrac{-15x^2y+40xy^3+36}{60y^4}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{-15x^2y+40xy^3+36}{60y^4}
text{, }yne0
.$
mn
,$ the given expression, $dfrac{n}{m}+dfrac{m}{n}-m
,$ is equivalent to
$$
begin{align*}
&
dfrac{n}{m}cdotdfrac{n}{n}+dfrac{m}{n}cdotdfrac{m}{m}-mcdotdfrac{mn}{mn}
\\&=
dfrac{n^2}{mn}+dfrac{m^2}{mn}-dfrac{m^2n}{mn}
\\&=
dfrac{n^2+m^2-m^2n}{mn}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{n^2+m^2-m^2n}{mn}
text{, }mne0text{, }nne0
.$
text{, no restriction}$
b) $dfrac{-6t^3+5t^2+30}{10t^4}
text{, }tne0$
c) $dfrac{-15x^2y+40xy^3+36}{60y^4}
text{, }yne0$
d) $dfrac{n^2+m^2-m^2n}{mn}
text{, }mne0text{, }nne0$
a(a-4)
,$ the given expression, $dfrac{7}{a-4}+dfrac{2}{a}
,$ is equivalent to
$$
begin{align*}
&
dfrac{7}{a-4}cdotdfrac{a}{a}+dfrac{2}{a}cdotdfrac{a-4}{a-4}
\\&=
dfrac{7a}{a(a-4)}+dfrac{2a-8}{a(a-4)}
\\&=
dfrac{7a+2a-8}{a(a-4)}
\\&=
dfrac{9a-8}{a(a-4)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{9a-8}{a(a-4)}
text{, }aneleft{ 0,4 right}
.$
3x-2
,$ the given expression, $dfrac{4}{3x-2}+6
,$ is equivalent to
$$
begin{align*}
&
dfrac{4}{3x-2}+6cdotdfrac{3x-2}{3x-2}
\\&=
dfrac{4}{3x-2}+dfrac{18x-12}{3x-2}
\\&=
dfrac{4+18x-12}{3x-2}
\\&=
dfrac{18x-8}{3x-2}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{18x-8}{3x-2}
text{, }xnedfrac{2}{3}
.$
(x+4)(x+3)
,$ the given expression, $dfrac{5}{x+4}+dfrac{7}{x+3}
,$ is equivalent to
$$
begin{align*}
&
dfrac{5}{x+4}cdotdfrac{x+3}{x+3}+dfrac{7}{x+3}cdotdfrac{x+4}{x+4}
\\&=
dfrac{5x+15}{(x+4)(x+3)}+dfrac{7x+28}{(x+4)(x+3)}
\\&=
dfrac{12x+43}{(x+4)(x+3)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{12x+43}{(x+4)(x+3)}
text{, }xneleft{ -4,-3 right}
.$
(2n-3)(n-5)
,$ the given expression, $dfrac{6}{2n-3}-dfrac{4}{n-5}
,$ is equivalent to
$$
begin{align*}
&
dfrac{6}{2n-3}cdotdfrac{n-5}{n-5}-dfrac{4}{n-5}cdotdfrac{2n-3}{2n-3}
\\&=
dfrac{6n-30}{(2n-3)(n-5)}-dfrac{8n-12}{(2n-3)(n-5)}
\\&=
dfrac{6n-30-8n+12}{(2n-3)(n-5)}
\\&=
dfrac{-2n-18}{(2n-3)(n-5)}
\\&=
dfrac{-2(n+9)}{(2n-3)(n-5)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{-2(n+9)}{(2n-3)(n-5)}
text{, }nneleft{ dfrac{3}{2},5 right}
.$
(x+4)(x-6)
,$ the given expression, $dfrac{7x}{x+4}+dfrac{3x}{x-6}
,$ is equivalent to
$$
begin{align*}
&
dfrac{7x}{x+4}cdotdfrac{x-6}{x-6}+dfrac{3x}{x-6}cdotdfrac{x+4}{x+4}
\\&=
dfrac{7x^2-42x}{(x+4)(x-6)}+dfrac{3x^2+12x}{(x+4)(x-6)}
\\&=
dfrac{10x^2-30x}{(x+4)(x-6)}
\\&=
dfrac{10x(x-3)}{(x+4)(x-6)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{10x(x-3)}{(x+4)(x-6)}
text{, }nneleft{ -4,6 right}
.$
,$ is
$$
begin{align*}
&
dfrac{7}{2(x-3)}+dfrac{4}{5(2x-3)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
10(x-3)(2x-3)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{7}{2(x-3)}cdotdfrac{5(2x-3)}{5(2x-3)}+dfrac{4}{5(2x-3)}cdotdfrac{2(x-3)}{2(x-3)}
\\&=
dfrac{35(2x-3)}{10(x-3)(2x-3)}+dfrac{8(2x-3)}{10(x-3)(2x-3)}
\\&=
dfrac{70x-105}{10(x-3)(2x-3)}+dfrac{16x-24}{10(x-3)(2x-3)}
\\&=
dfrac{86x-129}{10(x-3)(2x-3)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{86x-129}{10(x-3)(2x-3)}
text{, }xneleft{ dfrac{3}{2},3 right}
.$
text{, }aneleft{ 0,4 right}$
b) $dfrac{18x-8}{3x-2}
text{, }xnedfrac{2}{3}$
c) $dfrac{12x+43}{(x+4)(x+3)}
text{, }xneleft{ -4,-3 right}$
d) $dfrac{-2(n+9)}{(2n-3)(n-5)}
text{, }nneleft{ dfrac{3}{2},5 right}$
e) $dfrac{10x(x-3)}{(x+4)(x-6)}
text{, }nneleft{ -4,6 right}$
f) $dfrac{86x-129}{10(x-3)(2x-3)}
text{, }xneleft{ dfrac{3}{2},3 right}$
,$ is
$$
begin{align*}
&
dfrac{3}{x+1}+dfrac{4}{(x-4)(x+1)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
(x+1)(x-4)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{3}{x+1}cdotdfrac{x-4}{x-4}+dfrac{4}{(x-4)(x+1)}
\\&=
dfrac{3x-12}{(x+1)(x-4)}+dfrac{4}{(x+1)(x-4)}
\\&=
dfrac{3x-8}{(x+1)(x-4)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{3x-8}{(x+1)(x-4)}
text{, }xneleft{ -1,4 right}
.$
,$ is
$$
begin{align*}
&
dfrac{2t}{t-4}-dfrac{5t}{(t-4)(t+4)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
(t-4)(t+4)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{2t}{t-4}cdotdfrac{t+4}{t+4}-dfrac{5t}{(t-4)(t+4)}
\\&=
dfrac{2t^2+8t}{(t-4)(t+4)}-dfrac{5t}{(t-4)(t+4)}
\\&=
dfrac{2t^2+3t}{(t-4)(t+4)}
\\&=
dfrac{t(2t+3)}{(t-4)(t+4)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{t(2t+3)}{(t-4)(t+4)}
text{, }tneleft{ -4,4 right}
.$
,$ is
$$
begin{align*}
&
dfrac{3}{(t+3)(t-2)}+dfrac{5}{(t+3)(t+3)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
(t+3)(t+3)(t-2)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{3}{(t+3)(t-2)}cdotdfrac{t+3}{t+3}+dfrac{5}{(t+3)(t+3)}cdotdfrac{t-2}{t-2}
\\&=
dfrac{3t+9}{(t+3)(t+3)(t-2)}+dfrac{5t-10}{(t+3)(t+3)(t-2)}
\\&=
dfrac{8t-1}{(t+3)(t+3)(t-2)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{8t-1}{(t+3)(t+3)(t-2)}
text{, }tneleft{ -3,2 right}
.$
,$ is
$$
begin{align*}
&
dfrac{4x}{(x+4)(x+2)}-dfrac{3x}{(x-5)(x+2)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
(x+4)(x+2)(x-5)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{4x}{(x+4)(x+2)}cdotdfrac{x-5}{x-5}-dfrac{3x}{(x-5)(x+2)}cdotdfrac{x+4}{x+4}
\\&=
dfrac{4x^2-20x}{(x+4)(x+2)(x-5)}-dfrac{3x^2+12x}{(x+4)(x+2)(x-5)}
\\&=
dfrac{x^2-32x}{(x+4)(x+2)(x-5)}
\\&=
dfrac{x(x-32)}{(x+4)(x+2)(x-5)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{x(x-32)}{(x+4)(x+2)(x-5)}
text{, }xneleft{ -4,-2,5 right}
.$
,$ is
$$
begin{align*}
&
dfrac{x-1}{(x+3)(x-3)}+dfrac{x+7}{(x-3)(x-2)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
(x+3)(x-3)(x-2)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{x-1}{(x+3)(x-3)}cdotdfrac{x-2}{x-2}+dfrac{x+7}{(x-3)(x-2)}cdotdfrac{x+3}{x+3}
\\&=
dfrac{(x-1)(x-2)}{(x+3)(x-3)(x-2)}+dfrac{(x+7)(x+3)}{(x+3)(x-3)(x-2)}
\\&=
dfrac{(x^2-3x+2)+(x^2+10x+21)}{(x+3)(x-3)(x-2)}
\\&=
dfrac{2x^2+7x+23}{(x+3)(x-3)(x-2)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{2x^2+7x+23}{(x+3)(x-3)(x-2)}
text{, }xneleft{ -3,2,3 right}
.$
,$ is
$$
begin{align*}
&
dfrac{2t+1}{2(t^2-7t+12)}+dfrac{5t}{4(t^2-2t-3)}
\\&=
dfrac{2t+1}{2(t-3)(t-4)}+dfrac{5t}{4(t-3)(t+1)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
4(t-3)(t-4)(t+1)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{2t+1}{2(t-3)(t-4)}cdotdfrac{2(t+1)}{2(t+1)}+dfrac{5t}{4(t-3)(t+1)}cdotdfrac{t-4}{t-4}
\\&=
dfrac{2(2t+1)(t+1)}{4(t-3)(t-4)(t+1)}+dfrac{5t(t-4)}{4(t-3)(t-4)(t+1)}
\\&=
dfrac{2(2t^2+3t+1)}{4(t-3)(t-4)(t+1)}+dfrac{5t^2-20t}{4(t-3)(t-4)(t+1)}
\\&=
dfrac{4t^2+6t+2}{4(t-3)(t-4)(t+1)}+dfrac{5t^2-20t}{4(t-3)(t-4)(t+1)}
\\&=
dfrac{9t^2-14t+2}{4(t-3)(t-4)(t+1)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{9t^2-14t+2}{4(t-3)(t-4)(t+1)}
text{, }tneleft{ -1,3,4 right}
.$
text{, }xneleft{ -1,4 right}$
b) $dfrac{t(2t+3)}{(t-4)(t+4)}
text{, }tneleft{ -4,4 right}$
c) $dfrac{8t-1}{(t+3)(t+3)(t-2)}
text{, }tneleft{ -3,2 right}$
d) $dfrac{x(x-32)}{(x+4)(x+2)(x-5)}
text{, }xneleft{ -4,-2,5 right}$
e) $dfrac{2x^2+7x+23}{(x+3)(x-3)(x-2)}
text{, }xneleft{ -3,2,3 right}$
f) $dfrac{9t^2-14t+2}{4(t-3)(t-4)(t+1)}
text{, }tneleft{ -1,3,4 right}$
,$ is
$$
begin{align*}
&
dfrac{3}{(4x+3)(x+1)}-dfrac{5}{(4x+3)(4x+3)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
(4x+3)(4x+3)(x+1)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{3}{(4x+3)(x+1)}cdotdfrac{4x+3}{4x+3}-dfrac{5}{(4x+3)(4x+3)}cdotdfrac{x+1}{x+1}
\\&=
dfrac{12x+9}{(4x+3)(4x+3)(x+1)}-dfrac{5x+5}{(4x+3)(4x+3)(x+1)}
\\&=
dfrac{7x+4}{(4x+3)(4x+3)(x+1)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{7x+4}{(4x+3)(4x+3)(x+1)}
text{, }xneleft{ -1,-dfrac{3}{4} right}
.$
,$ is
$$
begin{align*}
&
dfrac{a-1}{(a-3)(a-5)}-dfrac{a-2}{(2a+1)(a-5)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
(a-3)(a-5)(2a+1)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{a-1}{(a-3)(a-5)}cdotdfrac{2a+1}{2a+1}-dfrac{a-2}{(2a+1)(a-5)}cdotdfrac{a-3}{a-3}
\\&=
dfrac{(a-1)(2a+1)}{(a-3)(a-5)(2a+1)}-dfrac{(a-2)(a-3)}{(a-3)(a-5)(2a+1)}
\\&=
dfrac{(2a^2-a-1)-(a^2-5a+6)}{(a-3)(a-5)(2a+1)}
\\&=
dfrac{2a^2-a-1-a^2+5a-6}{(a-3)(a-5)(2a+1)}
\\&=
dfrac{a^2+4a-7}{(a-3)(a-5)(2a+1)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{a^2+4a-7}{(a-3)(a-5)(2a+1)}
text{, }aneleft{ -dfrac{1}{2},3,5 right}
.$
,$ is
$$
begin{align*}
&
dfrac{3x+2}{(2x+1)(2x-1)}+dfrac{2x-5}{(2x+1)(2x+1)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
(2x+1)(2x+1)(2x-1)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{3x+2}{(2x+1)(2x-1)}cdotdfrac{2x+1}{2x+1}+dfrac{2x-5}{(2x+1)(2x+1)}cdotdfrac{2x-1}{2x-1}
\\&=
dfrac{(3x+2)(2x+1)}{(2x+1)(2x+1)(2x-1)}+dfrac{(2x-5)(2x-1)}{(2x+1)(2x+1)(2x-1)}
\\&=
dfrac{(6x^2+7x+2)+(4x^2-12x+5)}{(2x+1)(2x+1)(2x-1)}
\\&=
dfrac{10x^2-5x+7}{(2x+1)(2x+1)(2x-1)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{10x^2-5x+7}{(2x+1)(2x+1)(2x-1)}
text{, }xneleft{ -dfrac{1}{2},dfrac{1}{2} right}
.$
text{, }xneleft{ -1,-dfrac{3}{4} right}$
b) $dfrac{a^2+4a-7}{(a-3)(a-5)(2a+1)}
text{, }aneleft{ -dfrac{1}{2},3,5 right}$
c) $dfrac{10x^2-5x+7}{(2x+1)(2x+1)(2x-1)}
text{, }xneleft{ -dfrac{1}{2},dfrac{1}{2} right}$
,$ is equivalent to
$$
begin{align*}
&
dfrac{2x^3(9y)}{3y^2(10x)}-dfrac{2y}{3x}
.end{align*}
$$
Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to
$$
begin{align*}
&
dfrac{cancel{2x}cdot x^2(cancel{3y}cdot3)}{cancel{3y}cdot y(cancel{2x}cdot5)}-dfrac{2y}{3x}
\\&=
dfrac{3x^2}{5y}-dfrac{2y}{3x}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
15xy
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{3x^2}{5y}cdotdfrac{3x}{3x}-dfrac{2y}{3x}cdotdfrac{5y}{5y}
\\&=
dfrac{9x^3}{15xy}-dfrac{10y^2}{15xy}
\\&=
dfrac{9x^3-10y^2}{15xy}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{9x^3-10y^2}{15xy}
text{, }xne0text{, }yne0
.$
,$ is equivalent to
$$
begin{align*}
&
dfrac{x+1}{2x-6}cdotdfrac{2-x}{2(x+1)^2}+dfrac{11}{x-2}
\\&=
dfrac{x+1}{2(x-3)}cdotdfrac{-(x-2)}{2(x+1)(x+1)}+dfrac{11}{x-2}
.end{align*}
$$
Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to
$$
begin{align*}
&
dfrac{cancel{x+1}}{2(x-3)}cdotdfrac{-(x-2)}{2(cancel{x+1})(x+1)}+dfrac{11}{x-2}
\\&=
dfrac{-(x-2)}{4(x-3)(x+1)}+dfrac{11}{x-2}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
4(x-3)(x+1)(x-2)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{-(x-2)}{4(x-3)(x+1)}cdotdfrac{x-2}{x-2}+dfrac{11}{x-2}cdotdfrac{4(x-3)(x+1)}{4(x-3)(x+1)}
\\&=
dfrac{-(x^2-4x+4)}{4(x-3)(x+1)(x-2)}+dfrac{44(x^2-2x-3)}{4(x-3)(x+1)(x-2)}
\\&=
dfrac{-x^2+4x-4+44x^2-88x-132}{4(x-3)(x+1)(x-2)}
\\&=
dfrac{43x^2-84x-136}{4(x-3)(x+1)(x-2)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{43x^2-84x-136}{4(x-3)(x+1)(x-2)}
text{, }xne{-1,2,3}
.$
,$ is equivalent to
$$
begin{align*}
&
dfrac{p+1}{(p+7)(p-5)}+dfrac{(p+4)(p-3)}{(p-6)(p+4)}timesdfrac{(p-6)(p+2)}{(p+5)(p-3)}
.end{align*}
$$
Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to
$$
begin{align*}
&
dfrac{p+1}{(p+7)(p-5)}+dfrac{(cancel{p+4})(cancel{p-3})}{(cancel{p-6})(cancel{p+4})}timesdfrac{(cancel{p-6})(p+2)}{(p+5)(cancel{p-3})}
\\&=
dfrac{p+1}{(p+7)(p-5)}+dfrac{p+2}{p+5}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
(p+7)(p-5)(p+5)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{p+1}{(p+7)(p-5)}cdotdfrac{p+5}{p+5}+dfrac{p+2}{p+5}cdotdfrac{(p+7)(p-5)}{(p+7)(p-5)}
\\&=
dfrac{p^2+6p+5}{(p+7)(p-5)(p+5)}+dfrac{p^3+4p^2-31p-70}{(p+7)(p-5)(p+5)}
\\&=
dfrac{p^3+5p^2-25p-65}{(p+7)(p-5)(p+5)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{p^3+5p^2-25p-65}{(p+7)(p-5)(p+5)}
text{, }pne{ -7,-5,5 }
.$
,$ is equivalent to
$$
begin{align*}
&
dfrac{5m-n}{2m+n}-dfrac{4m^2-4mn+n^2}{4m^2-n^2}cdotdfrac{3m+15n}{6m^2-mn-n^2}
\\&=
dfrac{5m-n}{2m+n}-dfrac{(2m-n)(2m-n)}{(2m+n)(2m-n)}cdotdfrac{3(m+5n)}{(3m+n)(2m-n)}
.end{align*}
$$
Cancelling the common factors between the numerator and the denominator, the expression above is equivalent to
$$
begin{align*}
&
dfrac{5m-n}{2m+n}-dfrac{(cancel{2m-n})(cancel{2m-n})}{(2m+n)(cancel{2m-n})}cdotdfrac{3(m+5n)}{(3m+n)(cancel{2m-n})}
\\&=
dfrac{5m-n}{2m+n}-dfrac{3(m+5n)}{(2m+n)(3m+n)}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
(2m+n)(3m+n)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{5m-n}{2m+n}cdotdfrac{3m+n}{3m+n}-dfrac{3(m+5n)}{(2m+n)(3m+n)}
\\&=
dfrac{15m^2+2mn-n^2}{(2m+n)(3m+n)}-dfrac{3m+15n}{(2m+n)(3m+n)}
\\&=
dfrac{15m^2+2mn-n^2-3m-15n}{(2m+n)(3m+n)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{15m^2+2mn-n^2-3m-15n}{(2m+n)(3m+n)}
text{, }mneleft{ -dfrac{n}{2},-dfrac{n}{3} right}
.$
text{, }xne0text{, }yne0$
b) $dfrac{43x^2-84x-136}{4(x-3)(x+1)(x-2)}
text{, }xne{-1,2,3}$
c) $dfrac{p^3+5p^2-25p-65}{(p+7)(p-5)(p+5)}
text{, }pne{ -7,-5,5 }$
d) $dfrac{15m^2+2mn-n^2-3m-15n}{(2m+n)(3m+n)}
text{, }mneleft{ -dfrac{n}{2},-dfrac{n}{3} right}$
10
,$ the given expression, $dfrac{3m+2}{2}+dfrac{4m+5}{5}
,$ is equivalent to
$$
begin{align*}
&
dfrac{3m+2}{2}cdotdfrac{5}{5}+dfrac{4m+5}{5}cdotdfrac{2}{2}
\\&=
dfrac{15m+10}{10}+dfrac{8m+10}{10}
\\&=
dfrac{23m+20}{10}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{23m+20}{10}
text{, no restriction}
.$
4x^3
,$ the given expression, $dfrac{5}{x^2}-dfrac{3}{4x^3}
,$ is equivalent to
$$
begin{align*}
&
dfrac{5}{x^2}cdotdfrac{4x}{4x}-dfrac{3}{4x^3}
\\&=
dfrac{20x}{4x^3}-dfrac{3}{4x^3}
\\&=
dfrac{20x-3}{4x^3}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{20x-3}{4x^3}
text{, }xne0
.$
(y+1)(y-2)
,$ the given expression, $dfrac{2}{y+1}-dfrac{3}{y-2}
,$ is equivalent to
$$
begin{align*}
&
dfrac{2}{y+1}cdotdfrac{y-2}{y-2}-dfrac{3}{y-2}cdotdfrac{y+1}{y+1}
\\&=
dfrac{2y-4}{(y+1)(y-2)}-dfrac{3y+3}{(y+1)(y-2)}
\\&=
dfrac{-y-7}{(y+1)(y-2)}
.end{align*}
$$
Hence, the simplified form of the given expression and its restrictions are $dfrac{-y-7}{(y+1)(y-2)}
text{, }yne{ -1,2 }
.$
,$ is
$$
begin{align*}
&
dfrac{2x}{(x+3)(x-2)}+dfrac{5}{(x+4)(x-2)}
.end{align*}
$$
Using the $LCD=
(x+3)(x-2)(x+4)
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{2x}{(x+3)(x-2)}cdotdfrac{x+4}{x+4}+dfrac{5}{(x+4)(x-2)}cdotdfrac{x+3}{x+3}
\\&=
dfrac{2x^2+8x}{(x+3)(x-2)(x+4)}+dfrac{5x+15}{(x+3)(x-2)(x+4)}
\\&=
dfrac{2x^2+13x+15}{(x+3)(x-2)(x+4)}
\\&=
dfrac{(2x+3)(x+5)}{(x+3)(x-2)(x+4)}
.end{align*}
$$
Since the denominator of the original equation cannot be zero, then the simplified form with its restriction is $dfrac{(2x+3)(x+5)}{(x+3)(x-2)(x+4)}
text{, }xneleft{ -4,-3,2 right}
.$
text{, no restriction}$
b) $dfrac{20x-3}{4x^3}
text{, }xne0$
c) $dfrac{-y-7}{(y+1)(y-2)}
text{, }yne{ -1,2 }$
d) $dfrac{(2x+3)(x+5)}{(x+3)(x-2)(x+4)}
text{, }xneleft{ -4,-3,2 right}$
,$ results to
$$
begin{align*}
dfrac{1}{R}&=dfrac{1}{s}+dfrac{1}{t}
\\
Rstleft(dfrac{1}{R}right)&=left(dfrac{1}{s}+dfrac{1}{t}right)Rst
\\
st&=Rt+Rs
\\
st&=R(t+s)
\\
dfrac{st}{t+s}&=R
\\
R&=dfrac{st}{t+s}
.end{align*}
$$
With $s$ increased by $1$ unit and $t$ decreased by $1$ unit, the given equation becomes $dfrac{1}{R’}=dfrac{1}{s+1}+dfrac{1}{t-1}
.$ Solving for $R’$ results to
$$
begin{align*}
R'(s+1)(t-1)left( dfrac{1}{R’} right) &=left( dfrac{1}{s+1}+dfrac{1}{t-1} right) R'(s+1)(t-1)
\\
(s+1)(t-1)&=R'(t-1)+R'(s+1)
\\
st-s+t-1&=R'[(t-1)+(s+1)]
\\
st-s+t-1&=R'(t+s)
\\
dfrac{st-s+t-1}{t+s}&=R’
\\
R’&=dfrac{st-s+t-1}{t+s}
.end{align*}
$$
$$
begin{align*}
&
dfrac{st-s+t-1}{t+s}-dfrac{st}{t+s}
\\&=
dfrac{st-s+t-1-st}{t+s}
\\&=
dfrac{-s+t-1}{t+s}
\\&=
dfrac{t-s-1}{t+s}
.end{align*}
$$
dfrac{t-s-1}{t+s}
$$
$$
begin{align*}
speed_1&=dfrac{2x}{3}
\\&text{and}\\
speed_2&=dfrac{x+100}{2}
.end{align*}
$$
The difference in the two speeds is
$$
begin{align*}
&
dfrac{2x}{3}-dfrac{x+100}{2}
.end{align*}
$$
Converting the terms to an equivalent fraction that uses the $LCD=
6
,$ the expression above is equivalent to
$$
begin{align*}
&
dfrac{2x}{3}cdotdfrac{2}{2}-dfrac{x+100}{2}cdotdfrac{3}{3}
\\&=
dfrac{4x}{6}-dfrac{3x+300}{6}
\\&=
dfrac{x-300}{6}
.end{align*}
$$
$$
begin{align*}
dfrac{x+100}{2}&>dfrac{2x}{3}
.end{align*}
$$
Using the properties of inequality, the inequality above is equivalent to
$$
begin{align*}
6left( dfrac{x+100}{2} right) &>left( dfrac{2x}{3} right)6
\\
3(x+100)&>2x(2)
\
3x+300&>4x
\
3x-4x&>-300
\
-x&>-300
\
x&<(-300)(-1)
&text{ (reverse the inequality)}
\
x&<300
.end{align*}
$$
Hence, the speed for the second trip was greater than the speed for the first trip when $x<300
.$
b) $x<300$
$$
begin{equation*} I=frac{k}{d^2} end{equation*}
$$
When Matthew moves $x$ meters farther from the stage, the new intensity $I_2$ is
$$
begin{equation*} I_2=frac{k}{(d+x)^2}end{equation*}
$$
The decrease in intensity is $I-I_2$
$$
begin{equation*} I-I_2=frac{k}{(d)^2}-frac{k}{(d+x)^2}; ;; dneq 0, xneq dend{equation*}
$$
Use the general algebraic rule: $dfrac{a}{b}-dfrac{c}{d}=dfrac{ad-bc}{bd}$
$$
begin{align*} I_2-I&=frac{[k(d+x)^2]-k(d^2)}{d^2(d+x)^2}\
&=frac{[k(d^2+2dx+x^2)]-kd^2}{d^2(d+x)^2}\
&=frac{(kd^2+2kdx+kx^2)-kd^2}{d^2(d+x)^2}\
I_2-I&=frac{2kdx+kx^2}{d^2(d+x)^2} ; , ;dneq 0 , ; -x\
end{align*}
$$
dfrac{2kdx+kx^2}{d^2(d+x)^2},; dneq 0,;-x
$$
$$
begin{align*}
dfrac{x}{6}
text{ and }
dfrac{2x}{3}
end{align*}
$$
since their $LCD$ is $6.$
$$
begin{align*}
dfrac{x}{2}
text{ and }
dfrac{2x}{3}
end{align*}
$$
since their $LCD$ is $2times3=6.$
$$
begin{align*}
dfrac{x}{4}
text{ and }
dfrac{x}{6}
end{align*}
$$
since their $LCD$ is $12
.$
For example, the factored form of the rational expressions $dfrac{1}{x^2+2x+1}$ and $dfrac{1}{x^2+3x+2}$ is
$$
begin{align*}
dfrac{1}{(x+1)^2}
text{ and }
dfrac{1}{(x+1)(x+2)}
.end{align*}
$$
The $LCD$ is composed of the common factor (with the highest exponent), $(x+1)^2,$ and the factor not common to both denominators (with highest exponent), $(x+2).$ Hence, the $LCD$ is $(x+1)^2(x+2)
.$
text{ and }
dfrac{2x}{3}$
a.ii) $dfrac{x}{2}
text{ and }
dfrac{2x}{3}$
a.iii) $dfrac{x}{4}
text{ and }
dfrac{x}{6}$
b) see explanation and example
,$ results to
$$
begin{align*}
dfrac{1}{n(n+1)}&=dfrac{1}{n}cdotdfrac{n+1}{n+1}-dfrac{1}{n+1}cdotdfrac{n}{n}
\\
dfrac{1}{n(n+1)}&=dfrac{n+1}{n(n+1)}-dfrac{n}{n+1}
\\
dfrac{1}{n(n+1)}&=dfrac{n+1-n}{n(n+1)}
\\
dfrac{1}{n(n+1)}&=dfrac{1}{n(n+1)}
text{ (TRUE)}
.end{align*}
$$
Since, the solution above ended with a TRUE statement, then the original equation is an identity. That is, the difference between reciprocals of consecutive positive integers is the reciprocal of their product.
$$
begin{align*}
dfrac{1}{2}&=dfrac{1}{1}-dfrac{1}{2}
\\
dfrac{1}{2}&=dfrac{2}{2}-dfrac{1}{2}
\\
dfrac{1}{2}&=dfrac{1}{2}
text{ (TRUE)}
.end{align*}
$$
Let $z=5,y=6,$ and $x=30.$ Then
$$
begin{align*}
dfrac{1}{30}&=dfrac{1}{5}-dfrac{1}{6}
\\
dfrac{1}{30}&=dfrac{1}{5}cdotdfrac{6}{6}-dfrac{1}{6}cdotdfrac{5}{5}
\\
dfrac{1}{30}&=dfrac{6}{30}-dfrac{5}{30}
\\
dfrac{1}{30}&=dfrac{1}{30}
text{ (TRUE)}
.end{align*}
$$
b) see examples
$$
begin{align*}
&
dfrac{1}{a}+dfrac{1}{a+2}
\\&=
dfrac{1}{a}cdotdfrac{a+2}{a+2}+dfrac{1}{a+2}cdotdfrac{a}{a}
\\&=
dfrac{a+2}{a(a+2)}+dfrac{a}{a(a+2)}
\\&=
dfrac{2a+2}{a(a+2)}
.end{align*}
$$
Showing that the sum of the squares of the numerator and the denominator is a perfect square results to
$$
begin{align*}
&
(2a+2)^2+(a(a+2))^2
\&=
(4a^2+8a+4)+(a^2(a^2+4a+4))
\&=
(4a^2+8a+4)+(a^4+4a^3+4a^2)
\&=
a^4+4a^3+8a^2+8a+4
\&=
a^4+8a^2+4+4a^3+8a
\&=
a^4+4a^2+4a^2+4+4a^3+8a
\&=
a^4+4a^2+4+4a^3+4a^2+8a
\&=
(a^2)^2+(2a)^2+(2)^2+2(a^2)(2a)+2(a^2)(2)+2(2a)(2)
\&=
(a^2+2a+2)^2
.end{align*}
$$
Hence, the sum of the squares of the numerator and the denominator is a perfect square.
$$
begin{align*}
2a+2&Rightarrow
2(1)+2Rightarrow4
\
a(a+2)&Rightarrow
1(1+2)Rightarrow3
\
a^2+2a+2&Rightarrow
1^2+2(1)+2Rightarrow5
.end{align*}
$$
b) Example: when $x=1$, Pythagorean triple: 3, 4, 5