Nelson Functions 11
Nelson Functions 11
1st Edition
Chris Kirkpatrick, Marian Small
ISBN: 9780176332037
Table of contents
Textbook solutions

All Solutions

Page 102: Check Your Understanding

Exercise 1
Step 1
1 of 5
$bold{a);;;}$

$$
begin{align*}
x^2-6x-27&=x^2+(-9+3)x+(-9times 3)\
&=(x-9)(x+3)
end{align*}
$$

Remember that

$x^2+(a+b)x+(ab)=(x+a)(x+b)$

Step 2
2 of 5
$bold{b);;;}$

$$
begin{align*} 25x^2-49 &=(5x)^2-(7)^2\
&=(5x+7)(5x-7)
end{align*}
$$

Remember that

$$
a^2-b^2=(a+b)(a-b)
$$

Step 3
3 of 5
$$
bold{c);;;}
$$

$$
begin{align*} 4x^2+20x+25 &=(2x)^2+2(2x)(5)+5^2\
&=(2x+5)^2
end{align*}
$$

Remember that

$$
a^2+2ab+b^2=(a+b)^2
$$

Step 4
4 of 5
$$
bold{d);;;}
$$

$$
begin{align*} 6x^2-x-2 &=6x^2-4x+3x-2\
&=2x(3x-2)+1(3x-2)\
&=(2x+1)(3x-2)\
end{align*}
$$

This is a quadratic trinomial with $aneq 1$ of the form

$ax^2+bx+c$

We must find numbers whose sum is $b$ and product is $ac$

In this case $ac=-12$ and $-1=-4+3$

Then decompose the middle term and find the common factor.

Remember that

$$
a(b+c)+d(b+c)=(a+d)(b+c)
$$

Result
5 of 5
a) $(x-9)(x+3)$

b) $(5x+7)(5x-7)$

c) $(2x+5)^2$

d) $(2x+1)(3x-2)$

Exercise 2
Step 1
1 of 4
a) Given expression is: $ac+bc-ad-bd$.

$$
begin{align*}
ac+bc-ad-bd&=\
&=(ac+bc)-(ad+bd) tag{text{separate into two groups}}\
&=c(a+b)-d(a+b) tag{text{ factor out the GCF from each of the two groups}}\
&=(a+b)(c-d) tag{text{factor out (a+b)}}\
end{align*}
$$

Step 2
2 of 4
b) Given expression is: $x^{2}+2x+1-y^{2}$

$$
begin{align*}
x^{2}+2x+1-y^{2}&=\
&=(x^{2}+2x+1)-y^{2} tag{text{group the first three terms together}}\
&=(x+1)^{2}-y^{2} tag{text{use square the binomials}}\
&=(x+1-y)(x+1+y) tag{text{use diference of two squares}}\
end{align*}
$$

Step 3
3 of 4
a) Given expression is: $x^{2}-y^{2}-10y-25$.

$$
begin{align*}
x^{2}-y^{2}-10y-25&=\
&=x^{2}-(y^{2}+10y+25)tag{text{separate into two groups}}\
&=x^{2}-(y+5)^{2}\
&=(x-(y+5))(x+(y+5))\
&=(x-y-5)(x+y+5)
end{align*}
$$

Result
4 of 4
a) $(a+b)(c-d)$

b) $(x+1-y)(x+1+y)$

c) $(x-y-5)(x+y+5)$

Exercise 3
Step 1
1 of 5
a) This is a given expression: $x^{2}-3x-28$

This is a trinomial, there we need use decomposition by finding two
numbers whose sum is -3 and whose product is -28.These numbers are -7, and then group the first two terms together and the last two terms together and factor out the common factor from each of the two groups. Two groups have a common $(x +4)$, so we can factor out $(x +4)$ :

$$
begin{align*}
x^{2}-3x-28&=\
&=x^{2}+4x-7x-28\
&=x(x+4)-7(x+4)\
&=(x+4)(x-7)\
end{align*}
$$

Step 2
2 of 5
b) This is a given expression: $36x^{2}-25$

This is a binomial,use difference of squares we get :

$$
begin{align*}
36x^{2}-25&=\
&=(6x)^{2}-5^{2} \
&=(6x-5)(6x+5)\
end{align*}
$$

Step 3
3 of 5
c) This is a given expression: $9x^{2}-42x+49$

This is a trinomial, use square of the binomial we get :

$$
begin{align*}
9x^{2}-42x+49&=\
&=(3x)^{2}-2cdot3xcdot7+7^{2}\
&=(3x-7)^{2}\
end{align*}
$$

Step 4
4 of 5
d) This is a given expression: $2x^{2}-7x-15$

This is a trinomial, there we need use decomposition :

$$
begin{align*}
2x^{2}-7x-15&=\
&=2x^{2}-10x+3x-15tag{text{separate -7x as -10x+3x}}\
&=2x(x-5)+3(x-5) tag{text{factor out $x-5$}}\
&=(x-5)(2x+3)\
end{align*}
$$

Result
5 of 5
a) $(x+4)(x-7)$

b) $(6x-5)(6x+5)$

c) $(3x-7)^{2}$

d) $(x-5)(2x+3)$

Exercise 4
Step 1
1 of 7
a) Given expression is: $4x^{3}-6x^{2}+2x$
$$
begin{align*}
4x^{3}-6x^{2}+2x&=\
&=2x(2x^{2}-3x+1) ~~text{text{divided each term by the
common factor 2x, factor out 2x}}\
&=2x(2x^{2}-2x-x+1) ~~text{text{use decomposition}}\
&=2x(2x(x-1)-(x-1))\
&=2x(x-1)(2x-1) ~~text{factor out (x-1)}
end{align*}
$$
Step 2
2 of 7
b) Given expression is: $3x^{3}y^{2}-9x^{2}y^{4}+3xy^{3}$
$$
begin{align*}
&3x^{3}y^{2}-9x^{2}y^{4}+3xy^{3}=3xy^{2}(x^{2}-3xy^{2}+y)\ &text{divided each term by the
common factor $3xy^{2}$, factor out $3xy^{2}$}\
end{align*}
$$
Step 3
3 of 7
c) Given expression is: $4a(a+1)-3(a+1)$

The two groups have the same common factor $(a+1)$, so we can factor out $(a+1)$ leaving the following:
$$
begin{align*}
4a(a+1)-3(a+1)&=(a+1)(4a-3)\
end{align*}
$$

Step 4
4 of 7
d) Given expression is: $7x^{2}(x+1)-x(x+1)+6(x+1)$.

The three groups have the same common factor $(x+1)$, so we can factor out $(x+1)$ leaving the following:
$$
begin{align*}
7x^{2}(x+1)-x(x+1)+6(x+1)&=\
&=(x+1)(7x^{2}-x+6)\
end{align*}
$$

Step 5
5 of 7
e) Given expression is: $5x(2-x)+4x(2x-5)-(3x-4)$

First, we need simplify this expression, and then group like terms.
$$
begin{align*}
5x(2-x)+4x(2x-5)-(3x-4)&=\
&=10x-5x^{2}+8x^{2}-20x-3x+4\
&=3x^{2}-13x+4\
&=3x^{2}-12-x+4\
&=3x(x-4)-(x-4)\
&=(x-4)(3x-1)\
end{align*}
$$

Step 6
6 of 7
f) Given expression is:
$4t(t^{2}+4t+2)-2t(3t^{2}-6t+17)$

First, we use the distributive property, then simplify this expression, and then group like terms.
$$
begin{align*}
4t(t^{2}+4t+2)-2t(3t^{2}-6t+17)&=\
&=4t^{3}+16t^{2}+8t-6t^{3}+12t^{2}-34t\
&=-2t^{3}+28t^{2}-26t\
&=-2t(t^{2}-14t+13)\
&=-2t(t^{2}-t-13t+13)\
&=-2t(t(t-1)-13(t-1))\
&=-2t(t-1)(t-13)\
end{align*}
$$

Result
7 of 7
a) $2x(x-1)(2x-1)$

b) $3xy^{2}(x^{2}-3xy^{2}+y)$

c) $(a+1)(4a-3)$

d) $(x+1)(7x^{2}-x+6)$

e) $(x-4)(3x-1)$

f) $-2t(t-1)(t-13)$

Exercise 5
Step 1
1 of 7
a) Here is the given polynomial: $x^{2}-5x-14$

$$
begin{align*}
x^{2}-5x-14&=x^{2}+2x-7x-14\
&=(x^{2}+2x)-(7x+14)\
&=x(x+2)-7(x+2)\
&=(x+2)(x-7)\
end{align*}
$$

In this part the first, we used decomposition by finding two numbers whose sum is -5 and whose product is -14, these numbers are 2 and -7

Then, we group the first two terms and the final two terms

Now, factor an $x$ out of the first grouping and a $7$ out of the second grouping.

We can factor out a common factor of $(x+2)$, so we get the final factored form.

Step 2
2 of 7
b) Given expression is: $x^{2}+4xy-5y^{2}$

$$
begin{align*}
x^{2}+4xy-5y^{2}&=x^{2}+4xy+4y^{2}-9y^{2}\
&=(x^{2}+4xy+(2y)^{2})-(3y)^{2}\
&=(x+2y)^{2}-(3y)^{2}\
&=(x+2y-3y)(x+2y+3y)\
&=(x-y)(x+5y)\
end{align*}
$$

The first, we use decomposition by finding two numbers whose sum is -5, these numbers are 4 and -9

Then, group the first three terms, this trinomial is a perfect square,

Use difference of the square and slimplify expression in the parentheses we get finally factored form.

Step 3
3 of 7
c) Given expression is: $6m^{2}-90m+324$.

$$
begin{align*}
6m^{2}-90m+324&=6(m^{2}-15m+54)\
&=6[m^{2}-6m-9m+54]\
&=6[(m-6m)-(9m-54)]\
&=6[m(m-6)-9(m-6)]\
&=6(m-6)(m-9)\
end{align*}
$$

In this part the first, factor out 6, then we used decomposition by finding two numbers whose sum is -15 and whose product is 54, these numbers are -6 and -9

Then, we group the first two terms and the final two terms

Now, factor an $m$ out of the first grouping and a $9$ out of the second grouping.

We can factor out a common factor of $(m-6)$, so we get the final factored form.

Step 4
4 of 7
d) Given polynomial is: $2y^{2}+5y-7$

$$
begin{align*}
2y^{2}+5y-7&=2y^{2}-2y+7y-7\
&=(2y^{2}-2y)+(7y-7)\
&=2y(y-1)+7(y-1)\
&=(y-1)(2y+7)\
end{align*}
$$

There is used decomposition by finding two numbers whose sum is 5, these numbers are 2 and -7

Then, we group the first two terms and the final two terms

Now, factor an $2y$ out of the first grouping and a $7$ out of the second grouping.

We can factor out a common factor of $(y+1)$, so we get the final factored form.

Step 5
5 of 7
e) Given polynomial is: $8a^{2}-2ab-21b^{2}$

$$
begin{align*}
8a^{2}-2ab+21b^{2}&=8a^{2}+12ab-14ab-21b^{2}\
&=(8a^{2}+12ab)-(14ab+21b^{2})\
&=4a(2a+3b)-7b(2a+3b)\
&=(2a+3b)(4a-7b)\
end{align*}
$$

In this part the first, we used decomposition by finding two terms whose sum is $-2ab$, these numbers are $12ab$ and $-14ab$

Then, we group the first two terms and the final two terms

Now, factor an $4a$ out of the first grouping and a $7b$ out of the second grouping.

We can factor out a common factor of $(2a+3b)$, so we get the final factored form.

Step 6
6 of 7
f) Given expression is: $16x^{2}+76x+90$

$$
begin{align*}
16x^{2}+76x+90&=2(8x^{2}+38x+45)\
&=2(8x^{2}+18x+20x+45)\
&=2[(8x^{2}+18x)+(20x+45)]\
&=2[2x(4x+9)+5(4x+9)]\
&=2(4x+9)(2x+5)\
end{align*}
$$

The first, factor out 2, then used decomposition of the middle term by finding two numbers whose sum is 38, these numbers are 18 and 20

Then, we group the first two terms and the final two terms

Now, factor an $2x$ out of the first grouping and a $5$ out of the second grouping.

We can factor out a common factor of $(4x+9)$, so we get the final factored form.

Result
7 of 7
a) $(x+2)(x-7)$

b) $(x-y)(x+5y)$

c) $6(m-6)(m-9)$

d) $(y-1)(2y+7)$

e) $(2a+3b)(4a-7b)$

f) $2(4x+9)(2x+5)$

Exercise 6
Step 1
1 of 8
In this exercise we need to notice is that we have got a difference of perfect squares.

$textbf{Difference of squares}$ can be factored as follows:

$$
color{#4257b2}{a^{2}-b^{2}=(a-b)(a+b)}
$$

Step 2
2 of 8
a) Polynomial is: $x^{2}-9$

$$
begin{align*}
x^{2}-9&=x^{2}-3^{2}\
&=(x-3)(x+3)\
end{align*}
$$

Step 3
3 of 8
b) Polynomial is: $4n^{2}-49$

$$
begin{align*}
4n^{2}-49&=(2n)^{2}-7^{2}\
&=(2n-7)(2n+7)\
end{align*}
$$

Step 4
4 of 8
c) Polynomial is: $x^{8}-1$

$$
begin{align*}
x^{8}-1&=(x^{4})^{2}-1^{2}\
&=(x^{4}-1)(x^{4}+1)\
&=((x^{2})^{2}-1)(x^{4}+1)\
&=(x^{2}-1)(x^{2}+1)(x^{4}+1)\
&=(x-1)(x+1)(x^{2}+1)(x^{4}+1)\
end{align*}
$$

Step 5
5 of 8
d) Polynomial is: $9(y-1)^{2}-25$

$$
begin{align*}
9(y-1)^{2}-25&=3^{2}(y-1)^{2}-5^{2}\
&=(3(y-1))^{2}-5^{2}\
&=(3y-3)^{2}-5^{2}\
&=(3y-3-5)(3y-3+5)\
&=(3y-8)(3y+2)\
end{align*}
$$

Step 6
6 of 8
e) Polynomial is: $3x^{2}-27(2-x)^{2}$

$$
begin{align*}
3x^{2}-27(2-x)^{2}&=3[x^{2}-9(2-x)^{2}\
&=3[x^{2}-(3(2-x))^{2}]\
&=3[x^{2}-(6-3x)^{2}]\
&=3[(x-(6-3x))(x+(6-3x))]\
&=3(x-6+3x)(x+6-3x)\
&=3(4x-6)(-2x+6)\
&=3cdot2(2x-3)cdot(-2)(x-3)\
&=-12(2x-3)(x-3)\
end{align*}
$$

Step 7
7 of 8
f) Polynomial is: $-p^{2}q^{2}+81$

$$
begin{align*}
-p^{2}q^{2}+81&=81-p^{2}q^{2}\
&=9^{2}-(pq)^{2}\
&=(9-pq)(9+pq)
end{align*}
$$

Result
8 of 8
a) $(x-3)(x+3)$

b) $(2n-7)(2n+7)$

c) $(x+1)(x-1)(x^{2}+1)(x^{4}+1)$

d) $(3y-8)(3y+2)$

e) $-12(2x-3)(x-3)$

f) $(9-pq)(9+pq)$

Exercise 7
Step 1
1 of 8
In these parts we need group the first two and the last two terms together, then factor each of the two groups separately, and finally factor the common factor out of the two groups.
Step 2
2 of 8
a) Polynomial is: $ax+ay+bx+by$

$$
begin{align*}
ax+ay+bx+by&=(ax+ay)+(bx+by) tag{text{separate into two groups}}\
&=a(x+y)+b(x+y) tag{text{ factor out the GCF from each of the two groups}}\
&=(x+y)(a+b) tag{text{factor out (a+b)}}\
end{align*}
$$

Step 3
3 of 8
b) Polynomial is: $2ab+2a-3b-3$

$$
begin{align*}
2ab+2a-3b-3&=(2ab+2a)-(3b+3) tag{text{separate into two groups}}\
&=2a(b+1)-3(b+1) tag{text{ factor out the GCF from each of the two groups}}\
&=(b+1)(2a-3) tag{text{factor out (b+1)}}\
end{align*}
$$

Step 4
4 of 8
c) Polynomial is: $x^{3}+x^{2}-x-1$

$$
begin{align*}
x^{3}+x^{2}-x-1&=(x^{3}+x^{2})-(x+1) tag{text{separate into two groups}}\
&=x^{2}(x+1)-(x+1) tag{text{ factor out the GCF from each of the two groups}}\
&=(x+1)(x^{2}-1) tag{text{factor out (x+1)}}\
&=(x+1)(x-1)(x+1) tag{text{use difference of the squares}}\
&=(x+1)^{2}(x-1)\
end{align*}
$$

Step 5
5 of 8
d) Polynomial is: $1-x^{2}+6x-9$

$$
begin{align*}
1-x^{2}+6x-9&=1-(x^{2}-6x+9) tag{text{group last three terms}}\
&=1-(x-3)^{2} tag{text{ use square of the binomial}}\
&=((1-(x-3))(1+(x-3)) tag{text{use difference of the square}}\
&=(1-x+3)(1+x-3) \
&=(4-x)(x-2)\
end{align*}
$$

Step 6
6 of 8
e) Polynomial is: $a^{2}-b^{2}+25+10a$

$$
begin{align*}
a^{2}-b^{2}+25+10a&=a^{2}+10a+25-b^{2} tag{text{ change places of the terms}}\
&=(a^{2}+10a+25)-b^{2} tag{text{ group first three terms}}\
&=(a+5)^{2}-b^{2} tag{text{use square of the binomial}}\
&=(a+5-b)(a+5+b) tag{text{use difference of the squares}}
end{align*}
$$

Step 7
7 of 8
f) Polynomial is: $2m^{2}+10m+10n-2n^{2}$

$$
begin{align*}
2m^{2}+10m+10n-2n^{2}&=2[m^{2}-n^{2}+10m+10n] tag{text{factor out 2, and change places of the terms}}\
&=2[(m^{2}-n^{2})+(10m+10n)] tag{text{group first two and last two terms separately}}\
&=2[(m-n)(m+n)+5(m+n)] tag{text{ use difference of the squares}}\
&=2(m+n)(m-n+5) tag{text{factor out (m+n)}}\
end{align*}
$$

Result
8 of 8
a) $(x+y)(a+b)$

b) $(b+1)(2a-3)$

c) $(x+1)^{2}(x-1)$

d) $(4-x)(x-2)$

e) $(a+5-b)(a+5+b)$

f) $2(m+n)(m-n+5)$

Exercise 8
Step 1
1 of 2
If we simplify the right side of the equation and it becomes identical with the left side, then the statement is always true; otherwise, it is false. Apply distributive property to simplify the left side and compare it with the right side.

$$
begin{align*} (x-y)(x^2+y^2) &=x^2(x-y)+y^2(x-y)\
&=x^3-x^2y+xy^2-y^3\
&neq x^3-y^3
end{align*}
$$

Therefore, Andrij’s statement is NOT correct.

Result
2 of 2
Andrij’s statement is NOT correct.

$$
(x-y)(x^2+y^2)=x^3-x^2y+xy^2-y^3neq x^3-y^3
$$

Exercise 9
Step 1
1 of 7
a) Given polynomial is: $2x(x-3)+7(3-x)$
$$
begin{align*}
2x(x-3)+7(3-x)&=2x(x-3)-7(x-3)\ &text{text{we get -1 in front of the second parenthese and change the places in parenthese }}\
&=(x-3)(2x-7)\ &text{text{factor out $ (x-3)$}}\
end{align*}
$$
Step 2
2 of 7
b) Polynomial is: $xy+6x+5y+30$
$$
begin{align*}
xy+6x+5y+30&=(xy+6x)+(5y+30)\ &text{text{separate into two groups}}\
&=x(y+6)+5(y+6)\ &text{text{ factor out the GCF from each of the two groups}}\
&=(y+6)(x+5)\ &text{text{factor out (y+6)}}\
end{align*}
$$
Step 3
3 of 7
c) Polynomial is : $x^{3}-x^{2}-4x+4$
$$
begin{align*}
x^{3}-x^{2}-4x+4&=
&=(x^{3}-x^{2})-(4x-4) text{text{group first two terms and last two terms separately}}\
&=x^{2}(x-1) -4(x-1)\ &text{text{ factor out the GCF from each of the two groups}}\
&=(x-1)(x^{2}-4)\ &text{text{factor out (x-1)}}\
&=(x-1)(x^{2}-2^{2})\
&=(x-1)(x-2)(x+2)\ &text{text{use difference od the squares}}
end{align*}
$$
Step 4
4 of 7
d) Polynomial is: $y^{2}-49+14x-x^{2}$
$$
begin{align*}
y^{2}-49+14x-x^{2}&=y^{2}-(49-14x+x^{2})\ &text{text{group last three terms}}\
&=y^{2}-(7-x)^{2}\ &text{text{use square of the binomial}}\
&=(y-(7-x))(y+(7-x))\ &text{text{use difference of the squares}}\
&=(y-7+x)(y+7-x)\
end{align*}
$$
Step 5
5 of 7
e) Polynomial is: $6x^{2}-21x-12x+42$
$$
begin{align*}
6x^{2}-21x-12x+42&=6x^{2}-12x-21x+42\ &text{text{change places of the middle terms}}\
&=(6x^{2}-12x)-(21x-42)\ &text{text{group first two and last two terms separately}}\
&=6x(x-2)-21(x-2)\ &text{text{ factor out the GCF from each of the two groups}}\
&=(x-2)(6x-21)\ &text{text{factor out (x-2)}}\
&=3(x-2)(2x-7)\
end{align*}
$$
Step 6
6 of 7
f) Polynomial is: $12m^{3}-14m^{2}-30m+35$
$$
begin{align*}
12m^{3}-14m^{2}-30m+35&=(12m^{3}-14m^{2})-(30m-35)\ &text{text{group first two and last two terms separately}}\
&=2m^{2}(6m-7)-5(6m-7)\ &text{text{ factor out the GCF from each of the two groups}}\
&=(6m-7)(2m^{2}-5)\ &text{text{factor out (6m-7)}}\
end{align*}
$$
Result
7 of 7
a) $(x-3)(2x-7)$

b) $(y+6)(x+5)$

c) $(x-1)(x-2)(x+2)$

d) $(y-7+x)(y+7-x)$

e) $3(x-2)(2x-7)$

f) $(6m-7)(2m^{2}-5)$

Exercise 10
Solution 1
Solution 2
Step 1
1 of 1
The factored form of the given function, $f(n)=2n^3+n^2+6n+3
,$ is

$$
begin{align*}
f(n)&=(2n^3+n^2)+(6n+3)
\&=
n^2(2n+1)+3(2n+1)
\&=
(2n+1)(n^2+3)
.end{align*}
$$

In the expression above, $(2n+1)$ is always an odd number greater than $1$ for any natural number, $n.$ Hence, $f(n)$ contains an odd factor greater than $1.$ That is, $f(n)$ is divisible by an odd number greater than $1.$

Step 1
1 of 6
$$
begin{align*}
f(n)&=2n^{3}+n^{2}+6n+3\
end{align*}
$$
This is a given function.
Step 2
2 of 6
$$
begin{align*}
&=(2n^{3}+n^{2})+(6n+3)\
end{align*}
$$
Group first two terms and last two terms separately.
Step 3
3 of 6
$$
begin{align*}
&=n^{2}(2n+1)+3(2n+1)\
end{align*}
$$
Factor out the $n^{2}$ from first group and factor out the $3$ from the second group.
Step 4
4 of 6
$$
begin{align*}
&=(2n+1)(n^{2}+3)\
end{align*}
$$
Factor the common factor out of the two groups.
Step 5
5 of 6
We know, for any natural number $n$, that $2n+1$ is an odd number greater than 1

So, for any natural number $n$, $f(n)=(2n+1)(n^{2}+3)$ is divisible by an odd number greater than 1 for any $nin N$

Result
6 of 6
$$
f(n)=(n^2+3)(2n+1)
$$
Exercise 11
Solution 1
Solution 2
Step 1
1 of 4
a)
$$
begin{align*}
c^{2}&=a^{2}+b^{2}\
a^{2}&=c^{2}-b^{2}\
&=(c-b)(c+b)tag{text{use difference of the square}}\
end{align*}
$$
.

So, answer is: $color{#c34632}{a^{2}=(c-b)(c+b)}$.

Use the $text{textcolor{#4257b2}{Pythagorean Theorem: $c^{2}=a^{2}+b^{2}$}}$.

Exercise scan

Step 2
2 of 4
b)

If hypotenuse 3 m longer than $b$, then $c=b+3$

Sum of the $b$ and hypotenuse is 11 m, then $b+c=11$.

Solving this system, we can determine $c$ and $b$:

$$
left.
begin{array}{rcl}
c&=&b+3 \
c+b&=&11
end{array}
right}\
\
left.
begin{array}{rcl}
c&=&b+3 \
b+3+b&=&11
end{array}
right}\
\
left.
begin{array}{rcl}
c&=&b+3 \
2b+3&=&11
end{array}
right}\
\
left.
begin{array}{rcl}
c&=&b+3 \
2b&=&8
end{array}
right}\
\
left.
begin{array}{rcl}
c&=&b+3 \
b&=&4
end{array}
right}\
\
left.
begin{array}{rcl}
c&=&4+3 \
b&=&4
end{array}
right}\
\
left.
begin{array}{rcl}
c&=&7 \
b&=&4
end{array}
right}
$$

Step 3
3 of 4
Now, use part a) we can calculate $a$:

$$
begin{align*}
a^{2}&=(c-b)(c+b)\
a^{2}&=(7-4)(7+4)\
a^{2}&=3cdot11\
a^{2}&=33\
a&=sqrt{33}\
end{align*}
$$

Answer is: $a=sqrt{33}, b=4, c=7$

Result
4 of 4
$$
a=sqrt{33}, b=4, c=7
$$
Step 1
1 of 3
With $a$ and $b$ as legs and $c$ as the hypotenuse of a right triangle, by the Pythagorean Theorem, then

$$
begin{align*}
a^2+b^2&=c^2
\
a^2&=c^2-b^2
\
a^2&=(c+b)(c-b)
&text{(Use $a^2-b^2=(a+b)(a-b)$)}
.end{align*}
$$

Step 2
2 of 3
b) Using the equation in Item (a), with $c=b+3,$ then

$$
begin{align*}
a^2&=(b+3+b)(b+3-b)
\
a^2&=(2b+3)(3)
\
a^2&=6b+9
.end{align*}
$$

Using the equation in Item (a), with $c+b=11Rightarrow c=11-b,$ then

$$
begin{align*}
a^2&=(c+b)(c-b)
\
a^2&=(11-b+b)(11-b-b)
\
a^2&=(11)(11-2b)
\
a^2&=121-22b
.end{align*}
$$

Equating the two expressions of $a^2$ above, then

$$
begin{align*}
6b+9&=121-22b
\
6b+22b&=121-9
\
28b&=112
\
b&=dfrac{112}{28}
\
b&=4
.end{align*}
$$

Using $a^2=6b+9$ and $b=4,$ then

$$
begin{align*}
a^2&=6b+9
\
a^2&=6(4)+9
\
a^2&=24+9
\
a^2&=33
\
a&=sqrt{33}
.end{align*}
$$

Using $c=b+3$ and $b=4,$ then

$$
begin{align*}
c&=b+3
\
c&=4+3
\
c&=7
.end{align*}
$$

Hence, the side measurements are

$$
begin{align*}
a=sqrt{33} text{ }m
,&&
b=4 text{ }m
,&&
c=7 text{ }m
.end{align*}
$$

Result
3 of 3
a) $a^2=(c+b)(c-b)$

b) $a=sqrt{33}$ m, $b=4$ m, $c=7$ m

Exercise 12
Step 1
1 of 5
a.i) The area of the region between the planet and the inner ring can be derived by subtracting the area of the bigger circle by the area of the smaller circle. Using $A=pi r^2$ or the formula for the area of a circle, then

$$
begin{align*}
A&=A_{bigger}-A_{smaller}
\\
A&=pi (r_2)^2-pi (r_1)^2
\\
A&=pi r_2^2-pi r_1^2
\\
A&=pi(r_2^2-r_1^2)
\\
A&=pi(r_2+r_1)(r_2-r_1)
.end{align*}
$$

Step 2
2 of 5
a.ii) The area of the region between the planet and the inner ring can be derived by subtracting the area of the bigger circle by the area of the smaller circle. Using $A=pi r^2$ or the formula for the area of a circle, then

$$
begin{align*}
A&=A_{bigger}-A_{smaller}
\\
A&=pi (r_3)^2-pi (r_1)^2
\\
A&=pi r_3^2-pi r_1^2
\\
A&=pi(r_3^2-r_1^2)
\\
A&=pi(r_3+r_1)(r_3-r_1)
.end{align*}
$$

Step 3
3 of 5
a.iii) The difference in the areas of items (i) and (ii) is

$$
begin{align*}
&
pi(r_2^2-r_1^2)-pi(r_3^2-r_1^2)
\&=
pi[(r_2^2-r_1^2)-(r_3^2-r_1^2)]
\&=
pi[r_2^2-r_1^2-r_3^2+r_1^2]
\&=
pi[r_2^2-r_3^2]
\&=
pi[(r_2+r_3)(r_2-r_3)]
\&=
pi(r_2+r_3)(r_2-r_3)
.end{align*}
$$

Step 4
4 of 5
b) The answer in Item (a.iii) represents the difference of the areas of the inner ring and the outer ring.
Result
5 of 5
a.i) $A=pi(r_2+r_1)(r_2-r_1)$

a.ii) $A=pi(r_3+r_1)(r_3-r_1)$

a.iii) $pi(r_2+r_3)(r_2-r_3)$

b) difference of the areas of the inner ring and the outer ring

Exercise 13
Result
1 of 1
begin{table}[]
defarraystretch{1.5}%
begin{tabular}{|l|l|}
hline
multicolumn{1}{|c|}{$bold{Strategy}$} & multicolumn{1}{c|}{$bold{Example}$} \ hline
(1) Find common factors. & $4x+12=4(x+3)$ \ hline
begin{tabular}[c]{@{}l@{}}(2) If it contains two terms that are perfect squares\ separated by minus sign, use $a^2-b^2=(a+b)(a-b)$end{tabular} & begin{tabular}[c]{@{}l@{}}$9x^2-16y^4$\ $=(3x)^2+(4y)^2$\ $=(3x+4y)(3x-4y)$end{tabular} \ hline
(3) For $ax^2+bx+c$ where $a=1$, do simple trinomials & $x^2+x-12=(x+4)(x-3)$ \ hline
(4) For $ax^2+bx+c$ where $aneq1$, do complex trinomials & $2x^2-5x-3=(2x+1)(x-3)$ \ hline
begin{tabular}[c]{@{}l@{}}(5) If it contains 4 or 6 terms with 3 or 4 squares, \ do grouping for difference of squaresend{tabular} & begin{tabular}[c]{@{}l@{}}$x^2+2x+1-y^2$\ $=(x+1)^2-y^2$\ $=(x+1+y)(x+1-y)$end{tabular} \ hline
(6) If it contains 3 terms and 2 perfect squares, do incomplete squares. & begin{tabular}[c]{@{}l@{}}$x^4+3x^2+4$\ $=x^4+(4x^2-x^2)+4$\ $=(x^4+4x^2+4)-x^2$\ $=(x^2+2)^2-x^2$\ $=(x^2+2+x)(x^2+2-x)$end{tabular} \ hline
end{tabular}
end{table}
Exercise 14
Step 1
1 of 3
a) $x^{4}+3x^{2}+36$ This is a given polynomial

$$
begin{align*}
x^{4}+3x^{2}+36&=x^{4} +12x^{2}+36-12x^{2}+3x^{2}\
&=(x^{4} +12x^{2}+36)-9x^{2}\
&=(x^{2}+6)^{2}-(3x)^{2} tag{text{use square of binomial}}\
&=(x^{2}+6-3x)(x^{2}+6+3x) tag{text{use difference of the square}}\
&=(x^{2}-3x+6)(x^{2}+3x+6)\
end{align*}
$$

Step 2
2 of 3
b) $x^{4}-23x^{2}+49$ This is a given polynomial

$$
begin{align*}
x^{4}-23x^{2}+49&=x^{4} -14x^{2}+49+14x^{2}-23x^{2}\
&=(x^{4} -14x^{2}+49)-9x^{2}\
&=(x^{2}-7)^{2}-(3x)^{2} tag{text{use square of binomial}}\
&=(x^{2}-7-3x)(x^{2}-7+3x) tag{text{use difference of the square}}\
&=(x^{2}-3x-7)(x^{2}+3x-7)\
end{align*}
$$

Result
3 of 3
a) $(x^{2}-3x+6)(x^{2}+3x+6)$

b) $(x^{2}-3x-7)(x^{2}+3x-7)$

Exercise 15
Step 1
1 of 5
a) $x^{4}-1$ This is a given binomial

$$
begin{align*}
x^{4}-1&=(x^{2})^{2}-1^{2}\
&=(x^{2}-1)(x^{2}+1) tag{text{use difference of squares}}\
&=(x-1)(x+1)(x^{2}+1) tag{text{use difference of squares}}\
end{align*}
$$

Step 2
2 of 5
b) $x^{5}-1$ This is a given binomial

We know, $x^{3}-1=(x-1)(x^{2}+x+1)$, in general, applies

$$
begin{align*}
x^{n}-1&=(x-1)(x^{n-1}+x^{n-2}+…+x+1)
end{align*}
$$
for any $n in N$.

Use that, we can determine:

$$
begin{align*}
x^{5}-1&=(x-1)(x^{5-1}+x^{5-2}+x^{5-3}+x^{5-4}+1^{5-5})\
&=(x-1)(x^{4}+x^{3}+x^{2}+x+1)
end{align*}
$$

Step 3
3 of 5
c)
$$
begin{align*}
x^{n}-1&=(x-1)(x^{n-1}1^{1}+x^{n-2}1^{2}+…+x^{1}1^{n-1}+x^{0}1^{n})\
&=(x-1)(x^{n-1}+x^{n-2}+…+x+1)
end{align*}
$$
for any $n in N$.
Step 4
4 of 5
d)
$$
begin{align*}
x^{n}-y^{n}&=(x-y)(x^{n-1}y^{0}+x^{n-2}y^{1}+…+x^{1}y^{n-2}+x^{0}y^{n-1})\
&=(x-y)(x^{n-1}+x^{n-2}y+…+xy^{n-2}+y^{n-1})
end{align*}
$$
for any $n in N$.
Result
5 of 5
a) $x^4-1=(x-1)(x^3+x^2+x+1)$

b) $x^5-1=(x-1)(x^4+x^3+x^2+x+1)$

c) $x^n-1=(x-1)(x^{n-1}y^0+x^{n-2}+…+x^0)$

d) $x^n-y^n=(x-y)(x^{n-1}y^0+x^{n-2}+x^{n-3}y^2+…+x^0y^{n-1}$

Exercise 16
Step 1
1 of 4
a) If $63=3(21)$ is expressed as:

$$
begin{align*}
(2^{2}-1)(2^{4}+2^{2}+2^{0})&=2^{2}cdot2^{4}+2^{2}cdot2^{2}+2^{2}cdot2^{0}-2^{4}-2^{2}-2^{0}\
&=2^6+2^{4}+2^{2}-2^{4}-2^{2}-2^{0}=2^{6}-2^{0}=2^{6}-1\
end{align*}
$$

If 63=7(9) is expressed as:

$$
begin{align*}
(2^{3}-1)(2^{3}+2^{0})&=2^{3}cdot2^{3}+2^{3}cdot2^{0}-1cdot2^{3}-1cdot2^{0}\
&=2^6+2^{3}-2^{3}-1=2^{6}-1\
end{align*}
$$

In both cases we get $63=2^{6}-1$.

Step 2
2 of 4
b) We know: $35=5(7)$, so, if $m=35$, then:

$$
begin{align*}
n&=2^{m}-1 \
&=2^{35}-1\
&=(2^{5}-1)(2^{30}+2^{25}+2^{20}+2^{15}+2^{10}+2^{5}+2^{0})\
end{align*}
$$
.

Composite number is a whole number that can be divided exactly by numbers other than 1 or itself

So, we can conclude that: $text{textcolor{#4257b2}{$2^{35}-1$ is a composite number}}$.

Step 3
3 of 4
c) Let $m$ be composite number. This means, exist real numbers $a, bne1$ such that $m=acdot b$. Use that, we get:

$$
begin{align*}
n&=2^{m}-1\
&=2^{ab}-1\
&=(2^{a})^{b}-1\
&=(2^{a}-1)(2^{b}+…+2^{0})\
end{align*}
$$

This result will always have two factors, so, if $m$ composite number, then, number $2^{m}-1=(2^{a}-1)(2^{b}+…+2^{0})$ must be composite number.

Result
4 of 4
$$
begin{align*}
text{a)} ;;; &2^6+2^4+2^2-2^4-2^2-2^0=2^6-1\
&2^6+2^3-2^3-2^0=2^6-1\
text{b)} ;;; &35=5times 7\
&2^{35}-1=(2^5-1)(2^{30}+2^{25}+2^{20}+2^{15}+2^{10}+2^5+2^0);text{or}\
&2^{35}-1=(2^7-1)(2^{28}+2^{21}+2^{14}+2^7+2^0)\
text{c)} ;;;&text{Yes}
end{align*}
$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Introduction to Functions
Page 2: Getting Started
Section 1-1: Relations and Functions
Section 1-2: Function Notation
Section 1-3: Exploring Properties of Parent Functions
Section 1-4: Determining the Domain and Range of a Function
Section 1-5: The Inverse Function and Its Properties
Section 1-6: Exploring Transformations of Parent Functions
Section 1-7: Investigating Horizontal Stretches, Compressions, and Reflections
Section 1-8: Using Transformations to Graph Functions of the Form y 5 af [k(x 2 d)] 1 c
Page 78: Chapter Self-Test
Chapter 2: Equivalent Algebraic Expressions
Page 82: Getting Started
Section 2-1: Adding and Subtracting Polynomials
Section 2-2: Multiplying Polynomials
Section 2-3: Factoring Polynomials
Section 2-4: Simplifying Rational Functions
Section 2-5: Exploring Graphs of Rational Functions
Section 2-6: Multiplying and Dividing Rational Expressions
Section 2-7: Adding and Subtracting Rational Expressions
Page 134: Chapter Self-Test
Chapter 3: Quadratic Functions
Page 138: Getting Started
Section 3-1: Properties of Quadratic Functions
Section 3-2: Determining Maximum and Minimum Values of a Quadratic Function
Section 3-3: The Inverse of a Quadratic Function
Section 3-4: Operations with Radicals
Section 3-5: Quadratic Function Models: Solving Quadratic Equations
Section 3-6: The Zeros of a Quadratic Function
Section 3-7: Families of Quadratic Functions
Section 3-8: Linear-Quadratic Systems
Page 204: Chapter Self-Test
Page 206: Cumulative Review
Page 167: Check Your Understanding
Page 170: Practice Questions
Page 198: Check Your Understanding
Page 202: Practice Questions
Chapter 4: Exponential Functions
Page 212: Getting Started
Section 4-1: Exploring Growth and Decay
Section 4-2: Working with Integer Exponents
Section 4-3: Working with Rational Exponents
Section 4-4: Simplifying Algebraic Expressions Involving Exponents
Section 4-5: Exploring the Properties of Exponential Functions
Section 4-6: Transformations of Exponential Functions
Section 4-7: Applications Involving Exponential Functions
Page 270: Chapter Self-Test
Chapter 5: Trigonometric Ratios
Page 274: Getting Started
Section 5-1: Trigonometric Ratios of Acute Angles
Section 5-2: Evaluating Trigonometric Ratios for Special Angles
Section 5-3: Exploring Trigonometric Ratios for Angles Greater than 90°
Section 5-4: Evaluating Trigonometric Ratios for Any Angle Between 0° and 360°
Section 5-5: Trigonometric Identities
Section 5-6: The Sine Law
Section 5-7: The Cosine Law
Section 5-8: Solving Three-Dimensional Problems by Using Trigonometry
Page 340: Chapter Self-Test
Chapter 6: Sinusoidal Functions
Page 344: Getting Started
Section 6-1: Periodic Functions and Their Properties
Section 6-2: Investigating the Properties of Sinusoidal Functions
Section 6-3: Interpreting Sinusoidal Functions
Section 6-4: Exploring Transformations of Sinusoidal Functions
Section 6-5: Using Transformations to Sketch the Graphs of Sinusoidal Functions
Section 6-6: Investigating Models of Sinusoidal Functions
Section 6-7: Solving Problems Using Sinusoidal Models
Page 406: Chapter Self-Test
Page 408: Cumulative Review
Chapter 7: Discrete Functions: Sequences and Series
Page 414: Getting Started
Section 7-1: Arithmetic Sequences
Section 7-2: Geometric Sequences
Section 7-3: Creating Rules to Define Sequences
Section 7-4: Exploring Recursive Sequences
Section 7-5: Arithmetic Series
Section 7-6: Geometric Series
Section 7-7: Pascal’s Triangle and Binomial Expansions
Page 470: Chapter Self-Test
Chapter 8: Discrete functions: Financial Applications
Page 474: Getting Started
Section 8-1: Simple Interest
Section 8-2: Compound Interest: Future Value
Section 8-3: Compound Interest: Present Value
Section 8-4: Annuities: Future Value
Section 8-5: Annuities: Present Value
Section 8-6: Using Technology to Investigate Financial Problems
Page 536: Chapter Self-Test
Page 538: Cumulative Review