All Solutions
Section 7-4: Proving Trigonometric Identities
$$
sin x=cos x
$$
$$
sin 0=cos 0
$$
$$
0=1
$$
Note that the angle $color{#4257b2}0$ is a special angle which we know the values of the sine and cosine functions for it where $color{#4257b2}sin 0=0$ and $color{#4257b2}cos 0=1$
We note that the value of $color{#4257b2}sin 0$ does not equal the value of $color{#4257b2}cos 0$,
so $color{#4257b2}sin x=cos x$ is not an identity.
(c) We would like to simplify one side to prove that the identity is true. We can simplify the right side $color{#4257b2}tan xcos x$. First, we know the identity $color{#4257b2}tan x=dfrac{sin x}{cos x}$, so we can replace $color{#4257b2}tan x$ from the right side by $color{#4257b2}dfrac{sin x}{cos x}$
$$
begin{align*}
RS&=tan xcos x
\ \
&=dfrac{sin x}{cos x}cdot cos x
\ \
&=dfrac{sin x}{cancel{cos x}}cdot cancel{cos x}
\ \
&=sin x
end{align*}
$$
So we proved that the right side = the left side.
(d) The identity is true for all real numbers, except where $color{#4257b2}cos x=0$ because in this case $color{#4257b2}tan x$ will be undefined where $color{#4257b2}tan x=dfrac{sin x}{cos x}$ and if $color{#4257b2}cos x=0$ that means that the denominator of $color{#4257b2}tan x$ equals zero which is undefined.
text{color{#c34632}$sin x=tan xcos x$, where $cos x ne 0$}
$$
For the graphs on the left:
$$
text{color{#4257b2}(a)}
$$
text{color{#4257b2}(b)}
$$
text{color{#4257b2}(c)}
$$
text{color{#4257b2}(d)}
$$
$color{#4257b2}$A
text{color{#c34632}(a) C (b) D (c) B (d) A}
$$
For the first identity $color{#4257b2}(a) sin xcot x=(C) cos x$, we can simplify the left side where we know that $color{#4257b2}cot x=dfrac{cos x}{sin x}$.
$$
begin{align*}
sin xcot x&=sin xcdot dfrac{cos x}{sin x}
\ \
&=cancel{sin x}cdot dfrac{cos x}{cancel{sin x}}
\ \
&=cos x
end{align*}
$$
So we prove that the left side equals $color{#4257b2}cos x$ which means that the left side is equivalent to the right side.
For the second identity $color{#4257b2}(b) 1-2sin^{2}x=(D) 2cos^{2}x-1$, we can simplify the left side where we know that $color{#4257b2}sin^{2}x+cos^{2}x=1$, so $color{#4257b2}sin^{2}x=1-cos^{2}x$.
$$
begin{align*}
1-2sin^{2}x&=1-2left(1-cos^{2}xright)
\ \
&=1-2+2cos^{2}x
\ \
&=2cos^{2}x-1
end{align*}
$$
So we prove that the left side equals $color{#4257b2}2cos^{2}x-1$ which means that the left side is equivalent to the right side.
$$
begin{align*}
left(sin x+cos xright)^{2}&= sin^{2}x+2sin xcos x+cos^{2}x
\ \
&= left(sin^{2}x+cos^{2}xright)+2sin xcos x
\ \
&=1+2sin xcos x
end{align*}
$$
Note that we know from the Pythagorean identity that $color{#4257b2}sin^{2}x+cos^{2}x=1$
So we prove that the left side equals $color{#4257b2}1+2sin xcos x$ which means that the left side is equivalent to the right side.
For the fourth identity $color{#4257b2}(d) sec^{2}x=(A) sin^{2}x+cos^{2}x+tan^{2}x$, we can simplify the right side where we know from the Pythagorean identity that $color{#4257b2}sin^{2}x+cos^{2}x=1$.
$$
begin{align*}
sin^{2}x+cos^{2}x+tan^{2}x&= 1+tan^{2}x
\ \
&=sec^{2}x
end{align*}
$$
Note that we know from the Pythagorean identity that $color{#4257b2}1+tan^{2}x=sec^{2}x$
So we prove that the right side equals $color{#4257b2}sec^{2}x$ which means that the right side is equivalent to the left side.
text{color{#c34632}(a) is equivalent to C (b) is equivalent to D
\
\
Large{color{#c34632}(c) is equivalent to B (d) is equivalent to A}}
$$
$$
cos x=dfrac{1}{cos x}
$$
$$
cos 60text{textdegree}=dfrac{1}{cos 60text{textdegree}}
$$
$$
dfrac{1}{2}=dfrac{1}{dfrac{1}{2}}
$$
$$
dfrac{1}{2}=2
$$
Note that the angle $color{#4257b2}60text{textdegree}$ is a special angle which we know the value of the cosine function for it where $color{#4257b2}cos 60text{textdegree}=dfrac{1}{2}$
We note that the value of $color{#4257b2}cos 60text{textdegree}$ does not equal the value of $color{#4257b2}dfrac{1}{cos 60text{textdegree}}$, so the equation $color{#4257b2}cos x=dfrac{1}{cos x}$ is not an identity.
$color{#4257b2}1-tan^{2}x=sec^{2}x$ is not an identity, we can substitute $color{#4257b2}x=45text{textdegree}$ and show if $color{#4257b2}1-tan^{2}x$ will equal $color{#4257b2}sec^{2}x$ or not.
$$
1-tan^{2}x=sec^{2}x
$$
$$
1-tan^{2}45text{textdegree}=sec^{2}45text{textdegree}
$$
$$
1-1^{2}=left(sqrt{2}right)^{2}
$$
$$
1-1=2
$$
$$
0=2
$$
Note that the angle $color{#4257b2}45text{textdegree}$ is a special angle which we know the values of the tangent and secant functions for it where $color{#4257b2}tan 45text{textdegree}=1$ and $color{#4257b2}sec 45text{textdegree}=sqrt{2}$
We note that the value of $color{#4257b2}1-tan^{2}45text{textdegree}$ does not equal the value of $color{#4257b2}sec^{2}45text{textdegree}$, so the equation $color{#4257b2}1-tan^{2}x=sec^{2}x$ is not an identity.
$$
sin left(x+yright)=cos xcos y+sin xsin y
$$
$$
sin left(0text{textdegree}+90text{textdegree}right)=cos 0text{textdegree}cos 90text{textdegree}+sin 0text{textdegree}sin 90text{textdegree}
$$
$$
sin 90text{textdegree}=1cdot 0+0cdot 1
$$
$$
1=0+0
$$
$$
1=0
$$
Note that the angles $color{#4257b2}0text{textdegree}$ and $color{#4257b2}90text{textdegree}$ are special angles which we know the values of the sine and cosine functions for it where $color{#4257b2}cos 0text{textdegree}=1, sin 0text{textdegree}=0, \ cos 90text{textdegree}=0$ and $color{#4257b2}sin 90text{textdegree}=1$
We note that the value of $color{#4257b2}sin left(0text{textdegree}+90text{textdegree}right)$ does not equal the value of
$color{#4257b2}cos 0text{textdegree}cos 90text{textdegree}+sin 0text{textdegree}sin 90text{textdegree}$, so the equation $color{#4257b2}sin left(x+yright)=cos xcos y+sin xsin y$ is not an identity.
$$
cos 2x=1+2sin^{2}x
$$
$$
cos left(2cdot 45text{textdegree}right)=1+2sin^{2}45text{textdegree}
$$
$$
cos 90text{textdegree}=1+2left(dfrac{1}{sqrt{2}}right)^{2}
$$
$$
0=1+2cdot left(dfrac{1}{2}right)
$$
$$
0=1+1
$$
$$
0=2
$$
Note that the angles $color{#4257b2}45text{textdegree}$ and $color{#4257b2}90text{textdegree}$ are special angles which we know the values of the sine and cosine functions for it where $color{#4257b2}sin 45text{textdegree}=dfrac{1}{sqrt{2}}$ and $color{#4257b2}cos 90text{textdegree}=0$
We note that the value of $color{#4257b2}cos left(2cdot 45text{textdegree}right)$ does not equal the value of $color{#4257b2}1+2sin^{2}45text{textdegree}$, so the equation $color{#4257b2}cos 2x=1+2sin^{2}x$ is not an identity.
\
\
$(b) 1-tan^{2}x=sec^{2}x$ {color{Black}is not an identity}}
\
\
Large$$text{color{#c34632}(c) left(sin x+cos xright)=cos xcos y+sin xsin y{color{Black$ is not an identity}
\
\
$(d) cos 2x=1+sin^{2}x$ {color{Black}is not an identity}}}$
color{#c34632}dfrac{1-tan^{2}x}{1+tan^{2}x}=cos 2x
$$
First, we can simplify the left side $color{#4257b2}dfrac{1-tan^{2}x}{1+tan^{2}x}$ where we know from the Pythagorean identity that $color{#4257b2}1+tan^{2}x=sec^{2}x$ and then simplify.
$$
begin{align*}
dfrac{1-tan^{2}x}{1+tan^{2}x}&=dfrac{1-tan^{2}x}{sec^{2}x}
\ \
&=dfrac{1-tan^{2}x}{dfrac{1}{cos^{2}x}}
\ \
&=cos^{2}xleft(1-tan^{2}xright)
\ \
&=cos^{2}x-cos^{2}xtan^{2}x
\ \
&=cos^{2}x-cos^{2}xcdot dfrac{sin^{2}x}{cos^{2}x}
\ \
&=cos^{2}x-cancel{cos^{2}x}cdot dfrac{sin^{2}x}{cancel{cos^{2}x}}
\ \
&=cos^{2}x-sin^{2}x
end{align*}
$$
Note that we know the identity $color{#4257b2}sec theta=dfrac{1}{cos theta}$, so we replaced $color{#4257b2}sec^{2}x$ by $color{#4257b2}dfrac{1}{cos^{2}x}$.
$$
begin{align*}
dfrac{1-tan^{2}x}{1+tan^{2}x}&=cos^{2}x-sin^{2}x
\ \
&=cos 2x
end{align*}
$$
So we proved that the left side equals $color{#4257b2}cos 2x$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}dfrac{1+tan x}{1+cot x}$, so we can multiply the numerator and denominator by $color{#4257b2}1-tan x$ and simplify.
$$
begin{align*}
dfrac{1+tan x}{1+cot x}&=left(dfrac{1+tan x}{1+cot x}right)cdot left(dfrac{1-tan x}{1-tan x}right)
\ \
&=dfrac{1-tan^{2}x}{1+cot x-tan x-tan xcot x}
\ \
&=dfrac{1-tan^{2}x}{1+cot x-tan x-1}
\ \
&=dfrac{1-tan^{2}x}{cot x-tan x}
end{align*}
$$
Note that we know that $color{#4257b2}cot x=dfrac{1}{tan x}$, so $color{#4257b2}tan xcot x=tan xcdot dfrac{1}{tan x}=1$.
We note that the right side is $color{#4257b2}dfrac{1-tan x}{cot x-1}$, so we can multiply the numerator and denominator by $color{#4257b2}1+tan x$ and simplify.
$$
begin{align*}
dfrac{1-tan x}{cot x-1}&=left(dfrac{1-tan x}{cot x-1}right)cdot left(dfrac{1+tan x}{1+tan x}right)
\ \
&=dfrac{1-tan^{2}x}{cot x-1+tan xcot x-tan x}
\ \
&=dfrac{1-tan^{2}x}{cot x-1+1-tan x}
\ \
&=dfrac{1-tan^{2}x}{cot x-tan x}
end{align*}
$$
So we note that the right side is also simplified to the expression $color{#4257b2}dfrac{1-tan^{2}x}{cot x-tan x}$, so we proved that the left side is equivalent to the right side which means that $color{#4257b2}dfrac{1+tan x}{1+cot x}=dfrac{1-tan x}{cot x-1}$
color{#c34632}dfrac{1+tan x}{1+cot x}=dfrac{1-tan x}{cot x-1}
$$
We note that the left side is $color{#4257b2}dfrac{cos^{2}theta-sin^{2}theta}{cos^{2}theta+sin thetacos theta}$, so we can factor the numerator and denominator to simplify where the numerator on the form $color{#4257b2}a^{2}-b^{2}$ which can be factored to $color{#4257b2}(a-b)(a+b)$ and for the denominator we can take $color{#4257b2}cos theta$ as a common factor.
$$
begin{align*}
dfrac{cos^{2}theta-sin^{2}theta}{cos^{2}theta+sin thetacos theta}&=dfrac{left(cos theta-sin thetaright)left(cos theta+sin thetaright)}{cos thetaleft(cos theta+sin thetaright)}
\ \
&=dfrac{left(cos theta-sin thetaright)cancel{left(cos theta+sin thetaright)}}{cos thetacancel{left(cos theta+sin thetaright)}}
\ \
&=dfrac{cos theta-sin theta}{cos theta}
end{align*}
$$
Now we proved that the left side is simplified to $color{#4257b2}dfrac{cos theta-sin theta}{cos theta}$, so the next step is to split this fraction to two subtracted fractions where $color{#4257b2}dfrac{a-b}{c}=dfrac{a}{c}-dfrac{b}{c}$.
$$
begin{align*}
dfrac{cos^{2}theta-sin^{2}theta}{cos^{2}theta+sin thetacos theta}&=dfrac{cos theta-sin theta}{cos theta}
\ \
&=dfrac{cos theta}{cos theta}-dfrac{sin theta}{cos theta}
\ \
&=1-tan theta
end{align*}
$$
Note that in the final step we used the identity $color{#4257b2}tan theta=dfrac{sin theta}{cos theta}$.
So we proved that the left side can be simplified to $color{#4257b2}1-tan theta$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}tan^{2}x-sin^{2}x$, so we can use the identity $color{#4257b2}tan theta=dfrac{sin theta}{cos theta}$ to replace $color{#4257b2}tan^{2}x$ by $color{#4257b2}dfrac{sin^{2}x}{cos^{2}x}$.
$$
tan^{2}x-sin^{2}x=dfrac{sin^{2}x}{cos^{2}x}-sin^{2}x
$$
Now we can unify the denominators using the common denominator $color{#4257b2}cos^{2}x$.
$$
begin{align*}
tan^{2}x-sin^{2}x&=dfrac{sin^{2}x}{cos^{2}x}-sin^{2}x
\ \
&=dfrac{sin^{2}x-sin^{2}xcos^{2}x}{cos^{2}x}
\ \
&=dfrac{sin^{2}xleft(1-cos^{2}xright)}{cos^{2}x}
end{align*}
$$
But we know from the Pythagorean identity that $color{#4257b2}sin^{2}theta+cos^{2}theta=1$, so $color{#4257b2}sin^{2}theta=1-cos^{2}theta$ and we can replace $color{#4257b2}1-cos^{2}x$ by $color{#4257b2}sin^{2}x$.
$$
begin{align*}
tan^{2}x-sin^{2}x&=dfrac{sin^{2}xleft(1-cos^{2}xright)}{cos^{2}x}
\ \
&=dfrac{sin^{2}xsin^{2}x}{cos^{2}x}
\ \
&=dfrac{sin^{2}x}{1}cdot dfrac{sin^{2}x}{cos^{2}x}
\ \
&=sin^{2}xtan^{2}x
end{align*}
$$
So we proved that the left side can be simplified to $color{#4257b2}sin^{2}xtan^{2}x$ which means that the left side is equivalent to the right side.
We note that the right side is $color{#4257b2}dfrac{1}{cos^{2}x}-1-cos^{2}x$, so we can use the identity $color{#4257b2}sec theta=dfrac{1}{cos theta}$ to replace $color{#4257b2}dfrac{1}{cos^{2}x}$ by $color{#4257b2}sec^{2}x$.
$$
dfrac{1}{cos^{2}x}-1-cos^{2}x=sec^{2}x-1-cos^{2}x
$$
But we know from the Pythagorean identity that $color{#4257b2}1+tan^{2}theta=sec^{2}theta$, so $color{#4257b2}tan^{2}theta=sec^{2}theta-1$ and we can replace $color{#4257b2}sec^{2}x-1$ by $color{#4257b2}tan^{2}x$.
$$
begin{align*}
dfrac{1}{cos^{2}x}-1-cos^{2}x&=sec^{2}x-1-cos^{2}x
\ \
&=left(sec^{2}x-1right)-cos^{2}x
\ \
&=tan^{2}x-cos^{2}x
end{align*}
$$
So we proved that the right side can be simplified to $color{#4257b2}tan^{2}x-cos^{2}x$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}dfrac{1}{1+cos theta}+dfrac{1}{1-cos theta}$, so we can unify the denominators using the common denominator $color{#4257b2}left(1+cos thetaright)left(1-cos thetaright)$.
$$
begin{align*}
dfrac{1}{1+cos theta}+dfrac{1}{1-cos theta}&=dfrac{1cdot left(1-cos thetaright)+1cdot left(1+cos thetaright)}{left(1+cos thetaright)left(1-cos thetaright)}
\ \
&=dfrac{1-cos theta+1+cos theta}{1^{2}-cos^{2}theta}
\ \
&=dfrac{1cancel{-cos theta}+1+cancel{cos theta}}{1-cos^{2}theta}
\ \
&=dfrac{2}{1-cos^{2}theta}
end{align*}
$$
But we know from the Pythagorean identity that $color{#4257b2}sin^{2}theta+cos^{2}theta=1$, so $color{#4257b2}sin^{2}theta=1-cos^{2}theta$ and we can replace $color{#4257b2}1-cos^{2}theta$ by $color{#4257b2}sin^{2}theta$.
$$
begin{align*}
dfrac{1}{1+cos theta}+dfrac{1}{1-cos theta}&=dfrac{2}{1-cos^{2}theta}
\ \
&=dfrac{2}{sin^{2}theta}
end{align*}
$$
So we proved that the left side can be simplified to $color{#4257b2}dfrac{2}{sin^{2}theta}$ which means that the left side is equivalent to the right side.
text{color{#c34632}$(a) dfrac{cos^{2}theta-sin^{2}theta}{cos^{2}theta+sin thetacos theta}=1-tan theta$
\
\
\
$(b) tan^{2}x-sin^{2}x=sin^{2}xtan^{2}x$
\
\
\
$(c) tan^{2}x-cos^{2}x=dfrac{1}{cos^{2}x}-1-cos^{2}x$
\
\
\
$(d) dfrac{1}{1+cos theta}+dfrac{1}{1-cos theta}=dfrac{2}{sin^{2}theta}$}
$$
We note that the left side is $color{#4257b2}cos xtan^{3}x$, so we can split $color{#4257b2}tan^{3}x$ to $color{#4257b2}tan xtan^{2}x$ and then use the identity $color{#4257b2}tan theta=dfrac{sin theta}{cos theta}$ to replace $color{#4257b2}tan x$ by $color{#4257b2}dfrac{sin x}{cos x}$.
$$
begin{align*}
cos xtan^{3}x&=cos xtan xtan^{2}x
\ \
&=cos xleft(dfrac{sin x}{cos x}right)tan^{2}x
\ \
&=cancel{cos x}left(dfrac{sin x}{cancel{cos x}}right)tan^{2}x
\ \
&=sin xtan^{2}x
end{align*}
$$
So we proved that the left side can be simplified to $color{#4257b2}sin xtan^{2}x$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}sin^{2}theta+cos^{4}theta$, so we can say that
$color{#4257b2}cos^{4}theta=left(cos^{2}thetaright)^{2}$. But we know from the Pythagorean identity that
$color{#4257b2}sin^{2}theta+cos^{2}theta=1$, so $color{#4257b2}cos^{2}theta=1-sin^{2}theta$ and we can use this identity to simplify the left side.
$$
begin{align*}
sin^{2}theta+cos^{4}theta&=sin^{2}theta+left(cos^{2}thetaright)^{2}
\ \
&=sin^{2}theta+left(1-sin^{2}thetaright)^{2}
end{align*}
$$
Now we can distribute the exponent where we know that
$color{#4257b2}(a-b)^{2}=a^{2}-2ab+b^{2}$.
$$
begin{align*}
sin^{2}theta+cos^{4}theta&=sin^{2}theta+left(1-sin^{2}thetaright)^{2}
\ \
&=sin^{2}theta+1-2sin^{2}theta+sin^{4}theta
\ \
&=1-sin^{2}theta+sin^{4}theta
end{align*}
$$
Now we can use the Pythagorean identity again but this time to replace $color{#4257b2}1-sin^{2}theta$ by $color{#4257b2}cos^{2}theta$
$$
begin{align*}
sin^{2}theta+cos^{4}theta&=1-sin^{2}theta+sin^{4}theta
\ \
&=cos^{2}theta+sin^{4}theta
end{align*}
$$
So we proved that the left side can be simplified to $color{#4257b2}cos^{2}theta+sin^{4}theta$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}left(sin x+cos xright)left(dfrac{tan^{2}x+1}{tan x}right)$, so we can use the Pythagorean identity $color{#4257b2}1+tan^{2}theta=sec^{2}theta$ to replace $color{#4257b2}tan^{2}x+1$ by $color{#4257b2}sec^{2}x$.
$$
begin{align*}
left(sin x+cos xright)left(dfrac{tan^{2}x+1}{tan x}right)&=left(sin x+cos xright)left(dfrac{sec^{2}x}{tan x}right)
\ \
&=left(sin x+cos xright)left(dfrac{dfrac{1}{cos^{2}x}}{tan x}right)
\ \
&=left(sin x+cos xright)left(dfrac{1}{tan xcos^{2}x}right)
\ \
&=left(sin x+cos xright)left(dfrac{1}{dfrac{sin x}{cos x}cdot cos^{2}x}right)
\ \
&=left(sin x+cos xright)left(dfrac{1}{dfrac{sin x}{cancel{cos x}}cdot cos^{cancel{2}}x}right)
\ \
&=left(sin x+cos xright)left(dfrac{1}{sin xcos x}right)
\ \
&=dfrac{sin x+cos x}{sin xcos x}
end{align*}
$$
$color{#4257b2}dfrac{a+b}{c}=dfrac{a}{c}+dfrac{b}{c}$.
$$
begin{align*}
left(sin x+cos xright)left(dfrac{tan^{2}x+1}{tan x}right)&=dfrac{sin x+cos x}{sin xcos x}
\ \
&=dfrac{sin x}{sin xcos x}+dfrac{cos x}{sin xcos x}
\ \
&=dfrac{cancel{sin x}}{cancel{sin x}cos x}+dfrac{cancel{cos x}}{sin xcancel{cos x}}
\ \
&=dfrac{1}{cos x}+dfrac{1}{sin x}
end{align*}
$$
So we proved that the left side can be simplified to $color{#4257b2}dfrac{1}{cos x}+dfrac{1}{sin x}$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}tan^{2}beta+cos^{2}beta+sin^{2}beta$, so we can use the Pythagorean identity $color{#4257b2}sin^{2}theta+cos^{2}theta=1$ to replace $color{#4257b2}cos^{2}beta+sin^{2}beta$ by $color{#4257b2}1$.
$$
tan^{2}beta+cos^{2}beta+sin^{2}beta=tan^{2}beta+1
$$
Now we can use the Pythagorean identity $color{#4257b2}1+tan^{2}theta=sec^{2}theta$ to replace $color{#4257b2}tan^{2}beta+1$ by $color{#4257b2}sec^{2}beta$.
$$
begin{align*}
tan^{2}beta+cos^{2}beta+sin^{2}beta&=tan^{2}beta+1
\ \
&=sec^{2}beta
\ \
&=dfrac{1}{cos^{2}beta}
end{align*}
$$
Note that in the final step we used the identity $color{#4257b2}sec theta=dfrac{1}{cos theta}$ to replace $color{#4257b2}sec^{2}beta$ by $color{#4257b2}dfrac{1}{cos^{2}beta}$.
So we proved that the left side can be simplified to $color{#4257b2}dfrac{1}{cos^{2}beta}$ which means that the left side is equivalent to the right side.
We note that the left side $color{#4257b2}sin left(dfrac{pi}{4}+xright)+sin left(dfrac{pi}{4}-xright)$ consists of two sine functions each of them contains compound angle, so we can use addition and subtraction formula for the sine function $color{#4257b2}sin(a+b)=sin acos b+cos asin b$ and $color{#4257b2}sin(a-b)=sin acos b-cos asin b$.
$$
begin{align*}
sin left(dfrac{pi}{4}+xright)+sin left(dfrac{pi}{4}-xright)&=sin dfrac{pi}{4}cos x+cos dfrac{pi}{4}sin x+sin dfrac{pi}{4}cos x-cos dfrac{pi}{4}sin x
\ \
&=sin dfrac{pi}{4}cos x+cancel{cos dfrac{pi}{4}sin x}+sin dfrac{pi}{4}cos xcancel{-cos dfrac{pi}{4}sin x}
\ \
&=sin dfrac{pi}{4}cos x+sin dfrac{pi}{4}cos x
\ \
&=2sin dfrac{pi}{4}cos x
\ \
&=2cdot dfrac{sqrt{2}}{2} cos x
\ \
&=sqrt{2} cos x
end{align*}
$$
Note that the angle $color{#4257b2}dfrac{pi}{4}$ is a special angle which we know the value of the sine function for it where $color{#4257b2}sin dfrac{pi}{4}=dfrac{sqrt{2}}{2}$.
So we proved that the left side can be simplified to $color{#4257b2}sqrt{2} cos x$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}sin left(dfrac{pi}{2}-xright)cot left(dfrac{pi}{2}+xright)$, so we can use the identity $color{#4257b2}cot theta=dfrac{cos theta}{sin theta}$ to replace $color{#4257b2}cot left(dfrac{pi}{2}+xright)$ by $color{#4257b2}dfrac{cos left(dfrac{pi}{2}+xright)}{sin left(dfrac{pi}{2}+xright)}$.
$$
begin{align*}
sin left(dfrac{pi}{2}-xright)cot left(dfrac{pi}{2}+xright)&=sin left(dfrac{pi}{2}-xright)cdot dfrac{cos left(dfrac{pi}{2}+xright)}{sin left(dfrac{pi}{2}+xright)}
\ \
&=dfrac{sin left(dfrac{pi}{2}-xright)cos left(dfrac{pi}{2}+xright)}{sin left(dfrac{pi}{2}+xright)}
end{align*}
$$
But we know from the transformation that $color{#4257b2}sin left(dfrac{pi}{2}-xright)=cos x, \ sin left(dfrac{pi}{2}+xright)=cos x$ and also $color{#4257b2}cos left(dfrac{pi}{2}+xright)=-sin x$, so we can use these formulas to simplify the left side.
$$
begin{align*}
sin left(dfrac{pi}{2}-xright)cot left(dfrac{pi}{2}+xright)&=dfrac{sin left(dfrac{pi}{2}-xright)cos left(dfrac{pi}{2}+xright)}{sin left(dfrac{pi}{2}+xright)}
\ \
&=dfrac{cos xcdot left(-sin xright)}{cos x}
\ \
&=dfrac{cancel{cos x}cdot left(-sin xright)}{cancel{cos x}}
\ \
&=-sin x
end{align*}
$$
So we proved that the left side can be simplified to $color{#4257b2}-sin x$ which means that the left side is equivalent to the right side.
text{color{#c34632}$(a) cos xtan^{3}x=sin xtan^{2}x$
\
\
\
$(b) sin^{2}theta+cos^{4}theta=cos^{2}theta+sin^{4}theta$
\
\
\
$(c) left(sin x+cos xright)left(dfrac{tan^{2}x+1}{tan x}right)=dfrac{1}{cos x}+dfrac{1}{sin x}$
\
\
\
$(d) tan^{2}beta+cos^{2}beta+sin^{2}beta=dfrac{1}{cos^{2}beta}$
\
\
\
$(e) sin left(dfrac{pi}{4}+xright)+sin left(dfrac{pi}{4}-xright)=sqrt{2} cos x$
\
\
\
$(f) sin left(dfrac{pi}{2}-xright)cot left(dfrac{pi}{2}+xright)=-sin x$}
$$
We note that the left side $color{#4257b2}dfrac{cos 2x+1}{sin 2x}$ consists of a cosine function in the numerator and a sine function in the denominator each of them contains double angle of $color{#4257b2}x$, so we can use the double angle formulas for the sine and cosine functions $color{#4257b2}sin 2x=2sin xcos x$ and $color{#4257b2}cos 2x=2cos^{2}x-1$.
$$
begin{align*}
dfrac{cos 2x+1}{sin 2x}&=dfrac{2cos^{2}x-1+1}{2sin xcos x}
\ \
&=dfrac{2cos^{2}xcancel{-1}+cancel{1}}{2sin xcos x}
\ \
&=dfrac{2cos^{2}x}{2sin xcos x}
\ \
&=dfrac{cancel{2}cos^{cancel{2}}x}{cancel{2}sin xcancel{cos x}}
\ \
&=dfrac{cos x}{sin x}
\ \
&=cot x
end{align*}
$$
Note that in the final step we used the identity $color{#4257b2}cot x=dfrac{cos x}{sin x}$.
So we proved that the left side can be simplified to $color{#4257b2}cot x$ which means that the left side is equivalent to the right side.
We note that the left side $color{#4257b2}dfrac{sin 2x}{1-cos 2x}$ consists of a sine function in the numerator and a cosine function in the denominator each of them contains double angle of $color{#4257b2}x$, so we can use the double angle formulas for the sine and cosine functions $color{#4257b2}sin 2x=2sin xcos x$ and $color{#4257b2}cos 2x=1-2sin^{2}x$.
$$
begin{align*}
dfrac{sin 2x}{1-cos 2x}&=dfrac{2sin xcos x}{1-left(1-2sin^{2}xright)}
\ \
&=dfrac{2sin xcos x}{1-1+2sin^{2}x}
\ \
&=dfrac{2sin xcos x}{cancel{1}cancel{-1}+2sin^{2}x}
\ \
&=dfrac{2sin xcos x}{2sin^{2}x}
\ \
&=dfrac{cancel{2sin x}cos x}{cancel{2}sin^{cancel{2}}x}
\ \
&=dfrac{cos x}{sin x}
\ \
&=cot x
end{align*}
$$
Note that in the final step we used the identity $color{#4257b2}cot x=dfrac{cos x}{sin x}$.
So we proved that the left side can be simplified to $color{#4257b2}cot x$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}left(sin x+cos xright)^{2}$, so we can distribute the exponent where $color{#4257b2}left(a+bright)^{2}=a^{2}+2ab+b^{2}$.
$$
begin{align*}
left(sin x+cos xright)^{2}&=sin^{2}x+2sin xcos x+cos^{2}x
\ \
&=left(sin^{2}x+cos^{2}xright)+2sin xcos x
end{align*}
$$
But we know from the Pythagorean identity that $color{#4257b2}sin^{2}x+cos^{2}x=1$, so we can use this identity to simplify the left side.
$$
begin{align*}
left(sin x+cos xright)^{2}&=left(sin^{2}x+cos^{2}xright)+2sin xcos x
\ \
&=1+2sin xcos x
end{align*}
$$
Now we simplified the left side to the expression $color{#4257b2}1+2sin xcos x$, so the next step is to use the double angle formula for the sine function where $color{#4257b2}sin 2x=2sin xcos x$.
$$
begin{align*}
left(sin x+cos xright)^{2}&=1+2sin xcos x
\ \
&=1+sin 2x
end{align*}
$$
So we proved that the left side can be simplified to $color{#4257b2}1+sin 2x$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}cos^{4}theta-sin^{4}theta$, so we can factor where
$color{#4257b2}a^{4}-b^{4}=left(a^{2}+b^{2}right)left(a^{2}-b^{2}right)$.
$$
begin{align*}
cos^{4}theta-sin^{4}theta&=left(cos^{2}theta+sin^{2}thetaright)left(cos^{2}theta-sin^{2}thetaright)
end{align*}
$$
But we know from the Pythagorean identity that $color{#4257b2}sin^{2}theta+cos^{2}theta=1$, so we can use this identity to simplify the left side.
$$
begin{align*}
cos^{4}theta-sin^{4}theta&=left(cos^{2}theta+sin^{2}thetaright)left(cos^{2}theta-sin^{2}thetaright)
\ \
&=1cdot left(cos^{2}theta-sin^{2}thetaright)
\ \
&=cos^{2}theta-sin^{2}theta
end{align*}
$$
Now we simplified the left side to the expression $color{#4257b2}cos^{2}theta-sin^{2}theta$, so the next step is to use the double angle formula for the cosine function where
$color{#4257b2}cos 2theta=cos^{2}theta-sin^{2}theta$.
$$
begin{align*}
cos^{4}theta-sin^{4}theta&=cos^{2}theta-sin^{2}theta
\ \
&=cos 2theta
end{align*}
$$
So we proved that the left side can be simplified to $color{#4257b2}cos 2theta$ which means that the left side is equivalent to the right side.
We note that the right side is $color{#4257b2}2cot 2theta$, so we can use the identity $color{#4257b2}cot theta=dfrac{1}{tan theta}$ to replace $color{#4257b2}cot 2theta$ by $color{#4257b2}dfrac{1}{tan 2theta}$.
$$
2cot 2theta=dfrac{2}{tan 2theta}
$$
Now we note that the right side contains the tangent function with a double angle of $color{#4257b2}theta$, so we can use the double angle formula for the tangent function where $color{#4257b2}tan 2theta=dfrac{2tan theta}{1-tan^{2}theta}$
$$
begin{align*}
2cot 2theta&=dfrac{2}{tan 2theta}
\ \
&=dfrac{2}{dfrac{2tan theta}{1-tan^{2}theta}}
\ \
&=dfrac{2left(1-tan^{2}thetaright)}{2tan theta}
\ \
&=dfrac{cancel{2}left(1-tan^{2}thetaright)}{cancel{2}tan theta}
\ \
&=dfrac{1-tan^{2}theta}{tan theta}
\ \
&=dfrac{1}{tan theta}-dfrac{tan^{2}theta}{tan theta}
\ \
&=cot theta-tan theta
end{align*}
$$
So we proved that the right side can be simplified to $color{#4257b2}cot theta-tan theta$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}cot theta+tan theta$, so we can use the identity $color{#4257b2}cot theta=dfrac{1}{tan theta}$.
$$
cot theta+tan theta=dfrac{1}{tan theta}+tan theta
$$
Now we can unify the denominators with the common denominator $color{#4257b2}tan theta$.
$$
begin{align*}
cot theta+tan theta&=dfrac{1}{tan theta}+tan theta
\ \
&=dfrac{1+tan thetatan theta}{tan theta}
\ \
&=dfrac{1+tan^{2}theta}{tan theta}
end{align*}
$$
But we know from the Pythagorean identity that $color{#4257b2}1+tan^{2}theta=sec^{2}theta$, so we can use this identity to simplify the left side.
$$
begin{align*}
cot theta+tan theta&=dfrac{1+tan^{2}theta}{tan theta}
\ \
&=dfrac{sec^{2}theta}{tan theta}
\ \
&=dfrac{dfrac{1}{cos^{2}theta}}{tan theta}
\ \
&=dfrac{1}{tan thetacos^{2}theta}
end{align*}
$$
$$
begin{align*}
cot theta+tan theta&=dfrac{1}{tan thetacos^{2}theta}
\ \
&=dfrac{1}{dfrac{sin theta}{cos theta}cdot cos^{2}theta}
\ \
&=dfrac{1}{dfrac{sin theta}{cancel{cos theta}}cdot cos^{cancel{2}}theta}
\ \
&=dfrac{1}{sin thetacos theta}
\ \
&=dfrac{2}{2sin thetacos theta}
end{align*}
$$
Now we simplified the left side to the expression $color{#4257b2}dfrac{2}{2sin thetacos theta}$, so the next step is to use the double angle formula for the sine function where
$color{#4257b2}sin 2theta=2sin thetacos theta$.
$$
begin{align*}
cot theta+tan theta&=dfrac{2}{2sin thetacos theta}
\ \
&=dfrac{2}{sin 2theta}
\ \
&=2csc 2theta
end{align*}
$$
Note that in the final step we used the identity $color{#4257b2}csc theta=dfrac{1}{sin theta}$ to replace $color{#4257b2}dfrac{1}{sin 2theta}$ by $color{#4257b2}csc 2theta$.
So we proved that the left side can be simplified to $color{#4257b2}2csc 2theta$ which means that the left side is equivalent to the right side.
We note that the right side $color{#4257b2}tan left(x+dfrac{pi}{4}right)$ consists of a tangent function which contains a compound angle, so we can use the addition formula for the tangent function $color{#4257b2}tan (a+b)=dfrac{tan a+tan b}{1-tan atan b}$.
$$
begin{align*}
tan left(x+dfrac{pi}{4}right)&=dfrac{tan x+tan dfrac{pi}{4}}{1-tan xtan dfrac{pi}{4}}
\ \
&=dfrac{tan x+1}{1-tan xcdot (1)}
\ \
&=dfrac{tan x+1}{1-tan x}
\ \
&=dfrac{1+tan x}{1-tan x}
end{align*}
$$
Note that the angle $color{#4257b2}dfrac{pi}{4}$ is a special angle which we know the value of the tangent function of it where $color{#4257b2}tan dfrac{pi}{4}=1$.
So we proved that the right side can be simplified to $color{#4257b2}dfrac{1+tan x}{1-tan x}$ which means that the left side is equivalent to the right side.
We note that the left side $color{#4257b2}csc 2x+cot 2x$, so we can use the identities $color{#4257b2}csc theta=dfrac{1}{sin theta}$ and $color{#4257b2}cot theta=dfrac{cos theta}{sin theta}$ to replace $color{#4257b2}csc 2x$ and $color{#4257b2}cot 2x$ by $color{#4257b2}dfrac{1}{sin 2x}$ and $color{#4257b2}dfrac{cos 2x}{sin 2x}$.
$$
begin{align*}
csc 2x+cot 2x&=dfrac{1}{sin 2x}+dfrac{cos 2x}{sin 2x}
\ \
&=dfrac{1+cos 2x}{sin 2x}
end{align*}
$$
Now we note that the left side is simplified to $color{#4257b2}dfrac{1+cos 2x}{sin 2x}$, so we can use the double angle formulas for the sine and cosine functions where
$color{#4257b2}sin 2x=2sin x cos x$ and $color{#4257b2}cos 2x=2cos^{2}x-1$.
$$
begin{align*}
csc 2x+cot 2x&=dfrac{1+cos 2x}{sin 2x}
\ \
&=dfrac{1+2cos^{2}x-1}{2sin xcos x}
\ \
&=dfrac{cancel{1}+2cos^{2}xcancel{-1}}{2sin xcos x}
\ \
&=dfrac{2cos^{2}x}{2sin xcos x}
\ \
&=dfrac{cancel{2}cos^{cancel{2}}x}{cancel{2}sin xcancel{cos x}}
\ \
&=dfrac{cos x}{sin x}=cot x
end{align*}
$$
Note that in the final step we used the identity $color{#4257b2}cot x=dfrac{cos x}{sin x}$.
So we proved that the left side can be simplified to $color{#4257b2}cot x$ which means that the left side is equivalent to the right side.
We note that the left side $color{#4257b2}dfrac{2tan x}{1+tan^{2}x}$, so we can use the Pythagorean identity $color{#4257b2}1+tan^{2}theta=sec^{2}theta$ to replace $color{#4257b2}1+tan^{2}x$ by $color{#4257b2}sec^{2}x$.
$$
begin{align*}
dfrac{2tan x}{1+tan^{2}x}&=dfrac{2tan x}{sec^{2}x}
\ \
&=dfrac{2tan x}{dfrac{1}{cos^{2}x}}
\ \
&=cos^{2}xleft(2tan xright)
\ \
&=2tan xcos^{2}x
end{align*}
$$
Note that we used the identity $color{#4257b2}sec theta=dfrac{1}{cos theta}$ to replace $color{#4257b2}sec^{2}x$ by $color{#4257b2}dfrac{1}{cos^{2}x}$. Now we can use the identity $color{#4257b2}tan theta=dfrac{sin theta}{cos theta}$ to simplify the left side.
$$
begin{align*}
dfrac{2tan x}{1+tan^{2}x}&=2tan xcos^{2}x
\ \
&=2left(dfrac{sin x}{cos x}right)cos^{2}x
\ \
&=2left(dfrac{sin x}{cancel{cos x}}right)cos^{cancel{2}}x
\ \
&=2sin xcos x=sin 2x
end{align*}
$$
Note that in the final step we used the double angle formula for the sine function where $color{#4257b2}sin 2x=2sin xcos x$.
So we proved that the left side can be simplified to $color{#4257b2}sin 2x$ which means that the left side is equivalent to the right side.
We note that the right side is $color{#4257b2}dfrac{csc t}{csc t-2sin t}$, so we can multiply the numerator and denominator by $color{#4257b2}sin t$.
$$
begin{align*}
dfrac{csc t}{csc t-2sin t}&=dfrac{sin tcsc t}{sin tleft(csc t-2sin tright)}
\ \
&=dfrac{sin tcsc t}{sin tcsc t-2sin tsin t}
\ \
&=dfrac{sin tcsc t}{sin tcsc t-2sin^{2}t}
end{align*}
$$
Now we can use the identity $color{#4257b2}csc theta=dfrac{1}{sin theta}$ to replace $color{#4257b2}csc t$ by $color{#4257b2}dfrac{1}{sin t}$.
$$
begin{align*}
dfrac{csc t}{csc t-2sin t}&=dfrac{sin tcsc t}{sin tcsc t-2sin^{2}t}
\ \
&=dfrac{sin tcdot left(dfrac{1}{sin t}right)}{sin tcdot left(dfrac{1}{sin t}right)-2sin^{2}t}
\ \
&=dfrac{cancel{sin t}cdot left(dfrac{1}{cancel{sin t}}right)}{cancel{sin t}cdot left(dfrac{1}{cancel{sin t}}right)-2sin^{2}t}
\ \
&=dfrac{1}{1-2sin^{2}t}
end{align*}
$$
$$
color{#4257b2}cos 2t=1-2sin^{2}t
$$
$$
begin{align*}
dfrac{csc t}{csc t-2sin t}&=dfrac{1}{1-2sin^{2}t}
\ \
&=dfrac{1}{cos 2t}
\ \
&=sec 2t
end{align*}
$$
Note that in the final step we used the identity $color{#4257b2}sec theta=dfrac{1}{cos theta}$ to replace $color{#4257b2}dfrac{1}{cos 2t}$ by $color{#4257b2}sec 2t$.
So we proved that the right side can be simplified to $color{#4257b2}sec 2t$ which means that the left side is equivalent to the right side.
We note that the right side $color{#4257b2}dfrac{1}{2} left(sec thetaright)left(csc thetaright)$, so we can use the identities
$color{#4257b2}sec theta=dfrac{1}{cos theta}$ and $color{#4257b2}csc theta=dfrac{1}{sin theta}$ to simplify the right side.
$$
begin{align*}
dfrac{1}{2} left(sec thetaright)left(csc thetaright)&=dfrac{1}{2} left(dfrac{1}{cos theta}right)left(dfrac{1}{sin theta}right)
\ \
&=dfrac{1}{2sin thetacos theta}
end{align*}
$$
Now we note that the right side is simplified to $color{#4257b2}dfrac{1}{2sin thetacos theta}$, so we can use the double angle formula for the sine function where $color{#4257b2}sin 2theta=2sin thetacos theta$.
$$
begin{align*}
dfrac{1}{2} left(sec thetaright)left(csc thetaright)&=dfrac{1}{2sin thetacos theta}
\ \
&=dfrac{1}{sin 2theta}
\ \
&=csc 2theta
end{align*}
$$
Note that in the final step we used the identity $color{#4257b2}csc theta=dfrac{1}{sin x}$ to replace $color{#4257b2}dfrac{1}{sin 2theta}$ by $color{#4257b2}csc 2theta$.
So we proved that the right side can be simplified to $color{#4257b2}2csc 2theta$ which means that the left side is equivalent to the right side.
We note that the right side $color{#4257b2}dfrac{sin 2t}{sin t}-dfrac{cos 2t}{cos t}$ consists of sine and cosine functions in the numerator each of them contains double angle of $color{#4257b2}t$, so we can use the double angle formulas for the sine and cosine functions $color{#4257b2}sin 2t=2sin tcos t$ and $color{#4257b2}cos 2t=2cos^{2}t-1$.
$$
begin{align*}
dfrac{sin 2t}{sin t}-dfrac{cos 2t}{cos t}&=dfrac{2sin tcos t}{sin t}-dfrac{2cos^{2}t-1}{cos t}
\ \
&=dfrac{2cancel{sin t}cos t}{cancel{sin t}}-left(dfrac{2cos^{2}t}{cos t}-dfrac{1}{cos t}right)
\ \
&=2cos t-left(dfrac{2cos^{cancel{2}}t}{cancel{cos t}}-dfrac{1}{cos t}right)
\ \
&=2cos t-left(2cos t-sec tright)
\ \
&=2cos t-2cos t+sec t
\ \
&=cancel{2cos t}cancel{-2cos t}+sec t
\ \
&=sec t
end{align*}
$$
Note that in the fourth step we used the identity $color{#4257b2}sec t=dfrac{1}{cos t}$.
So we proved that the right side can be simplified to $color{#4257b2}sec t$ which means that the left side is equivalent to the right side.
text{color{#c34632}$(a) dfrac{cos 2x+1}{sin 2x}=cot x$ $(g) dfrac{1+tan x}{1-tan x}=tan left(x+dfrac{pi}{4}right)$
\
\
\
$(b) dfrac{sin 2x}{1-cos 2x}=cot x$ $(h) csc 2x+cot 2x=cot x$
\
\
\
$(c) left(sin x+cos xright)^{2}=1+sin 2x$ $(i) dfrac{2tan x}{1+tan^{2}x}=sin 2x$
\
\
\
$(d) cos^{4}theta-sin^{4}theta=cos 2theta$ $(j) sec 2t=dfrac{csc t}{csc t-2sin t}$
\
\
\
$(e) cot theta-tan theta=2cot 2theta$ $(k) csc 2theta=dfrac{1}{2} left(sec thetaright)left(csc thetaright)$
\
\
\
$(f) cot theta+tan theta=2csc 2theta$ $(l) sec t=dfrac{sin 2t}{sin t}-dfrac{cos 2t}{cos t}$}
$$
color{#c34632}dfrac{sin x+sin 2x}{1+cos x+cos 2x}=tan x
$$
First, we can simplify the left side $color{#4257b2}dfrac{sin x+sin 2x}{1+cos x+cos 2x}$ using the double angle formulas fro the sine and cosine functions where $color{#4257b2}sin 2x=2sin xcos x$ and $color{#4257b2}cos 2x=2cos^{2}x-1$.
$$
begin{align*}
dfrac{sin x+sin 2x}{1+cos x+cos 2x}&=dfrac{sin x+2sin xcos x}{1+cos x+2cos^{2}x-1}
\ \
&=dfrac{sin x+2sin xcos x}{cancel{1}+cos x+2cos^{2}xcancel{-1}}
\ \
&=dfrac{sin x+2sin xcos x}{cos x+2cos^{2}x}
end{align*}
$$
Now we can take $color{#4257b2}sin x$ as a common factor from the numerator and also we can take $color{#4257b2}cos x$ as a common factor from the denominator to simplify.
$$
begin{align*}
dfrac{sin x+sin 2x}{1+cos x+cos 2x}&=dfrac{sin x+2sin xcos x}{cos x+2cos^{2}x}
\ \
&=dfrac{sin xleft(1+2cos xright)}{cos xleft(1+2cos xright)}
\ \
&=dfrac{sin xcancel{left(1+2cos xright)}}{cos xcancel{left(1+2cos xright)}}
\ \
&=dfrac{sin x}{cos x}
\ \
&=tan x
end{align*}
$$
Note that in the final step we used the identity $color{#4257b2}tan theta=dfrac{sin theta}{cos theta}$ to replace $color{#4257b2}dfrac{sin x}{cos x}$ by $color{#4257b2}tan x$.
So we proved that the left side equals $color{#4257b2}tan x$ which means that the left side is equivalent to the right side.
We note that the left side is $color{#4257b2}2sin xcos x$ which is on the same form of the double angle formula for the sine function where $color{#4257b2}sin 2x=2sin xcos x$, so we can replace $color{#4257b2}2sin xcos x$ from the left side by $color{#4257b2}sin 2x$
$$
begin{align*}
text{The left side}&=2sin xcos x
\ \
&=sin 2x
end{align*}
$$
So we proved that the left side is equivalent to the expression $color{#4257b2}sin 2x$ not $color{#4257b2}cos 2x$, so the equation $color{#4257b2}2sin xcos x=cos 2x$ is not an identity.
Now we need to make the equation is an identity, so we can change the right side from $color{#4257b2}cos 2x$ to $color{#4257b2}sin 2x$ and in this case the equation will be an identity where $color{#4257b2}2sin xcos x=sin 2x$.
text{color{#c34632}The equation is not an identity
\
\
$2sin xcos x=sin 2x$}
$$
$color{#4257b2}a sin 2x+b cos 2x +c$. First, we need to simplify our expression to be on the same form $color{#4257b2}a sin 2x+b cos 2x+c$ and then compare the expression with the form to determine the values of $color{#4257b2}a, b$ and $color{#4257b2}c$.
$$
begin{align*}
2cos^{2}x+4sin xcos x&=2cos^{2}x+2left(2sin xcos xright)
end{align*}
$$
Now we note that our expression contains the term $color{#4257b2}2sin xcos x$ which is on the same form of the double angle formula for the sine function where $color{#4257b2}sin 2x=2sin xcos x$, so we can replace $color{#4257b2}2sin xcos x$ from our expression by $color{#4257b2}sin 2x$.
$$
begin{align*}
2cos^{2}x+4sin xcos x&=2cos^{2}x+2left(2sin xcos xright)
\ \
&=2cos^{2}x+2sin 2x
end{align*}
$$
Now we note that our expression contains the term $color{#4257b2}2cos^{2}x$ but we know that the double angle formula for the cosine function is $color{#4257b2}cos 2x=2cos^{2}x-1$, so we can add and subtract $1$ to our expression to have the term $color{#4257b2}2cos^{2}x-1$ which is equivalent to $color{#4257b2}cos 2x$.
$$
begin{align*}
2cos^{2}x+4sin xcos x&=2cos^{2}x+2left(2sin xcos xright)
\ \
&=2cos^{2}x+2sin 2x
\ \
&=2cos^{2}x+2sin 2x+1-1
\ \
&=left(2cos^{2}x-1right)+2sin 2x+1
\ \
&=cos 2x+2sin 2x+1
\ \
&=2sin 2x+cos 2x+1
end{align*}
$$
Now we note that our expression is equivalent to $color{#4257b2}2sin 2x+cos 2x+1$ which is on the same form of $color{#4257b2}a sin 2x+b cos 2x +c$, so by comparing our expression by this form we find that $boxed{ color{#4257b2}a=2, b=1 }$ and $boxed{ color{#4257b2}c=1 }$.
$color{#4257b2}a sin 2x+b cos 2x +c$. First, we need to simplify our expression to be on the same form $color{#4257b2}a sin 2x+b cos 2x+c$ and then compare the expression with the form to determine the values of $color{#4257b2}a, b$ and $color{#4257b2}c$. We note that our expression contains the term $color{#4257b2}-2sin xcos x$ which is on the same form of the double angle formula for the sine function where $color{#4257b2}sin 2x=2sin xcos x$, so we can replace $color{#4257b2}2sin xcos x$ from our expression by $color{#4257b2}sin 2x$.
$$
begin{align*}
-2sin xcos x-4sin^{2}x&=-sin 2x-4sin^{2}x
\ \
&=-sin 2x+2left(-2sin^{2}xright)
end{align*}
$$
Now we note that our expression contains the term $color{#4257b2}-2sin^{2}x$ but we know that the double angle formula for the cosine function is $color{#4257b2}cos 2x=1-2sin^{2}x$, so we can add and subtract $1$ to this term in our expression to have the term $color{#4257b2}1-2sin^{2}x$ which is equivalent to $color{#4257b2}cos 2x$.
$$
begin{align*}
-2sin xcos x-4sin^{2}x&=-sin 2x-4sin^{2}x
\ \
&=-sin 2x+2left(-2sin^{2}xright)
\ \
&=-sin 2x+2left(-2sin^{2}x+1-1right)
\ \
&=-sin 2x+2left[left(1-2sin^{2}xright)-1right]
\ \
&=-sin 2x+2left(cos 2x-1right)
\ \
&=-sin 2x+2cos 2x-2
end{align*}
$$
Now we note that our expression is equivalent to $color{#4257b2}-sin 2x+2cos 2x-2$ which is on the same form of $color{#4257b2}a sin 2x+b cos 2x +c$, so by comparing our expression by this form we find that $boxed{ color{#4257b2}a=-1, b=2 }$ and $boxed{ color{#4257b2}c=-2 }$.
\
\
Large$$text{color{#c34632}(b) a=-1, b=2{color{Black$ text{and}} $c=-2$}}$
$$
begin{align*}
8cos^{4}x&=2cdot left(2cos^{2}xright)^{2}
end{align*}
$$
Now we note that our expression contains the term $color{#4257b2}2cos^{2}x$ but we know that the double angle formula for the cosine function is $color{#4257b2}cos 2x=2cos^{2}x-1$, so we can add and subtract $1$ to our expression to have the term $color{#4257b2}2cos^{2}x-1$ which is equivalent to $color{#4257b2}cos 2x$.
$$
begin{align*}
8cos^{4}x&=2cdot left(2cos^{2}xright)^{2}
\ \
&=2cdot left(2cos^{2}x+1-1right)^{2}
\ \
&=2cdot left[left(2cos^{2}x-1right)+1right]^{2}
\ \
&=2cdot left(cos 2x+1right)^{2}
end{align*}
$$
Now we can distribute the exponent where $color{#4257b2}(a+b)^{2}=a^{2}+2ab+b^{2}$.
$$
begin{align*}
cos^{4}x&=2cdot left(cos 2x+1right)^{2}
\ \
&=2cdot left(cos^{2}2x+2cos 2x+1right)
\ \
&=2cos^{2}2x+4cos 2x+2
end{align*}
$$
$$
begin{align*}
8cos^{4}x&=2cos^{2}2x+4cos 2x+2
\ \
&=2cos^{2}2x+4cos 2x+2+1-1
\ \
&=left(2cos^{2}2x-1right)+4cos 2x+3
\ \
&=cos 4x+4cos 2x+3
end{align*}
$$
Now we note that our expression is on the same form of $color{#4257b2}a cos 4x+b cos 2x +c$ and by comparing our expression by this form we find that $boxed{ color{#4257b2}a=1, b=4 }$ and $boxed{ color{#4257b2}c=3 }$.