All Solutions
Page 512: Chapter Self-Test
$$
color{#4257b2}text{(a)} y=4^x
$$
According the standard form for the inverse function as follows:
$$
because y=a^x therefore x=a^y text{equivalent to} y=log_a(x)
$$
Inverse equation in the logarithmic form $y=log_4(x)$
Inverse equation in the exponential form $x=4^y$
$$
color{#4257b2}text{(b)} y=log_6(x)
$$
According the standard form for the inverse function as follows:
$$
because y=a^x therefore x=a^y text{equivalent to} y=log_a(x)
$$
Inverse equation in the logarithmic form $x=log_6(y)$
Inverse equation in the exponential form $y=6^x$
text{color{#c34632}(a) $y=log_4(x)$ $x=4^y$
\ \
(b) $x=log_6(y)$ $y=6^x$}
$$
$$
color{#4257b2}text{(a)} g(x)=log[2(x-4)]+3
$$
$$
k=2 d=4 c=3
$$
$$
color{#4257b2}text{(b)} g(x)=-dfrac{1}{2} log(x+5)-1
$$
$$
a=-dfrac{1}{2} d=-5 c=-1
$$
text{color{#c34632}(a) $k=2 d=4 c=3$
\ \
(b) $a=-dfrac{1}{2} d=-5 c=-1$}
$$
$$
log_{3} dfrac{1}{9}=x
$$
Now we note that we have an equation on the logarithmic form, so we can convert it to the exponential form where we know that if $color{#4257b2}log_{a} x=b$, then $color{#4257b2}a^{b}=x$.
$$
3^{x}=dfrac{1}{9}
$$
But we know that $color{#4257b2}9=3^{2}$, so we can replace $color{#4257b2}9$ from the right side by $color{#4257b2}3^{2}$.
$$
3^{x}=dfrac{1}{3^{2}}
$$
Now we can use the property of exponents $color{#4257b2}dfrac{1}{x^{a}}=x^{-a}$ to replace $color{#4257b2}dfrac{1}{3^{2}}$ from the right side by $color{#4257b2}3^{-2}$.
$$
3^{x}=3^{-2}
$$
Now we note that the two sides have the same base $color{#4257b2}3$, so the exponent of the left side must equal the exponent of the right side where we know that if $color{#4257b2}x^{a}=x^{b}$, then $color{#4257b2}a=b$.
$$
3^{x}=3^{-2}
$$
$$
x=-2
$$
So we find that $color{#4257b2}x=-2$, so the value of $color{#4257b2}log_{3} dfrac{1}{9}$ is $boxed{ -2 }$
$$
begin{align*}
log_{5} 100-log_{5} 4&=log_{5} left(dfrac{100}{4}right)
\ \
&=log_{5} 25
\ \
&=log_{5} 5^{2}
end{align*}
$$
Now we note that our expression is simplified to $color{#4257b2}log_{5} 5^{2}$ which is a power of logarithms, so we can use the power law of logarithms where
$color{#4257b2}log_{m} x^{r}=r log_{m} x$.
$$
begin{align*}
log_{5} 100-log_{5} 4&=log_{5} 5^{2}
\ \
&=2log_{5} 5
end{align*}
$$
But we know from the properties of logarithms that $color{#4257b2}log_{a} a=1$, so we can replace $color{#4257b2}log_{5} 5$ by $color{#4257b2}1$.
$$
begin{align*}
log_{5} 100-log_{5} 4&=2log_{5} 5
\ \
&=2cdot (1)
\ \
&=2
end{align*}
$$
So the value of $color{#4257b2}log_{5} 100-log_{5} 4$ is $boxed{ 2 }$
$$
begin{align*}
log 15+log 40-log 6&=log (15)cdot (40)-log 6
\ \
&=log 600-log 6
end{align*}
$$
Now we note that our expression is a difference of logarithms, so we can use the quotient law of logarithms where $color{#4257b2}log_{a} x-log_{a} y=log_{a} left(dfrac{x}{y}right)$.
$$
begin{align*}
log 15+log 40-log 6&=log 600-log 6
\ \
&=log left(dfrac{600}{6}right)
\ \
&=log 100
\ \
&=log 10^{2}
end{align*}
$$
Now we note that our expression is a power of logarithms, so we can use the power law of logarithms where $color{#4257b2}log_{m} x^{r}=r log_{m} x$.
$$
begin{align*}
log 15+log 40-log 6&=log 10^{2}
\ \
&=2log 10
\ \
&=2cdot (1)
\ \
&=2
end{align*}
$$
Note that we used the property of logarithms $color{#4257b2}log 10=1$. So the value of $color{#4257b2}log 15+log 40-log 6$ is $boxed{ 2 }$
$$
log_{7} 343+2log_{7} 49=log_{7} 7^{3}+2log_{7} 7^{2}
$$
Now we note that the second term of our expression is a single logarithms which is multiplied by a number, so we can use the power law of logarithms where $color{#4257b2}r log_{m} x=log_{m} x^{r}$.
$$
begin{align*}
log_{7} 343+2log_{7} 49&=log_{7} 7^{3}+2log_{7} 7^{2}
\ \
&=log_{7} 7^{3}+log_{7} left(7^{2}right)^{2}
\ \
&=log_{7} 7^{3}+log_{7} 7^{(2)cdot (2)}
\ \
&=log_{7} 7^{3}+log_{7} 7^{4}
end{align*}
$$
Now we note that the two terms of our expression each of them is a power of logarithm, so we can use the power law of logarithms where
$color{#4257b2}log_{m} x^{r}=r log_{m} x$.
$$
begin{align*}
log_{7} 343+2log_{7} 49&=log_{7} 7^{3}+log_{7} 7^{4}
\ \
&=3log_{7} 7+4log_{7} 7
\ \
&=3cdot (1)+4cdot (1)
\ \
&=3+4
\ \
&=7
end{align*}
$$
Note that we used the property of logarithms $color{#4257b2}log_{a} a=1$ to replace $color{#4257b2}log_{7} 7$ by $color{#4257b2}1$. So the value of $color{#4257b2}log_{7} 343+2log_{7} 49$ is $boxed{ 7 }$
text{color{#c34632}(a) $log 15+log 40-log 6=2$ (b) $log_{7} 343+2log_{7} 49=7$}
$$
$$
begin{align*}
log_{4} x^{2}+3log_{4} ydfrac{1}{3}-log_{4} x&=log_{4} x^{2}+log_{4} left(dfrac{y}{3}right)^{3}-log_{4} x
\ \
&=log_{4} x^{2}+log_{4} dfrac{y^{3}}{27}-log_{4} x
end{align*}
$$
Now we note that the first two terms of our expression is a sum of logarithms, so we can use the product law of logarithms where $color{#4257b2}log_{a} x+log_{a} y=log_{a} xy$.
$$
begin{align*}
log_{4} x^{2}+3log_{4} ydfrac{1}{3}-log_{4} x&=log_{4} x^{2}+log_{4} dfrac{y^{3}}{27}-log_{4} x
\ \
&=log_{4} left(x^{2}right)cdot left(dfrac{y^{3}}{27}right)-log_{4} x
\ \
&=log_{4} dfrac{x^{2} y^{3}}{27}-log_{4} x
end{align*}
$$
Now we note that our expression is a difference of logarithms, so we can use the quotient law of logarithms where $color{#4257b2}log_{a} x-log_{a} y=log_{a} left(dfrac{x}{y}right)$.
$$
begin{align*}
log_{4} x^{2}+3log_{4} ydfrac{1}{3}-log_{4} x&=log_{4} dfrac{x^{2} y^{3}}{27}-log_{4} x
\ \
&=log_{4} dfrac{dfrac{x^{2}y^{3}}{27}}{x}
\ \
&=log_{4} dfrac{xy^{3}}{27}
end{align*}
$$
So the expression $color{#4257b2}log_{4} x^{2}+3log_{4} ydfrac{1}{3}-log_{4} x$ can be written as the single logarithm $boxed{ log_{4} dfrac{xy^{3}}{27} }$
$$
5^{x+2}=6^{x+1}
$$
$$
log 5^{x+2}=log 6^{x+1}
$$
Now we note that the left side and the right side each of them is a power of logarithm, so we can use the power law of logarithms where
$color{#4257b2}log_{m} x^{r}=r log_{m} x$.
$$
log 5^{x+2}=log 6^{x+1}
$$
$$
(x+2) log 5=(x+1) log 6
$$
$$
xlog 5+2log 5=xlog 6+log 6
$$
Now we can subtract $color{#4257b2}xlog 6+2log 5$ from each side to make the terms which contains $color{#4257b2}x$ in the left side alone.
$$
xlog 5+2log 5-xlog 6-2log 5=xlog 6+log 6-xlog 6-2log 5
$$
$$
xlog 5cancel{+2log 5}-xlog 6cancel{-2log 5}=cancel{xlog 6}+log 6cancel{-xlog 6}-2log 5
$$
$$
xlog 5-xlog 6=log 6-2log 5
$$
Now we note that the two terms of the left side each of them contains $color{#4257b2}x$, so we can take it as a common factor.
$$
xleft(log 5-log 6right)=log 6-2log 5
$$
$$
dfrac{xleft(log 5-log 6right)}{log 5-log 6}=dfrac{log 6-2log 5}{log 5-log 6}
$$
$$
x=dfrac{log 6-2log 5}{log 5-log 6}
$$
Now we can use the calculator to determine $color{#4257b2}log 6$ and $color{#4257b2}log 5$ to find the value of $color{#4257b2}x$.
$$
x=dfrac{0.778-2(0.7)}{0.7-0.778}
$$
$$
x=7.827
$$
So the solution of the equation is $boxed{ x=7.827 }$
$$
log_{4} (x+2)+log_{4} (x-1)=1
$$
$$
log_{4} (x+2)(x-1)=1
$$
$$
log_{4} (x^{2}+x-2)=1
$$
Now we have an equation on the logarithmic form, so we can convert it to the exponential form where we know that if $color{#4257b2}log_{a} x=b$, then $color{#4257b2}x=a^{b}$.
$$
x^{2}+x-2=4^{1}
$$
$$
x^{2}+x-2=4
$$
Now we can subtract $color{#4257b2}4$ from each side to make the right side equals zero.
$$
x^{2}+x-2-4=0
$$
$$
x^{2}+x-6=0
$$
Now we have a quadratic equation, so we can factor it to find the values of $color{#4257b2}x$.
$$
(x-2)(x+3)=0
$$
Now we can use the zero-factor property.
$$
x-2=0 text{or} x+3=0
$$
$$
x=2 text{or} x=-3
$$
For $color{#4257b2}x=2$
$$
log_{4} (x+2)+log_{4} (x-1)=1
$$
$$
log_{4} (2+2)+log_{4} (2-1)=1
$$
$$
log_{4} 4+log_{4} 1=1
$$
$$
1+0=1
$$
$$
1=1
$$
So the solution $color{#4257b2}x=2$ is true because it verifies the original equation.
For $color{#4257b2}x=-3$
$$
log_{4} (x+2)+log_{4} (x-1)=1
$$
$$
log_{4} (-3+2)+log_{4} (-3-1)=1
$$
$$
log_{4} (-1)+log_{4} (-4)=1
$$
But we know that $color{#4257b2}log_{4} -1$ and $color{#4257b2}log_{4} -4$ are undefined because the number inside the logarithm must be positive, so the solution $color{#4257b2}x=-3$ is false because it doesn’t verify the original equation.
So the solution of the equation is $boxed{ x=2 }$
$$
log_{3} (8x-2)+log_{3} (x-1)=2
$$
$$
log_{3} (8x-2)(x-1)=2
$$
$$
log_{3} (8x^{2}-10x+2)=2
$$
Now we have an equation on the logarithmic form, so we can convert it to the exponential form where we know that if $color{#4257b2}log_{a} x=b$, then $color{#4257b2}x=a^{b}$.
$$
8x^{2}-10x+2=3^{2}
$$
$$
8x^{2}-10x+2=9
$$
Now we can subtract $color{#4257b2}9$ from each side to make the right side equals zero.
$$
8x^{2}-10x+2-9=0
$$
$$
8x^{2}-10x-7=0
$$
$$
8x^{2}-10x-7=0
$$
$$
(4x-7)(2x+1)=0
$$
Now we can use the zero-factor property.
$$
4x-7=0 text{or} 2x+1=0
$$
$$
x=dfrac{7}{4} text{or} x=-dfrac{1}{2}
$$
Now we found two solutions for $color{#4257b2}x$, so the next step is to check these values in the original equation to know if they verify it or not.
For $color{#4257b2}x=dfrac{7}{4}$
$$
log_{3} (8x-2)+log_{3} (x-1)=2
$$
$$
log_{3} left(8(dfrac{7}{4})-2right)+log_{3} left(dfrac{7}{4}-1right)=2
$$
$$
log_{3} 12+log_{3} dfrac{3}{4}=2
$$
$$
2.262+(-0.262)=2
$$
$$
2=2
$$
So the solution $color{#4257b2}x=dfrac{7}{4}$ is true because it verifies the original equation.
$$
log_{3} (8x-2)+log_{3} (x-1)=2
$$
$$
log_{3} left(8(-dfrac{1}{2})-2right)+log_{3} left(-dfrac{1}{2}-1right)=2
$$
$$
log_{3} (-6)+log_{3} left(-dfrac{3}{2}right)=2
$$
But we know that $color{#4257b2}log_{3} -6$ and $color{#4257b2}log_{3} -dfrac{3}{2}$ are undefined because the number inside the logarithm must be positive, so the solution $color{#4257b2}x=-dfrac{1}{2}$ is false because it doesn’t verify the original equation.
So the solution of the equation is $boxed{ x=dfrac{7}{4} }$
$$
f(x)=a(1-r)^x.tag{1}
$$
where $a$ is the initial amount of isotope, $r$ is the rate of decay, while $x$ is the number of decay periods.
$$
x=dfrac{t}{5730}.$$
Hence, the Eq. $(1)$ now yields
$$
f(t)=100(1-0.5)^tfrac{t}{5730}=100(0.5)^tfrac{t}{5730}.$$
$$
80=100(0.5)^tfrac{t}{5730}.
$$
Dividing by $100$ throughout and reversing the direction of equation, we obtain:
$$
(0.5)^tfrac{t}{5730}=0.8.
$$
Furthermore, we can take logarithm base $0.5$ of both sides and use the property of logarithm $log a^x=xlog a$ and proceed to solve the equation to compute $t$ as follows:
$$
begin{align*}
log_{0.5}(0.5)^tfrac{t}{5730}&=log_{0.5}0.8&&[log a^x=xlog a]\
dfrac{t}{5730}log_{0.5}(0.5)&=log_{0.5}(0.8)&&[log_aa=1]\
dfrac{t}{5730}cdot1&=log_{0.5}(0.8)&&text{[Multiply by $5730$ throughout]}\
t&=5730log_{0.5}(0.8)\
t&approx1844 mathrm{years}.
end{align*}$$
and using the formula
$$
r_i=dfrac{f(t_2)-f(t_1)}{t_2-t_1}.$$
Hence, if we choose $t_1=99.9$ and $t_2=100.1$ the amounts of carbon at these points of decay will be
$$
begin{align*}
f(t_1)=100(0.5)^{tfrac{99.9}{5730}}=98.7988\
f(t_2)=100(0.5)^{tfrac{100.1}{5730}}=98.7964.\
end{align*}$$
Using these values for the instantaneous rate of change we obtain
$$
r_i=dfrac{98.7964-98.7988}{100.1-99.9}=-0.012 mathrm{dfrac{g}{year}}.$$
b) $f(x)=100(0.5)^tfrac{t}{5730}$
c) $tapprox1844 mathrm{years}$
d) $r_i=-0.012 mathrm{frac{g}{year}}$
$$
begin{align*}
t&=logleft(dfrac{35-22}{75}right):log(0.75)\&=logleft(dfrac{13}{75}right):log(0.75)\&approx6 mathrm{min}.
end{align*}
$$
0=logleft(dfrac{T-22}{75}right):log(0.75)implies logleft(dfrac{T-22}{75}right)=0.
$$
Note that $log1=0$, hence we solve for $T$ as follows:
$$begin{align*}
dfrac{T-22}{75}&=1&&text{[Multiply by $75$ throughout]}\
T-22&=75&&text{[Add $22$ throughout]}\
T&=75+22\
T&=97^circmathrm{C}.
end{align*}$$
b) $T=97^circmathrm{C}$