Advanced Functions 12
Advanced Functions 12
1st Edition
Chris Kirkpatrick, Kristina Farentino, Susanne Trew
ISBN: 9780176678326
Table of contents
Textbook solutions

All Solutions

Page 544: Practice Questions

Exercise 1
Step 1
1 of 2
multiplication
Result
2 of 2
multiplication
Exercise 2
Step 1
1 of 2
#### (a)

$(f+g)(x)=left{(-9, -2+4), (-6, -3+ – 6), (0,2+12) right}$

$=left{(-9, 2), (-6, -9), (0,14) right}$

#### (b)

$(g+f)(x)=left{-9,4+ -2), (-6, -6+-3), (0,12+2) right}$

$=left{(-9,2), (-6, -9), (0, 14) right}$

#### (c)

$(f-g)(x)=left{(-9, -2-4), (-6, -3- -6), (0,2-12) right}$

$=left{(-9, -6), (-6,3), (0, -10) right}$

#### (d)

$(g-f)(x)=left{(-9,4- -2), (-6, -6- -3), (0,12-2) right}$

$=left{(-9,6), (-6, -3), (0, 10) right}$

Result
2 of 2
see solution
Exercise 3
Step 1
1 of 3
#### (a)

$$
P(x)=R(x)-C(x)=-5x^2+150x-(10x+30)=-5x^2+140x-30
$$

#### (b)

On the following picture there is a graph of $textbf{revenue, cost and profit}$, where revenue is red, cost is purple and profit is green.

Exercise scan

Step 2
2 of 3
#### (c)

$textbf{Profit}$ = $-5(7.5)^2+140(7.5)-30=738.75$
$$
$ thousand $=738750 $
$$
$.

Result
3 of 3
(a) $P(x)=-5x^2+140x-30$; (c) $738750$$
Exercise 4
Step 1
1 of 2
#### (a)

$R(h)=24.39 h$

#### (b)

$N(h)=24.97h$

#### (c)

$W(h)=24.78h$

#### (d)

$S(h)=24.39h+0.58h+0.39h=25.36h$

#### (e)

$25.36(8)+1.5(25.36)(3)=$317$

Result
2 of 2
see solution
Exercise 5
Step 1
1 of 2
#### (a)

$(ftimes g)(x)=left(x+dfrac{1}{2} right)left(x+dfrac{1}{2} right)=x^2+x+dfrac{1}{4}$

$D=left{xinBbb{R} right}$

#### (b)

$(ftimes g)(x)=sin(3x)(sqrt{x-10})$

$D=left{xinBbb{R}|xgeq 10 right}$

#### (c)

$(ftimes g)(x)=11x^3 times dfrac{2}{x+5}=dfrac{22x^3}{x+5}$

$D=left{xinBbb{R}|xne -5 right}$

#### (d)

$(ftimes g)(x)=(90x-1)(90x+1)=8100x^2-1$

$D=left{xinBbb{R} right}$

Result
2 of 2
see solution
Exercise 6
Step 1
1 of 3
**a)**

$$begin{aligned}
R(h)&=C(h) times D(h)\
&=90cosleft(dfrac{pi}{6}cdot hright)sinleft(dfrac{pi}{6} cdot hright)-102sinleft(dfrac{pi}{6}cdot hright)\
&phantom{=}-210cosleft(dfrac{pi}{6}cdot hright)+238\
end{aligned}$$

Step 2
2 of 3
**b)**

Here we have **graph** of function from part (a):

Step 3
3 of 3
**c)**

$$begin{aligned}
R(2)&=90cosleft(dfrac{pi}{6}cdot 2right)sinleft(dfrac{pi}{6} cdot 2right)-102sinleft(dfrac{pi}{6}cdot 2right)\
&phantom{=}-210cosleft(dfrac{pi}{6}cdot2right)+238\
&=470.30
end{aligned}$$

Exercise 7
Step 1
1 of 2
#### (a)

$(f div g)(x)=240div3x=dfrac{80}{x}$

$D=left{xinBbb{R}|xne 0 right}$

#### (b)

$(fdiv g)(x)=dfrac{10x^2}{x^3-3x}=dfrac{10x^2}{x(x^2-3)}=dfrac{10x^2}{x^2-3}$

$D=left{xinBbb{R}|xne pm sqrt{3} right}$

#### (c)

$(fdiv g)(x)=dfrac{x+8}{sqrt{x-8}}$

$D=left{xinBbb{R}|x > 8 right}$

#### (d)

$(fdiv g)(x)=dfrac{7x^2}{log x}$

$D=left{xinBbb{R}|x>0 right}$

Result
2 of 2
see solution
Exercise 8
Step 1
1 of 2
csc $x$, sec $x$, cot $x$
Result
2 of 2
csc $x$, sec $x$, cot $x$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Functions: Characteristics and Properties
Page 2: Getting Started
Section 1-1: Functions
Section 1-2: Exploring Absolute Value
Section 1-3: Properties of Graphs of Functions
Section 1-4: Sketching Graphs of Functions
Section 1-5: Inverse Relations
Section 1-6: Piecewise Functions
Section 1-7: Exploring Operations with Functions
Page 62: Chapter Self-Test
Chapter 2: Functions: Understanding Rates of Change
Page 66: Getting Started
Section 2-1: Determining Average Rate of Change
Section 2-2: Estimating Instantaneous Rates of Change from Tables of Values and Equations
Section 2-3: Exploring Instantaneous Rates of Change Using Graphs
Section 2-4: Using Rates of Change to Create a Graphical Model
Section 2-5: Solving Problems Involving Rates of Change
Page 118: Chapter Self-Test
Chapter 3: Polynomial Functions
Page 122: Getting Started
Section 3-1: Exploring Polynomial Functions
Section 3-2: Characteristics of Polynomial Functions
Section 3-3: Characteristics of Polynomial Functions in Factored Form
Section 3-4: Transformation of Cubic and Quartic Functions
Section 3-5: Dividing Polynomials
Section 3-6: Factoring Polynomials
Section 3-7: Factoring a Sum or Difference of Cubes
Page 186: Chapter Self-Test
Page 188: Cumulative Review
Page 155: Check Your Understanding
Page 161: Practice Questions
Page 182: Check Your Understanding
Page 184: Practice Questions
Chapter 4: Polynomial Equations and Inequalities
Page 194: Getting Started
Section 4-1: Solving Polynomial Equations
Section 4-2: Solving Linear Inequalities
Section 4-3: Solving Polynomial Inequalities
Section 4-4: Rates of Change in Polynomial Functions
Page 242: Chapter Self-Test
Chapter 5: Rational Functions, Equations, and Inequalities
Page 246: Getting Started
Section 5-1: Graphs of Reciprocal Functions
Section 5-2: Exploring Quotients of Polynomial Functions
Section 5-3: Graphs of Rational Functions of the Form f(x) 5 ax 1 b cx 1 d
Section 5-4: Solving Rational Equations
Section 5-5: Solving Rational Inequalities
Section 5-6: Rates of Change in Rational Functions
Page 310: Chapter Self-Test
Chapter 6: Trigonometric Functions
Page 314: Getting Started
Section 6-1: Radian Measure
Section 6-2: Radian Measure and Angles on the Cartesian Plane
Section 6-3: Exploring Graphs of the Primary Trigonometric Functions
Section 6-4: Transformations of Trigonometric Functions
Section 6-5: Exploring Graphs of the Reciprocal Trigonometric Functions
Section 6-6: Modelling with Trigonometric Functions
Section 6-7: Rates of Change in Trigonometric Functions
Page 378: Chapter Self-Test
Page 380: Cumulative Review
Chapter 7: Trigonometric Identities and Equations
Page 386: Getting Started
Section 7-1: Exploring Equivalent Trigonometric Functions
Section 7-2: Compound Angle Formulas
Section 7-3: Double Angle Formulas
Section 7-4: Proving Trigonometric Identities
Section 7-5: Solving Linear Trigonometric Equations
Section 7-6: Solving Quadratic Trigonometric Equations
Page 441: Chapter Self-Test
Chapter 8: Exponential and Logarithmic Functions
Page 446: Getting Started
Section 8-1: Exploring the Logarithmic Function
Section 8-2: Transformations of Logarithmic Functions
Section 8-3: Evaluating Logarithms
Section 8-4: Laws of Logarithms
Section 8-5: Solving Exponential Equations
Section 8-6: Solving Logarithmic Equations
Section 8-7: Solving Problems with Exponential and Logarithmic Functions
Section 8-8: Rates of Change in Exponential and Logarithmic Functions
Page 512: Chapter Self-Test
Chapter 9: Combinations of Functions
Page 516: Getting Started
Section 9-1: Exploring Combinations of Functions
Section 9-2: Combining Two Functions: Sums and Differences
Section 9-3: Combining Two Functions: Products
Section 9-4: Exploring Quotients of Functions
Section 9-5: Composition of Functions
Section 9-6: Techniques for Solving Equations and Inequalities
Section 9-7: Modelling with Functions
Page 578: Chapter Self-Test
Page 580: Cumulative Review
Page 542: Further Your Understanding
Page 544: Practice Questions
Page 569: Check Your Understanding
Page 576: Practice Questions