All Solutions
Section 7-1: Exploring Equivalent Trigonometric Functions
Hence, the function $y=cos theta$ will have the same graph as the function $y=cos (theta-2pi)$, $y=cos(theta+2pi)$ or $y=cos(theta-6pi)$. The answer can be any other cosine function that is translated horizontally either to the left or to the right for the even number of $pi$.
$$
y=cos theta=sin left(dfrac{pi}{2}-theta right)tag{1}$$
to rewrite the cosine function as a sine function. This can be one solution. Furthermore, sine function is also a periodic function with a period $2pi$ and translating the function given in Eq. $(1)$ horizontally for $pm2kpi$ in any direction will result in the function of the same graph.
Hence, as in the previous step, we can add or subtract an even number of $pi$ to the angle $frac{pi}{2}-theta$ and obtain the function of the same graph. Some possible solutions are written below:
$$
begin{align*}
y=sin left(dfrac{pi}{2}-theta +2piright)&=sin left(dfrac{5pi}{2}-theta right)\
y=sin left(dfrac{pi}{2}-theta-2pi right)&=sin left(-dfrac{3pi}{2}-theta right).\
end{align*}$$
b) $y=sin left(frac{pi}{2}-theta right)$, $y=sin left(frac{5pi}{2}-theta right)$, $y=sin left(-frac{3pi}{2}-theta right)$
$$
sec (-theta)=sec theta$$
$$
csc (-theta)=-csc theta$$
$$
cot (-theta)=-cot theta$$
This function is symmetric about the $y$-axis. When we set $theta=-theta$ the graph $y=sec theta$ is reflected across the $y$-axis, and the function $y=sec(- theta)$ has the same graph as the function $y=sec theta$.
$$
sec (-theta)=sec theta$$
This function is symmetric about the origin. When we set $theta=-theta$ the graph $y=csc theta$ is reflected across the $y$-axis, but the graph function $y=csc (-theta)$ is still not the same as the graph of the function $y=csc theta$. If we now reflect the graph function $y=csc theta$ across the $x$-axis, we obtain the function graph function $y=-csc theta$, which is now the same as the graph of the function $y=csc (-theta)$. Hence,
$$
csc (-theta)=-csc theta$$
This function is symmetric about the origin. When we set $theta=-theta$ the graph $y=cot theta$ is reflected across the $y$-axis, but the graph function $y=cot (-theta)$ is still not the same as the graph of the function $y=cot theta$. If we now reflect the graph function $y=cot theta$ across the $x$-axis, we obtain the function graph function $y=-cot theta$, which is now the same as the graph of the function $y=cot (-theta)$. Hence,
$$
cot (-theta)=-cot theta$$
$csc (-theta)=-csc theta$, odd
$cot (-theta)=-cot theta$, odd
b) See the explanation.
$$
begin{align*}
sin theta&= cos left(dfrac{pi}{2}-theta right)quadquad &&(1)\
cos theta&= sinleft(dfrac{pi}{2}-theta right)quadquad &&(2)\
tan theta&= cot left(dfrac{pi}{2}-theta right)quadquad &&(3)\
end{align*}
$$
$$
sin dfrac{pi}{6}= cos left(dfrac{pi}{2}-dfrac{pi}{6}right)= cos left(dfrac{3pi}{6}-dfrac{pi}{6}right)=cos left(dfrac{2pi}{6}right)=cosdfrac{pi}{3}.$$
$$
cos dfrac{5pi}{12}= sin left(dfrac{pi}{2}-dfrac{5pi}{12}right)= sinleft(dfrac{6pi}{12}-dfrac{5pi}{12}right)=sindfrac{pi}{12}.$$
$$
tan dfrac{3pi}{8}= cot left(dfrac{pi}{2}-dfrac{3pi}{8}right)= cotleft(dfrac{4pi}{8}-dfrac{3pi}{8}right)=cotdfrac{pi}{8}.$$
$$
cos dfrac{5pi}{16}= sin left(dfrac{pi}{2}-dfrac{5pi}{16}right)= sinleft(dfrac{8pi}{16}-dfrac{5pi}{16}right)=sindfrac{3pi}{16}.$$
$$
sin dfrac{pi}{8}= cos left(dfrac{pi}{2}-dfrac{pi}{8}right)= cos left(dfrac{4pi}{8}-dfrac{pi}{8}right)=cosdfrac{3pi}{8}.$$
$$
tan dfrac{pi}{6}= cot left(dfrac{pi}{2}-dfrac{pi}{6}right)= cotleft(dfrac{3pi}{6}-dfrac{pi}{6}right)=cotdfrac{2pi}{6}=cotdfrac{pi}{3}.$$
b) $sin frac{pi}{12}$
c) $cot frac{pi}{8}$
d) $sinfrac{3pi}{16}$
e) $cosfrac{3pi}{8}$
f) $cotfrac{pi}{3}$
**Principal Angle in Quadrant II, $frac{pi}{2}lethetale pi$**
$$begin{align*}
sin(pi-theta)&=sin theta\
cos(pi-theta)&=-cos theta\
tan(pi-theta)&=-tan theta\
end{align*}tag{1}$$
**Principal Angle in Quadrant III, $pilethetalefrac{3pi}{2}$**
$$begin{align*}
sin(pi+theta)&=-sin theta\
cos(pi+theta)&=-cos theta\
tan(pi+theta)&=tan theta\
end{align*}tag{2}$$
**Principal Angle in Quadrant IV, $frac{3pi}{2}le thetale 2pi$**
$$begin{align*}
sin(2pi-theta)&=-sin theta\
cos(2pi-theta)&=cos theta\
tan(2pi-theta)&=-tan theta\
end{align*}tag{3}$$
We need to determine to which quadrant the given angle belongs, and then apply the suitable equation from set $(1)$, $(2)$, or $(3)$.
$$
frac{7pi}{8}=pi-thetaimplies theta=pi-frac{7pi}{8}=frac{pi}{8}
$$
Using the equation for the sine function and plugging in $theta=frac{pi}{8}$, we obtain:
$$
sinfrac{7pi}{8}=sinleft(pi-frac{pi}{8} right)=sin frac{pi}{8}$$
$$
frac{13pi}{12}=pi+thetaimplies theta=frac{13pi}{12}-pi=frac{pi}{12}
$$
Using the equation for the cosine function from the set $(2)$ and plugging in $theta=frac{pi}{12}$, we obtain:
$$
cosfrac{13pi}{12}=cosleft(pi+frac{pi}{12} right)=-cos frac{pi}{12}$$
$$
frac{5pi}{4}=pi+thetaimplies theta=frac{5pi}{4}-pi=frac{pi}{4}
$$
Using the equation for the tangent function from the set $(2)$ and plugging in $theta=frac{pi}{4}$, we obtain:
$$
tanfrac{5pi}{4}=tanleft(pi+frac{pi}{4} right)=tan frac{pi}{4}$$
$$
frac{11pi}{6}=2pi-thetaimplies theta=2pi-frac{11pi}{6}=frac{pi}{6}
$$
Using the equation for the cosine function from the set $(3)$ and plugging in $theta=frac{pi}{6}$, we obtain:
$$
cosfrac{11pi}{6}=cosleft(2pi-frac{pi}{6} right)=cos frac{pi}{6}$$
$$
frac{13pi}{8}=2pi-thetaimplies theta=2pi-frac{13pi}{8}=frac{3pi}{8}
$$
Using the equation for the sine function from the set $(3)$ and plugging in $theta=frac{3pi}{8}$, we obtain:
$$
sinfrac{13pi}{8}=sinleft(2pi-frac{3pi}{8} right)=-sin frac{3pi}{8}$$
$$
frac{5pi}{3}=2pi-thetaimplies theta=2pi-frac{5pi}{3}=frac{pi}{3}
$$
Using the equation for the tangent function from the set $(3)$ and plugging in $theta=frac{pi}{3}$, we obtain:
$$
tanfrac{5pi}{3}=tanleft(2pi-frac{pi}{3} right)=-tan frac{pi}{3}$$
b) $-cos frac{pi}{12}$
c) $tan frac{pi}{4}$
d) $cos frac{pi}{6}$
e)$-sin frac{3pi}{8}$
f)$-tan frac{pi}{3}$
Figure 1.
Note that the radius makes an angle $theta$ with the positive $x$-axis and that the sine function of this angle is equal to the ratio of the opposite leg of a triangle and hypotenuse $r=1$
$$sin theta=dfrac{y}{1}=y.tag{1}$$
Figure 2.
The angle $alpha$ that the hypotenuse of this right angled triangle makes with the positive $x$ axis is
$$
alpha =dfrac{pi}{2}-theta,$$
while the cosine of this angle is equal to the ratio of the adjacent side of a triangle and the hypotenuse and hypotenuse $r=1$, or
$$
cos alpha = dfrac{y}{1}=y.$$
Rewriting the angle $alpha$ as $frac{pi}{2}-theta$, we obtain
$$
cos left(dfrac{pi}{2}-theta right)=y.tag{2}$$
$$sintheta=cos left(dfrac{pi}{2}-theta right).$$
Figure 3.
Note that the radius makes an angle $theta$ with the positive $x$-axis and that the sine function of this angle is equal to the ratio of the opposite leg of a triangle and hypotenuse $r=1$
$$sin theta=dfrac{y}{1}=y,
$$
while
$$-sintheta=-y.tag{1}$$
Figure 4.
Note that the cosine function of this angle is equal to the coordinate of the point $P$ on the $x$-axis, that is
$$
cos left(dfrac{pi}{2}+theta right)=-y.tag{2}$$
$$-sintheta=cos left(dfrac{pi}{2}+theta right).$$