Advanced Functions 12
Advanced Functions 12
1st Edition
Chris Kirkpatrick, Kristina Farentino, Susanne Trew
ISBN: 9780176678326
Table of contents
Textbook solutions

All Solutions

Section 8-2: Transformations of Logarithmic Functions

Exercise 1
Step 1
1 of 5
Describe the transformation that applied to the $f(x)$ to graph $g(x)$.

$$
color{#4257b2}text{(a)} g(x) =3log_{10} x
$$

The transformation applied is:

Vertical stretch factor is $a=3$

Exercise scan

Step 2
2 of 5
$$
color{#4257b2}text{(b)} g(x) =log_{10} 2x
$$

The transformation applied is:

Horizontal stretch factor is $k=2$

Exercise scan

Step 3
3 of 5
$$
color{#4257b2}text{(c)} g(x) =log_{10} x -5
$$

The transformation applied is:

Vertical translated factor is $c=-5$

Exercise scan

Step 4
4 of 5
$$
color{#4257b2}text{(d)} g(x) =log_{10} (x+4)
$$

The transformation applied is:

Horizontal translated factor is $d=-4$

Exercise scan

Result
5 of 5
$$
text{color{#c34632}(a) Vertical stretch factor is $a=3$
\ \
(b) Horizontal stretch factor is $k=2$
\ \
(c) Vertical translated factor is $c=-5$
\ \
(d) Horizontal translated factor is $d=-4$}
$$
Exercise 2
Step 1
1 of 4
$$
text{color{#4257b2}(a) State the coordinate of the following points for each function in the question $1$.

$$left(dfrac{1}{10}, -1right), (1, 0), (10, 1)$$}
$$

$$
color{#4257b2}text{(I)} g(x)=3log_{10}x
$$

Multiply the coordinate of $y$ points by $3$ as follows $(x, y)rightarrow(x, 3y)$:

$$
left(dfrac{1}{10}, -1right)rightarrowleft(dfrac{1}{10}, -3right)
$$

$$
(1, 0)rightarrow(1, 0)
$$

$$
(10, 1)rightarrow(10, 3)
$$

$$
color{#4257b2}text{(II)} g(x)=log_{10}2x
$$

Multiply the coordinate of $x$ points by $2$ as follows $(x, y)rightarrow(2x, y)$:

$$
left(dfrac{1}{10}, -1right)rightarrowleft(dfrac{1}{5}, -1right)
$$

$$
(1, 0)rightarrow(2, 0)
$$

$$
(10, 1)rightarrow(20, 1)
$$

Step 2
2 of 4
$$
color{#4257b2}text{(III)} g(x)=log_{10}x-5
$$

Adding to the coordinate of $y$ points by $5$ as follows $(x, y)rightarrow(x, y+5)$:

$$
left(dfrac{1}{10}, -1right)rightarrowleft(dfrac{1}{10}, 4right)
$$

$$
(1, 0)rightarrow(1, 5)
$$

$$
(10, 1)rightarrow(10, 6)
$$

$$
color{#4257b2}text{(IV)} g(x)=log_{10}(x+4)
$$

Subtract the coordinate of $x$ points by $-4$ as follows $(x, y)rightarrow(x-4, y)$:

$$
left(dfrac{1}{10}, -1right)rightarrowleft(dfrac{-39}{10}, -1right)
$$

$$
(1, 0)rightarrow(-3, 0)
$$

$$
(10, 1)rightarrow(6, 1)
$$

Step 3
3 of 4
$$
text{color{#4257b2}(b) State the domain and range for each function in the question $1$.}
$$

(I) Domain $=(0, infty)$ Range$=(-infty, infty)$

(II) Domain $=(0, infty)$ Range$=(-infty, infty)$

(III) Domain $=(0, infty)$ Range$=(-infty, infty)$

(IV) Domain $=(-4, infty)$ Range$=(-infty, infty)$

Result
4 of 4
$$
text{color{#c34632}(a) (I) $left(dfrac{1}{10}, -3right)$ $(1, 0)$ $(10, 3)$
\ \ \
(II) $left(dfrac{1}{5}, -1right)$ $(2, 0)$ $(20, 1)$
\ \ \
(III) $left(dfrac{1}{10}, 4right)$ $(1, 5)$ $(10, 6)$
\ \ \
(IV) $left(dfrac{-39}{10}, -1right)$ $(-3, 0)$ $(6, 1)$
\ \ \
(b) (I) Domain $=(0, infty)$ Range$=(-infty, infty)$
\ \
(II) Domain $=(0, infty)$ Range$=(-infty, infty)$
\ \
(III) Domain $=(0, infty)$ Range$=(-infty, infty)$
\ \
(IV) Domain $=(-4, infty)$ Range$=(-infty, infty)$}
$$
Exercise 3
Step 1
1 of 2
State the equation of the function that results from each of the following pairs of transformation.

$$
color{#4257b2}text{(a)} a=5 c=3
$$

Standard function can be expressed by $f(x)=a log_{10} [k(x-d)]+c$

$$
f(x)=5log_{10}x+3
$$

$$
color{#4257b2}text{(b)} a=-1 k=dfrac{1}{3}
$$

Standard function can be expressed by $f(x)=a log_{10} [k(x-d)]+c$

$$
f(x)=- log_{10}left(dfrac{1}{3}xright)
$$

$$
color{#4257b2}text{(c)} d=-4 c=-3
$$

Standard function can be expressed by $f(x)=a log_{10} [k(x-d)]+c$

$$
f(x)=log_{10} (x-(-4))-3 f(x)=log_{10} (x+4)-3
$$

$$
color{#4257b2}text{(d)} a=-1 d=4
$$

Standard function can be expressed by $f(x)=a log_{10} [k(x-d)]+c$

$$
f(x)=- log_{10} (x-4)
$$

Result
2 of 2
$color{#c34632}text{(a)} f(x)=5log_{10}x+3$ $color{#c34632}text{(b)} f(x)=- log_{10}left(dfrac{1}{3}xright)$

$color{#c34632}text{(b)} f(x)=log_{10} (x+4)-3$ $color{#c34632}text{(b)} f(x)=- log_{10} (x-4)-3$

Exercise 4
Step 1
1 of 7
Answer for the following questions.

$$
color{#4257b2} text{(I)} -4log_{10}(x)+5
$$

$$
text{color{#4257b2} (a) State the transformed that applied for above expression.}
$$

$$
a=-4 c=5
$$

$$
text{color{#4257b2} (b) State the coordinate of the following points for the above expression.}
$$

$$
(1, 0), (10, 1)
$$

Multiply the coordinate of $y$ points by $-4$ as follows:

$$
(x, y)rightarrow(x, -4y)
$$

$$
(1, 0)rightarrow(1, 0)
$$

$$
(10, 1)rightarrow(10, -4)
$$

Then, add to the coordinate of $y$ points by $5$ as follows:

$$
(x, -4y)rightarrow(x, -4y+5)
$$

$$
(1, 0)rightarrow(1, 5)
$$

$$
(10, -4)rightarrow(10, 1)
$$

$$
text{color{#4257b2} (c) State the equation of the symptote for the above expression.}
$$

$$
x=0
$$

$$
text{color{#4257b2} (d) State the domain and range for the above expression.}
$$

Domain $=(0, infty)$ Range $=(-infty, infty)$

Exercise scan

Step 2
2 of 7
$$
color{#4257b2} text{(II)} dfrac{1}{2}log_{10}(x-6)+3
$$

$$
text{color{#4257b2} (a) State the transformed that applied for above expression.}
$$

$$
k=dfrac{1}{2} d=6 c=3
$$

$$
text{color{#4257b2} (b) State the coordinate of the following points for the above expression.}
$$

$$
(1, 0), (10, 1)
$$

Multiply the coordinate of $y$ points by $left(tfrac{1}{2}right)$ as follows:

$$
(x, y)rightarrowleft(x, dfrac{1}{2}yright)
$$

$$
(1, 0)rightarrow(1, 0)
$$

$$
(10, 1)rightarrow(10, 0.5)
$$

Then, add to the coordinate of $x$ points by $6$ and $y$ points by $3$ as follows:

$$
left(x, dfrac{1}{2}yright)rightarrow left(x+6, dfrac{1}{2}y+3right)
$$

$$
(1, 0)rightarrow(7, 3)
$$

$$
(10, 0.5)rightarrow(16 3.5)
$$

$$
text{color{#4257b2} (c) State the equation of the symptote for the above expression.}
$$

$$
x=6
$$

$$
text{color{#4257b2} (d) State the domain and range for the above expression.}
$$

Domain $=(6, infty)$ Range $=(-infty, infty)$

Exercise scan

Step 3
3 of 7
$$
color{#4257b2} text{(III)} log_{10}(3x)-4
$$

$$
text{color{#4257b2} (a) State the transformed that applied for above expression.}
$$

$$
k=3 c=-4
$$

$$
text{color{#4257b2} (b) State the coordinate of the following points for the above expression.}
$$

$$
(1, 0), (10, 1)
$$

Multiply the coordinate of $x$ points by $3$ as follows:

$$
(x, y)rightarrow(3x, y)
$$

$$
(1, 0)rightarrow(3, 0)
$$

$$
(10, 1)rightarrow(30, 1)
$$

Then, subtract to the coordinate of $y$ points by $-4$ as follows:

$$
(3x, y)rightarrow(3x, y-5)
$$

$$
(3, 0)rightarrow(3, -4)
$$

$$
(30, 1)rightarrow(30, -3)
$$

$$
text{color{#4257b2} (c) State the equation of the symptote for the above expression.}
$$

$$
x=0
$$

$$
text{color{#4257b2} (d) State the domain and range for the above expression.}
$$

Domain $=(0, infty)$ Range $=(-infty, infty)$

Exercise scan

Step 4
4 of 7
$$
color{#4257b2} text{(IV)} 2log_{10}[-2(x+2)]
$$

$$
text{color{#4257b2} (a) State the transformed that applied for above expression.}
$$

$$
a=2 k=-2 d=-2
$$

$$
text{color{#4257b2} (b) State the coordinate of the following points for the above expression.}
$$

$$
(1, 0), (10, 1)
$$

Multiply the coordinate of $x$ points by $-2$ and $y$ points by $2$ as follows:

$$
(x, y)rightarrow(-2x, 2y)
$$

$$
(1, 0)rightarrow(-2, 0)
$$

$$
(10, 1)rightarrow(-20, 2)
$$

Then, subtract to the coordinate of $x$ points by $-2$ as follows:

$$
(-2x, 2y)rightarrow(-2x-2, 2y)
$$

$$
(-2, 0)rightarrow(-4, 0)
$$

$$
(-20, 2)rightarrow(-22, 2)
$$

$$
text{color{#4257b2} (c) State the equation of the symptote for the above expression.}
$$

$$
x=-2
$$

$$
text{color{#4257b2} (d) State the domain and range for the above expression.}
$$

Domain $=(-2, -infty)$ Range $=(-infty, infty)$

Exercise scan

Step 5
5 of 7
$$
color{#4257b2} text{(V)} log_{10}(2x+4)
$$

$$
text{color{#4257b2} (a) State the transformed that applied for above expression.}
$$

$$
k=2 d=-4
$$

$$
text{color{#4257b2} (b) State the coordinate of the following points for the above expression.}
$$

$$
(1, 0), (10, 1)
$$

Multiply the coordinate of $x$ points by $2$ as follows:

$$
(x, y)rightarrow(2x, y)
$$

$$
(1, 0)rightarrow(2, 0)
$$

$$
(10, 1)rightarrow(20, 1)
$$

Then, subtract to the coordinate of $x$ points by $-4$ as follows:

$$
(2x, y)rightarrow(2x-4, y)
$$

$$
(2, 0)rightarrow(-2, 0)
$$

$$
(20, 1)rightarrow(16, 1)
$$

$$
text{color{#4257b2} (c) State the equation of the symptote for the above expression.}
$$

$$
x=-2
$$

$$
text{color{#4257b2} (d) State the domain and range for the above expression.}
$$

Domain $=(-2, infty)$ Range $=(-infty, infty)$

Exercise scan

Step 6
6 of 7
$$
color{#4257b2} text{(VI)} log_{10}(-x-2)
$$

$$
text{color{#4257b2} (a) State the transformed that applied for above expression.}
$$

$$
k=-1 d=2
$$

$$
text{color{#4257b2} (b) State the coordinate of the following points for the above expression.}
$$

$$
(1, 0), (10, 1)
$$

Multiply the coordinate of $x$ points by $-1$ as follows:

$$
(x, y)rightarrow(-x, y)
$$

$$
(1, 0)rightarrow(-1, 0)
$$

$$
(10, 1)rightarrow(-10, 1)
$$

Then, add to the coordinate of $x$ points by $2$ as follows:

$$
(-x, y)rightarrow(-x+2, y)
$$

$$
(-1, 0)rightarrow(1, 0)
$$

$$
(-10, 1)rightarrow(-8, 1)
$$

$$
text{color{#4257b2} (c) State the equation of the symptote for the above expression.}
$$

$$
x=-2
$$

$$
text{color{#4257b2} (d) State the domain and range for the above expression.}
$$

Domain $=(-2, -infty)$ Range $=(-infty, infty)$

Exercise scan

Result
7 of 7
{$text{color{#c34632}(a)
\ \
(I) $a=-4, c=5$ (II) $k=dfrac{1}{2}, d=6, c=3$ (III) $k=3, c=-4$
\ \
(IV) $a=2, k=-2, d=-2$ (V) $k=2, d-4$ (III) $k=-1, d=2$
\ \ (b) \ \
(I) $(1, 5), (10, 1)$ (II) $(7, 3), (16, 3.5)$ (III) $(3, -4), (30, -3)$
\ \
(IV) $(-4, 0), (-22, 2)$ (V) $(-2, 0), (16, 1)$ (III) $(1, 0), (-8, 1)$
\ \ (c) \ \
(I) $x=0$ (II) $x=6$ (III) $x=0$
\ \
(IV) $x=-2$ (V) $x=-2$ (III) $x=-2$
\ \ (d) \ \
(I) D=$(0, -infty)$, R$=(-infty, infty)$ (II) D=$(6, infty)$, R$=(-infty, infty)$ \ \ (III) D=$(0, infty)$, R$=(-infty, infty)$ (IV) D=$(-2, -infty)$, R$=(-infty, infty)$
\ \
(V) D=$(-2, infty)$, R$=(-infty, infty)$ (VI) D=$(-2, -infty)$, R$=(-infty, infty)$}$
Exercise 5
Step 1
1 of 7
Graph the following expression, then state the domain and range for each one of the following expression.

$$
color{#4257b2}text{(a)} 3log_{10}x+3
$$

Domain $= (0, infty)$ Range $=(-infty, infty)$

Exercise scan

Step 2
2 of 7
$$
color{#4257b2}text{(b)} -log_{10}(x-6)
$$

Domain $= (6, infty)$ Range $=(-infty, infty)$

Exercise scan

Step 3
3 of 7
$$
color{#4257b2}text{(c)} log_{10}(2x)
$$

Domain $= (0, infty)$ Range $=(-infty, infty)$

Exercise scan

Step 4
4 of 7
$$
color{#4257b2}text{(d)} log_{10}(0.5x)-1
$$

Domain $= (0, infty)$ Range $=(-infty, infty)$

Exercise scan

Step 5
5 of 7
$$
color{#4257b2}text{(e)} 4log_{10}left(dfrac{1}{6}xright)-2
$$

Domain $= (0, infty)$ Range $=(-infty, infty)$

Exercise scan

Step 6
6 of 7
$$
color{#4257b2}text{(f)} log_{10}(-2x-4)
$$

Domain $= (-2, -infty)$ Range $=(-infty, infty)$

Exercise scan

Result
7 of 7
$$
text{color{#c34632} (a) Domain $= (0, infty)$ Range $=(-infty, infty)$}
$$

$$
text{color{#c34632} (b) Domain $= (6, infty)$ Range $=(-infty, infty)$}
$$

$$
text{color{#c34632} (c) Domain $= (0, infty)$ Range $=(-infty, infty)$}
$$

$$
text{color{#c34632} (d) Domain $= (0, infty)$ Range $=(-infty, infty)$}
$$

$$
text{color{#c34632} (e) Domain $= (0, infty)$ Range $=(-infty, infty)$}
$$

$$
text{color{#c34632} (f) Domain $= (-2, -infty)$ Range $=(-infty, infty)$}
$$

Exercise 6
Step 1
1 of 3
Compare the function $f(x)=(10)^{tfrac{x}{3}}+1$ and $g(x)=3log_{10}(x-1)$

$$
color{#4257b2}f(x)=(10)^{tfrac{x}{3}}+1
$$

Domain $=(-infty, infty)$ Range $=(1, infty)$

Asymptote equation is $y=1$

Exercise scan

Step 2
2 of 3
$$
color{#4257b2}g(x)=3log_{10}(x-1)
$$

Domain $=(1, infty)$ Range $=(-infty, infty)$

Asymptote equation is $x=1$

Exercise scan

Result
3 of 3
$$
text{color{#c34632}Domain $=(-infty, infty)$ Range $=(1, infty)$ Asymptote equation is $y=1$
\ \
Domain $=(1, infty)$ Range $=(-infty, infty)$ Asymptote equation is $x=1$}
$$
Exercise 7
Step 1
1 of 3
A logarithmic function of the form $f(x)= alog_n(k(x-d))+c$ can be graphed by applying the appropriate transformations to the parent function, $f(x)= log_nx$, where

* $abs{a}$ gives the vertical stretch/compression factor. If $a>1$ it gives vertical stretch, while $0le ale 1$ gives compression by a factor $a$. If $a1$ it gives horizontal compression, while $0le kle 1$ gives stretch by a factor $a$ If $k<0$ there is also a reflection in the $y$-axis.

* $d$ gives the horizontal translation. If $d0$ it translates graph $d$ units to the right.

* $c$ gives the vertical translation. If $c0$ it translates graph $c$ units upward.

Comparing the given functions and using the coefficients $a$, $k$, $d$, and $c$ to describe the transformation of the parent function, we can make a conclusion about the similarities of the graphs of those functions.

Step 2
2 of 3
*(a)* Note that all three functions are logarithmic functions of the base $3$. Hence, they all have the same general shape.

The given function $f(x)=log_3x$ is a parent function and other functions can be graphed by applying the appropriate transformations to the parent function.

Note that $g(x)=log_3(x+4)$ has a coefficient $d=-4$. Hence, this function is parent function translated $4$ units to the left.

On the other hand, function $h(x)=log_3x+4$ has a coefficient $c=4$. Hence, this function is parent function translated $4$ units upward.

Step 3
3 of 3
*(b)* Note that all three functions are logarithmic functions of the base $3$. Hence, they all have the same general shape.

The given function $f(x)=log_3x$ is a parent function and other functions can be graphed by applying the appropriate transformations to the parent function.

Note that $m(x)=4log_3x$ has a coefficient $a=4$. Hence, this function is parent function vertically stretched by a factor $4$.

On the other hand, function $n(x)=log_34x$ has a coefficient $k=4$. Hence, this function is parent function horizontally compressed by a factor $frac{1}{4}$.

Exercise 8
Step 1
1 of 5
A logarithmic function of the form $f(x)= alog_n(k(x-d))+c$ can be graphed by applying the appropriate transformations to the parent function, $f(x)= log_nx$, where

* $abs{a}$ gives the vertical stretch/compression factor. If $a>1$ it gives vertical stretch, while $0le ale 1$ gives compression by a factor $a$. If $a1$ it gives horizontal compression, while $0le kle 1$ gives stretch by a factor $a$ If $k<0$ there is also a reflection in the $y$-axis.

* $d$ gives the horizontal translation. If $d0$ it translates graph $d$ units to the right.

* $c$ gives the vertical translation. If $c0$ it translates graph $c$ units upward.

Using the coefficients $a$, $k$, $d$, and $c$ to describe the transformation of the parent function, we can conclude the equation of the transformed function.

Each point of the graph of the parent function after transformation becomes
$$
(x,y)toleft(dfrac{1}{k} cdot x+d,ay+cright)tag{1}$$

The vertical asymptote changes when a horizontal translation is applied. The domain of a transformed logarithmic function depends on where the vertical asymptote is located and whether the function is to the left or the right of the vertical asymptote. If the function is to the left of the asymptote $x=d$, the domain is $xd$.

Step 2
2 of 5
*(a)* When the parent function is vertically stretched by a factor of $3$ and reflected about the $x$-axis, that gives $a=-3$. Horizontal stretch by a factor $2$ gives $frac{1}{k}=2implies k=frac{1}{2}$. Horizontal translation $5$ units to the right gives $d=5$, while vertical translation $2$ units up gives $c=2$. Transformed function now has an equation of a form
$$
begin{align*}
g(x)&=alog_{10}left(k(x-d) right)+c\
&=-3log_{10}left(dfrac{1}{2}(x-5) right)+2
end{align*}$$
Step 3
3 of 5
*(b)* Using Eq. $(1)$ we can obtain coordinates of the point $(10,1)$ after applied transformations. It yields
$$
(10,1)to(2cdot10+5,-3cdot1+2)=(25,-1)
Step 4
4 of 5
*(c)* Since the given function is translated $5$ units to the right, the vertical asymptote is now $x=5$, and the graph of the transformed function is right of this asymptote. Hence, domain becomes
$$
D={xinR| x>5},$$
while the range remains unchanged
$$
R={yin R}$$
Result
5 of 5
a) $g(x)==-3log_{10}left(frac{1}{2}(x-5) right)+2$
b) $(25,-1)$
c) $D={xinR| x>5}, R={yin R}$
Exercise 9
Step 1
1 of 2
State the transformation that needed to turn the

$f(x)=4log_{10}(x-4)$ intto the $f(x)=-2log_{10}(x+1)$

To get the value of vertical stretch equal $-2$, should add $-6$ to the original value.

$$
a=4-6=-2
$$

To get the value of horizontal translated equal $1$ unit down, should add $-5$ to the original value.

$$
d=4-5=-1
$$

$$
color{#4257b2}f(x)=(4-6)log_{10}[x-(4-5)]
$$

$$
f(x)=-2log_{10}(x+1)
$$

Result
2 of 2
$$
color{#c34632}f(x)=(4-6)log_{10}(x-(4-5))
$$
Exercise 10
Step 1
1 of 3
State the three characteristics of the function of $f(x)=log_{10}(x)$ that are unchanged under the following transformation terms below.

$$
a=4 k=dfrac{1}{2}
$$

Standard transformation form is $f(x)=alog_{10}[k(x-d)]+c$

$$
f(x)=4log_{10}left(dfrac{1}{2}xright)
$$

The characteristics are:

Domain $=(0, infty)$ Range $=(-infty, infty)$

Asymptote equation is $x=0$

$$
color{#4257b2}f(x)=log_{10}(x)
$$

Exercise scan

Step 2
2 of 3
$$
color{#4257b2}f(x)=4log_{10}(0.5x)
$$

Exercise scan

Result
3 of 3
$$
text{color{#c34632}Domain $=(0, infty)$ Range $=(-infty, infty)$
\ \
Asymptote equation is $x=0$}
$$
Exercise 11
Step 1
1 of 2
Sketch the graph.

$$
color{#4257b2}f(x)=dfrac{-2}{log_2(x+2)}
$$

$$
f(x)=-2cdot dfrac{1}{log_2(x+2)}
$$

Exercise scan

Result
2 of 2
$$
text{color{#c34632}Large See the graph}
$$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Functions: Characteristics and Properties
Page 2: Getting Started
Section 1-1: Functions
Section 1-2: Exploring Absolute Value
Section 1-3: Properties of Graphs of Functions
Section 1-4: Sketching Graphs of Functions
Section 1-5: Inverse Relations
Section 1-6: Piecewise Functions
Section 1-7: Exploring Operations with Functions
Page 62: Chapter Self-Test
Chapter 2: Functions: Understanding Rates of Change
Page 66: Getting Started
Section 2-1: Determining Average Rate of Change
Section 2-2: Estimating Instantaneous Rates of Change from Tables of Values and Equations
Section 2-3: Exploring Instantaneous Rates of Change Using Graphs
Section 2-4: Using Rates of Change to Create a Graphical Model
Section 2-5: Solving Problems Involving Rates of Change
Page 118: Chapter Self-Test
Chapter 3: Polynomial Functions
Page 122: Getting Started
Section 3-1: Exploring Polynomial Functions
Section 3-2: Characteristics of Polynomial Functions
Section 3-3: Characteristics of Polynomial Functions in Factored Form
Section 3-4: Transformation of Cubic and Quartic Functions
Section 3-5: Dividing Polynomials
Section 3-6: Factoring Polynomials
Section 3-7: Factoring a Sum or Difference of Cubes
Page 186: Chapter Self-Test
Page 188: Cumulative Review
Page 155: Check Your Understanding
Page 161: Practice Questions
Page 182: Check Your Understanding
Page 184: Practice Questions
Chapter 4: Polynomial Equations and Inequalities
Page 194: Getting Started
Section 4-1: Solving Polynomial Equations
Section 4-2: Solving Linear Inequalities
Section 4-3: Solving Polynomial Inequalities
Section 4-4: Rates of Change in Polynomial Functions
Page 242: Chapter Self-Test
Chapter 5: Rational Functions, Equations, and Inequalities
Page 246: Getting Started
Section 5-1: Graphs of Reciprocal Functions
Section 5-2: Exploring Quotients of Polynomial Functions
Section 5-3: Graphs of Rational Functions of the Form f(x) 5 ax 1 b cx 1 d
Section 5-4: Solving Rational Equations
Section 5-5: Solving Rational Inequalities
Section 5-6: Rates of Change in Rational Functions
Page 310: Chapter Self-Test
Chapter 6: Trigonometric Functions
Page 314: Getting Started
Section 6-1: Radian Measure
Section 6-2: Radian Measure and Angles on the Cartesian Plane
Section 6-3: Exploring Graphs of the Primary Trigonometric Functions
Section 6-4: Transformations of Trigonometric Functions
Section 6-5: Exploring Graphs of the Reciprocal Trigonometric Functions
Section 6-6: Modelling with Trigonometric Functions
Section 6-7: Rates of Change in Trigonometric Functions
Page 378: Chapter Self-Test
Page 380: Cumulative Review
Chapter 7: Trigonometric Identities and Equations
Page 386: Getting Started
Section 7-1: Exploring Equivalent Trigonometric Functions
Section 7-2: Compound Angle Formulas
Section 7-3: Double Angle Formulas
Section 7-4: Proving Trigonometric Identities
Section 7-5: Solving Linear Trigonometric Equations
Section 7-6: Solving Quadratic Trigonometric Equations
Page 441: Chapter Self-Test
Chapter 8: Exponential and Logarithmic Functions
Page 446: Getting Started
Section 8-1: Exploring the Logarithmic Function
Section 8-2: Transformations of Logarithmic Functions
Section 8-3: Evaluating Logarithms
Section 8-4: Laws of Logarithms
Section 8-5: Solving Exponential Equations
Section 8-6: Solving Logarithmic Equations
Section 8-7: Solving Problems with Exponential and Logarithmic Functions
Section 8-8: Rates of Change in Exponential and Logarithmic Functions
Page 512: Chapter Self-Test
Chapter 9: Combinations of Functions
Page 516: Getting Started
Section 9-1: Exploring Combinations of Functions
Section 9-2: Combining Two Functions: Sums and Differences
Section 9-3: Combining Two Functions: Products
Section 9-4: Exploring Quotients of Functions
Section 9-5: Composition of Functions
Section 9-6: Techniques for Solving Equations and Inequalities
Section 9-7: Modelling with Functions
Page 578: Chapter Self-Test
Page 580: Cumulative Review
Page 542: Further Your Understanding
Page 544: Practice Questions
Page 569: Check Your Understanding
Page 576: Practice Questions