All Solutions
Section 5-2: Exploring Quotients of Polynomial Functions
(b) – C, because this function has $textbf{a hole at}$ $x=3$;
(c) – F, because this is reciprocal quadriatic function and it has $textbf{a vertical asymptote at}$ $x=3$;
(d) – D, because this function has $textbf{vertical asymptotes at}$ $x=1$ and $x=-3$;
(e) – B, because this function $textbf{has no zeros.}$;
(f) – E, it has an oblique asymptote because the degree of $p(x)=x^2$ is greater than $q(x)=x-3$ by exactly $1$.
This function has $textbf{vertical asymptote at}$ $x=-4$ and $textbf{horizontal asymptote at}$ $y=1$.
#### (b)
This function has $textbf{vertical asymptote at}$ $x=-dfrac{3}{2}$.
#### (c)
This function has $textbf{vertical asymptote at}$ $x=6$ and $textbf{horizontal asymptote at}$ $y=2$.
#### (d)
This function has $textbf{a hole at}$ $x=-3$.
#### (e)
This function has $textbf{vertical asymptotes at}$ $x=-3$ and $x=5$.
#### (f)
This function has $textbf{vertical asymptote at}$ $x=-1$ and $textbf{horizontal asymptote at}$ $y=-1$.
#### (g)
This function has $textbf{a hole at}$ $x=2$.
#### (h)
This function has $textbf{vertical asymptote at}$ $x=dfrac{5}{2}$ and $textbf{horizontal asymptote at}$ $y=-2$.
#### (i)
This function has $textbf{vertical asymptote at}$ $x=-dfrac{1}{4}$ and $textbf{horizontal asymptote at}$ $y=2$.
This function has $textbf{a hole at}$ $x=-4$ and $textbf{vertical asymptote at}$ $x=4$.
#### (k)
This function has $textbf{vertical asymptote at}$ $x=dfrac{3}{5}$ and $textbf{horizontal asymptote at}$ $y=dfrac{1}{5}$.
#### (l)
This function has $textbf{vertical asymptote at}$ $x=4$ and $textbf{horizontal asymptote at}$ $y=-dfrac{3}{2}$.
This might be function:
$$
f(x)=dfrac{x-1}{x^2-1}
$$
#### (b)
This might be function:
$$
f(x)=dfrac{1}{x-2}
$$
#### (c)
This might be function:
$$
f(x)=dfrac{x+2}{(x+2)(x-1)}
$$
#### (d)
This might be function:
$$
f(x)=dfrac{2x}{x+1}
$$
#### (e)
This might be function:
$$
f(x)=dfrac{x^2+3}{x+2}
$$