Advanced Functions 12
Advanced Functions 12
1st Edition
Chris Kirkpatrick, Kristina Farentino, Susanne Trew
ISBN: 9780176678326
Textbook solutions

All Solutions

Page 542: Further Your Understanding

Exercise 1
Step 1
1 of 2
#### (a)

$(f div g)(x)=dfrac{5}{x}, xne0$

#### (b)

$(f div g)(x)=dfrac{4x}{2x-1}, xnedfrac{1}{2}$

#### (c)

$(fdiv g)(x)=dfrac{4x}{x^2+4}$

#### (d)

$(fdiv g)(x)=dfrac{(x+2)(sqrt{x-2})}{x-2}, x>2$

#### (e)

$(fdiv g)(x)=dfrac{8}{1+left(dfrac{1}{2} right)^x}$

#### (f)

$(fdiv g)(x)=dfrac{x^2}{log(x)}, x>0$

Result
2 of 2
see solution
Exercise 2
Step 1
1 of 15
#### (a)

1(a):Exercise scan

Step 2
2 of 15
1(b):Exercise scan
Step 3
3 of 15
1(c):Exercise scan
Step 4
4 of 15
1(d):Exercise scan
Step 5
5 of 15
1(e):Exercise scan
Step 6
6 of 15
1(f):Exercise scan
Step 7
7 of 15
#### (b)

1(a): domain of $f: left{xinBbb{R} right}$; domain of $g: left{xinBbb{R} right}$

1(b): domain of $f: left{xinBbb{R} right}$; domain of $g: left{xinBbb{R} right}$

1(c): domain of $f: left{xinBbb{R} right}$; domain of $g: left{xinBbb{R} right}$

1(d): domain of $f: left{xinBbb{R} right}$; domain of $g:left{ xinBbb{R}|xgeq 2right}$

1(e): domain of $f: left{xinBbb{R} right}$; domain of $g: left{xinBbb{R} right}$

1(f): domain of $f: left{xinBbb{R} right}$; domain of $g:left{xinBbb{R}|x > 0 right}$

Step 8
8 of 15
#### (c)

1(a):Exercise scan

Step 9
9 of 15
1(b):Exercise scan
Step 10
10 of 15
1(c):Exercise scan
Step 11
11 of 15
1(d):Exercise scan
Step 12
12 of 15
1(e):Exercise scan
Step 13
13 of 15
1(f):Exercise scan
Step 14
14 of 15
#### (d)

1(a): domain of $(fdiv g): left{xinBbb{R}|xne 0 right}$

1(b): domain of $(fdiv g): left{ xinBbb{R}|xne dfrac{1}{2}right}$

1(c): domain of $(fdiv g): left{xinBbb{R} right}$

1(d): domain of $(fdiv g): left{xinBbb{R}|x > 2 right}$

1(e): domain of $(fdiv g): left{xinBbb{R} right}$

1(f): domain of $(fdiv g): left{xin Bbb{R}|x > 0 right}$

Result
15 of 15
see solution
Exercise 3
Step 1
1 of 2
#### (a)

$dfrac{260}{1+24(0.9)^t}=dfrac{260}{1+24(0.9)^{20}}=66$cm

textbf{The rate of change is $left[66-(260 div 25) right] div 20$ or $2.798$ cm/day.
}

#### (b)

The maximum height is $260$, so half of $260$ is $130$ cm.

$130=dfrac{260}{1+24(0.9)^t}$

$130+3120(0.9)^t=260$

$3120(0.9)^t=130$

$(0.9)^t=130 div 3120$

$tlog0.9=log(130 div 3120)$

$t=30$ days

#### (c)

$left(dfrac{260}{1+24(0.9)^{30.1}}-dfrac{260}{1+24 (0.9)^{30}} right)div 0.1= 6.848$ cm/day

#### (d)

It slows down and eventually comes to zero.This is seen on the graph as it becomes horizontal at the top.

Result
2 of 2
see solution
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New