Advanced Functions 12
Advanced Functions 12
1st Edition
Chris Kirkpatrick, Kristina Farentino, Susanne Trew
ISBN: 9780176678326
Textbook solutions

All Solutions

Section 5-5: Solving Rational Inequalities

Exercise 1
Step 1
1 of 2
Use the graph given to help you solve the inequalities.

#### (a)

$dfrac{x+5}{x-1} leq 4$

Examine the graph to determine when $dfrac{x+5}{x-1} leq 4$,

determine the green curve is below the blue line.

$textbf{This is true on the intervals}$ $(infty, 1)$ and $(3, infty)$.

#### (b)

$4x-1 geq dfrac{x+5}{x-1}$

Examine the graph. To determine when $4x-1 geq dfrac{x+5}{x-1}$, determine when the red line is above the green curve.
$textbf{This is true on the intervals}$ $(-0.5, 1)$ and $(2,infty)$.

Exercise scan

Result
2 of 2
(a) $(infty,1)$ and $(3,infty)$; (b) $(-0.5,1)$ and $(2,infty)$
Exercise 2
Step 1
1 of 4
#### (a)

Solve the inequality for $x$.

$dfrac{6x}{x+3} leq 4$

$dfrac{6x}{x+3}-4 leq 0$

$dfrac{6x}{x+3}-4 dfrac{x+3}{x+3}leq 0$

$dfrac{6x-4x-12}{x+3} leq 0$

$dfrac{2x-12}{x+3}leq 0$

$dfrac{2(x-6)}{x+3}leq 0$

Step 2
2 of 4
#### (b)Exercise scan
Step 3
3 of 4
#### (c)

$$
textbf{The solution is $(-3, 6)$.}
$$

Result
4 of 4
The solution is $(-3, 6)$
Exercise 3
Step 1
1 of 4
#### (a)

$x+2 > dfrac{15}{x}$

$x+2-dfrac{15}{x}>0$

$dfrac{x^2}{x}+dfrac{2x}{x}-dfrac{15}{x}>0$

$dfrac{x^2+2x-15}{x}>0$

$dfrac{(x+5)(x-3)}{x}>0$

Step 2
2 of 4
#### (b)

$textbf{The equation is negative on $x < -5$}$ and $0 < x < 3$ and $textbf{positive on $-5 < x 3$}$.

Exercise scan

Step 3
3 of 4
#### (c)

$textbf{The solution to the equation is}$ $left{ xinBbb{R}| x > -5right}$

This can also be written as $( -5, infty )$.

Result
4 of 4
#### (a)
$dfrac{(x+5)(x-3)}{x}>0$
#### (b)
negative on $x < -5$ and $0 < x < 3$ positive on $-5 < x 3$
#### (c)
$left{ xinBbb{R}| x > -5right}$
Exercise 4
Step 1
1 of 13
#### (a)

$dfrac{1}{x+5} >2$

$dfrac{1}{x+5}-2 > 0$

$dfrac{1}{x+5}-2(dfrac{x+5}{x+5}) > 0$

$dfrac{1}{x+5}+dfrac{-2x-10}{x+5} > 0$

$dfrac{-2x-9}{x+5}> 0$

$textbf{The inequality is true on $-5<x<-4.5$}$.

Exercise scan

Step 2
2 of 13
Exercise scan
Step 3
3 of 13
#### (b)

$dfrac{1}{2x+10}<dfrac{1}{x+3}$

$dfrac{1}{x+5}-dfrac{1}{x+3}<0$

$(dfrac{x+3}{x+3})dfrac{1}{x+5}-dfrac{1}{x+3}(dfrac{x+5}{x+5})<0$

$dfrac{x+3}{(x+5)(x+3)}+dfrac{-2x-10}{(x+3)(x+5)}<0$

$dfrac{-x-7}{(x+5)(x+3)}<0$

$textbf{The inequality is true on $-7<x-3$}$.

Exercise scan

Step 4
4 of 13
Exercise scan
Step 5
5 of 13
#### (c)

$dfrac{3}{x-2}<dfrac{4}{x}$

$dfrac{3}{x-2}-dfrac{4}{x}<0$

$(dfrac{x}{x})dfrac{3}{x-2}-dfrac{4}{x}(dfrac{x-2}{x-2})<0$

$dfrac{3x}{x(x-2)}+dfrac{-4x+8}{x(x-2)}<0$

$dfrac{-x+8}{x(x-2)}<0$

$textbf{The inequality is true on $0<x8$}$.

Exercise scan

Step 6
6 of 13
Exercise scan
Step 7
7 of 13
#### (d)

$dfrac{7}{x-3}geq dfrac{2}{x+4}$

$dfrac{7}{x-3}-dfrac{2}{x+4}geq 0$

$(dfrac{x+4}{x+4})dfrac{7}{x-3}-dfrac{2}{x+4}(dfrac{x-3}{x-3})geq 0$

$dfrac{7x+28}{(x+4)(x-3)}+dfrac{-2x+6}{(x+4)(x-3)}geq 0$

$dfrac{5x+34}{(x+4)(x-3)}geq 0$

$textbf{The inequality is true on $-6.8leq x3$}$.

Exercise scan

Step 8
8 of 13
Exercise scan
Step 9
9 of 13
#### (e)

$dfrac{-6}{x+1}>dfrac{1}{x}$

$dfrac{-6}{x+1}-dfrac{1}{x}>0$

$(dfrac{x}{x})dfrac{-6}{x+1}-dfrac{1}{x}(dfrac{x+1}{x+1})>0$

$dfrac{-6x}{x(x+1)}+dfrac{-x-1}{x(x+1)}>0$

$dfrac{-7x-1}{x(x+1)}>0$

$textbf{The inequality is true on $x<-1$ and $-dfrac{1}{7} < x < 0$}$.

Exercise scan

Step 10
10 of 13
Exercise scan
Step 11
11 of 13
#### (f)

$dfrac{-5}{x-4}<dfrac{3}{x+1}$

$dfrac{-5}{x-4}-dfrac{3}{x+1}<0$

$(dfrac{x+1}{x+1})dfrac{-5}{x-4}-dfrac{3}{x+1}(dfrac{x-4}{x-4})<0$

$dfrac{-5x-5}{(x+1)(x-4)}+dfrac{-3x+12}{(x+1)(x-4)} < 0$

$dfrac{-8x+7}{(x+1)(x-4)} < 0$

$$
textbf{The inequality is true on $-1 < x < dfrac{7}{8}$ and $x < 4$.}
$$

Exercise scan

Step 12
12 of 13
Exercise scan
Result
13 of 13
(a) $-5<x<-4.5$
(b) $-7<x-3$
(c) $0<x8$
(d) $-6.8leq x3$
(e) $x<-1$ and $-dfrac{1}{7} < x < 0$
(f) $-1 < x < dfrac{7}{8}$ and $x < 4$
Exercise 5
Step 1
1 of 7
#### (a)

$dfrac{t^2-t-12}{t-1}<0$

$dfrac{t^2-t-12}{t-1}=dfrac{(t-4)(t+3)}{t-1}$

From the following table, we can cocnlude that $textbf{this inequality is true on}$ $tleq-3$ or $1<t<4$.

Exercise scan

Step 2
2 of 7
#### (b)

$dfrac{t^2+t-6}{t-4}geq0$

$dfrac{(t+3)(t-2)}{t-4}geq0$

From the following table, we can cocnlude that $textbf{this inequality is true on}$ $-3leq{t}leq-3$ and $t>4$.

Exercise scan

Step 3
3 of 7
#### (c)

$dfrac{6t^2-5t+1}{2t+1}>0$

$dfrac{(3t-1)(2t-1)}{2t-1}>0$

From the following table, we can cocnlude that $textbf{this inequality is true on}$ $-dfrac{1}{2}leq{t}leqdfrac{1}{3}$ and $t>dfrac{1}{2}$.

Exercise scan

Step 4
4 of 7
#### (d)

$t-1<dfrac{30}{5t}$

$dfrac{5t}{5t}t-dfrac{5t}{5t}1-dfrac{30}{5t}<0$

$dfrac{5t^2}{5t}-dfrac{5t}{5t}-dfrac{30}{5t}<0$

$dfrac{5t^2-5t-30}{5t}<0$

$dfrac{5(t^2-t-6)}{5t}<0$

$dfrac{(t-3)(t+2)}{t}<0$

From the following table, we can cocnlude that $textbf{this inequality is true on}$ $t<-2$ and $0<t<3$.

Exercise scan

Step 5
5 of 7
#### (e)

$dfrac{2t-10}{t}>t+5$

$dfrac{2t-10}{t}-t-5>0$

$dfrac{2t-10}{t}-tdfrac{t}{t}-5dfrac{t}{t}>0$

$dfrac{2t-10-t^2-5t}{t}>0$

$dfrac{-t^2-7t-10}{t}>0$

$dfrac{t^2+7t+10}{t}<0$

$dfrac{(t+5)(t+2)}{t}<0$

From the following table, we can cocnlude that $textbf{this inequality is true on}$ $t<-5$ or $-2<t<10$.

Exercise scan

Step 6
6 of 7
#### (f)

$dfrac{-t}{4t-1}geqdfrac{2}{t-9}$

$dfrac{-t}{4t-1}-dfrac{2}{t-9}geq0$

$(dfrac{t-9}{t-9})dfrac{-t}{4t-1}-dfrac{2}{t-9}(dfrac{4t-1}{4t-1})geq0$

$dfrac{-t^2+9t}{(4t-1)(t-9)}+dfrac{-8t+2}{(4t-1)(t-9)}geq0$

$dfrac{-t^2+t+2}{(4t-1)(t-9)}geq0$

$dfrac{(-t+2)(t+1)}{(4t-1)(t-9)}geq0$

From the following table, we can cocnlude that $textbf{this inequality is true on}$ $-1leq{t}<0.25$ and $2leq{t}<9$.

Exercise scan

Result
7 of 7
(a) $t<-3$ or $1<t4$;

(c) $-dfrac{1}{2}<tdfrac{1}{2}$; (d) $t<-2$ and $0<t<3$;

(e) $t<-5$ and $-2<t<0$; (f) $-1leq{t}<0.25$ and $2leq{t}<9$

Exercise 6
Step 1
1 of 7
Graph each expression to determine when the inequality is true.

#### (a)

$dfrac{x+3}{x-4} geq dfrac{x-1}{x+6}$

The two graphs intersect at $(-1, -0.4)$.The asymptotes are at $x=4$ and $x=-6$.The graph of $y=dfrac{x+3}{x-4}$ is above $y=dfrac{x-1}{x+6}$ on $x < -6$ and on $-1 < x <4$.

Exercise scan

Step 2
2 of 7
#### (b)

$x+5 3$}
$$

Exercise scan

Step 3
3 of 7
#### (c)

$dfrac{x}{x+4}leq dfrac{1}{x+1}$

Graph each expression to determine when the inequality is true.
The graphs intersect at $(-2,-1)$ and $(2,dfrac{1}{3})$.
The graph of $y=dfrac{x}{x+4}$ is below the other graph on $(-4, 2)$ and $(-1, 2)$.

Exercise scan

Step 4
4 of 7
#### (d)

$dfrac{x}{x+9}geq dfrac{1}{x+1}$

Graph each expression to determine when the inequality is true.
The graphs intersect at $(-3, -0.5)$ and $(3, 0.25)$.

Because the inequality is $geq$, the intervals that make inequality true will include the points od intersection. The graph of $y=dfrac{x}{x+9}$ is above or intersecting with the other graph on $(- infty, -9)$, $left[-3, -1 right)$, and $left[3, infty right)$.

Exercise scan

Step 5
5 of 7
#### (e)

$dfrac{x-8}{x} > 3-x$

Graph each expression to determine when the inequality is true.
The two graph intersect at $(-2, 5)$ and $(4, -1)$.

The graph of $y=dfrac{x-8}{x}$ is above the other graph on $(-2, 0)$ and $(4, infty)$.

Exercise scan

Step 6
6 of 7
#### (f)

$$
dfrac{x^2-16}{(x-1)^2}geq 0
$$

Graph the expression and determine when the graph is above the $x$-axis.
The graph intersects the $x$-axis at $(-4, 0)$ and $(4, 0)$. The graph of $y=dfrac{x^2-16}{(x-1)^2}$ is above the $x$-axis on$(-infty, -4)$ and $(4, infty)$

Exercise scan

Result
7 of 7
(a) $x < -6$ and on $-1 < x 3$

(c) $(-4, 2)$ and $(-1, 2)$

(d) $(-4, 2)$ and $(-1, 2)$

(e) $(-2, 0)$ and $(4, infty)$

(f) $(-infty, -4)$ and $(4, infty)$

Exercise 7
Step 1
1 of 3
#### (a)

$dfrac{3x-8}{2x-1}>dfrac{x-4}{x+1}$

$dfrac{3x-8}{2x+1}-dfrac{x-4}{x+1}>0$

$(dfrac{x+1}{x+1})dfrac{3x-8}{2x+1}-dfrac{x-4}{x+1}(dfrac{2x-1}{2x-1})>0$

$dfrac{3x^2-8x+3x-8}{(x+1)(2x-1)}+dfrac{2x^2-x-8x+4}{(x+1)(2x-1)}>0$

$dfrac{5x^2-14x-4}{(x+1)(2x-1)}>0$

$dfrac{(x-3.065)(x+0.2614)}{(x+1)(2x-1)}>0$

From the following table we can see that $textbf{the inequality is true on}$ $x<-1$, $-0.2614<x3.065$.

Exercise scan

Step 2
2 of 3
$textbf{Interval notation}$:

$(-infty,-1)$, $(-0.2614,0.5)$, $(3.065,infty)$

$textbf{Set notation}$:

$left{xinBbb{R}|x<-1, -0.2614<x3.065 right}$

On the following picture is $textbf{solution on number line}$:

Exercise scan

Result
3 of 3
(a) $x>-1$, $-0.2614<x3.065$;

(b) $(-infty,-1)$, $(-0.2614,0.5)$, $(3.065,infty)$; $left{xinBbb{R}| x>-1, -0.2614<x3.065 right}$

Exercise 8
Step 1
1 of 4
#### (a)

$dfrac{-6t}{t-2} < dfrac{-30}{t-2}$

$dfrac{-6t}{t-2}-dfrac{-30}{t-2}< 0$

$dfrac{-6t+30}{t-2}<0$

$dfrac{-6(t-5)}{t-2}<0$

$textbf{The inequality is true on $t<2$ and $t<5$}$.

Exercise scan

Step 2
2 of 4
#### (b)Exercise scan
Step 3
3 of 4
#### (c)

It would be difficult to find a situation that could be represented by these rational expressions because very few positive values of $x$ yield a positive value of $y$.

Result
4 of 4
(a) $t<2$ and $t<5$
Exercise 9
Step 1
1 of 2
The equation that gives the bacteria count over time for the tap water is $f(t)=dfrac{5t}{t^2+3t+2}$.

The equation that gives the bacteria count for the pond water time is $g(t)=dfrac{15t}{t^2+9}$.

To see if the bacteria count in the tap water will ever exceed that of the pond water, set up the inequality $dfrac{5t}{t^2+3t+2}>dfrac{15t}{t^2+9}$.

Solve this ineqaulity graphically.

Graph the expression $y=dfrac{5t}{t^2+3t+2}-dfrac{15t}{t^2+9}$ and determine when iti is greater than $0$ to find the solution to the inequality.

Notice that the only values that make the expression greater than $0$ are negative.$textbf{Because the values og $t$ have to be positive, the bacteria count in the tap water will never be greater than that of the pond water}$.

Exercise scan

Result
2 of 2
Because the values og $t$ have to be positive, the bacteria count in the tap water will never be greater than that of the pond water
Exercise 10
Step 1
1 of 3
#### (a)

$0.5x -2 < dfrac{5}{2x}$

$0.5x-2-dfrac{5}{2x}<0$

$(dfrac{2x}{2x})0.5x-(dfrac{2x}{2x})2-dfrac{5}{2x}<0$

$dfrac{x^2-4x-5}{2x}<0$

$dfrac{(x-5)(x+1)}{2x}<0$

Step 2
2 of 3
#### (b)

The inequality is true for $x< -1$ and $0< x <5$.

Exercise scan

Result
3 of 3
(a) $dfrac{(x-5)(x+1)}{2x}<0$

(b) $x< -1$ and $0< x <5$

Exercise 11
Step 1
1 of 2
The profit would be the revenue minus the cost, $R(x) – C(x)= P(x)$.This is $P(x) = -x^2 + 10x – (4x+5)$. Simplify.
$P(x)= -x^2 + 10x – (4x+5)$

$=-x^2+6x-5$

$x^2-6x+5$

$(x-1)(x-5)$

Divide this by $x$ to get the average profit.

$AP(x)=dfrac{(x-1)(x-5)}{x}$

Substitute the factors of this equation into a table to determine when

$AP(x) > dfrac{(x-1)(x-5)}{(x)}$

From the table, it can be determined that the average profit per snowboard is positive between $0 < x < 1$ and $x 5$}$.

Exercise scan

Result
2 of 2
$x > 5$
Exercise 12
Step 1
1 of 4
#### (a)

The first inequality can be manipulated algebraically to produce the second inequality.

Step 2
2 of 4
#### (b)

You could graph the equation $y=dfrac{x+1}{x-1}-dfrac{x+3}{x+2}$ and determine when it is negative.

Step 3
3 of 4
#### (c)

The values that make the factors of the second inequality zero are $-5$,$-2$, and 1. Determine the sign of each factor in the intervals corresponding to the zeros. Determine when the entire expression is negative by examining the signs of the factors.

Result
4 of 4
see solution
Exercise 13
Step 1
1 of 2
You can graph the inequality to help you determine when the inequality is true.
Notice that $textbf{the function is greater than $1$ on $[2, 4)$ and $(4, infty)$}$.We can see that from the following $textbf{graph}$.

Exercise scan

Result
2 of 2
$[2,4)$ and $(4,infty)$
Exercise 14
Step 1
1 of 2
$dfrac{1}{sin{x}}<4$

$dfrac{1}{sin{x}}-4<0$

$textbf{The graph is negative}$ on $14.48<x<165.2$ and $180<x<360$, we can see that from the following graph on which is inequality $dfrac{1}{sin{x}}-4<0$
.

Exercise scan

Result
2 of 2
$14.48<x<165.2$ and $180<x<360$
Exercise 15
Step 1
1 of 2
Examine the inequality.You want the numerator to be greater than half of the denominator.

$cos{x}>0.5$

$x=0$ would be the asymptote in the case, but values greater than $0$ could satisfy the inequality.

$cos1>0.5$

$0.999>0.5$

$cos{x}$ because less than $0.5x$ after about $2$.

$cos2<1$

$0.99<1$

So, $textbf{the inequality is true on}$ $0<x<2$.

Result
2 of 2
$0<x<2$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New