Advanced Functions 12
Advanced Functions 12
1st Edition
Chris Kirkpatrick, Kristina Farentino, Susanne Trew
ISBN: 9780176678326
Textbook solutions

All Solutions

Page 343: Check Your Understanding

Exercise 1
Step 1
1 of 3
#### (a)

period: $dfrac{2pi}{|k|}=dfrac{2pi}{|4|}=dfrac{pi}{2}$

amplitude: $|a|=|0.5|=0.5$

horizontal translation: $d=0$

equation of the axis: $y=0$

#### (b)

period: $dfrac{2pi}{|k|}=dfrac{2pi}{|1|}=2pi$

amplitude: $|a|=|1|=1$

horizontal tanslation: $d=dfrac{pi}{4}$

equation of the axis: $y=3$

Step 2
2 of 3
#### (c)

period: $dfrac{2pi}{|k|}=dfrac{2pi}{3}$

amplitude: $|a|=|2|=2$

horizontal translation: $d=0$

equation of the axis: $y=-1$

#### (d)

period: $dfrac{2pi}{|k|}=dfrac{2pi}{|-2|}=pi$

amplitude: $|a|=|5|=5$

horizontal translation: $d=dfrac{pi}{6}$

equation of the axis: $y=-2$

Result
3 of 3
see solution
Exercise 2
Step 1
1 of 5
For $y=0.5cos(4x)$

Exercise scan

Step 2
2 of 5
For $y=sinleft(x-dfrac{pi}{4} right)+3$

Exercise scan

Step 3
3 of 5
For $y=2sin(3x)-1$

Exercise scan

Step 4
4 of 5
For $y=5 cos left(-2x+dfrac{pi}{3} right)-2$

Only the last one is cut off.

Exercise scan

Result
5 of 5
see solution
Exercise 3
Step 1
1 of 2
$y=-2cosleft(4left(x+dfrac{pi}{4} right) right)+4$

period: $dfrac{2pi}{|k|}=dfrac{2pi}{|4|}=dfrac{pi}{2}$

amplitude: $|a|=|-2|=2$

horizontal translation: $d=-dfrac{pi}{4}$ units to the left equation of the axis: $y=4$

Exercise scan

Result
2 of 2
see solution
Exercise 4
Step 1
1 of 3
$y=a sin (k(x-d))+c$

#### (a)

$a=25$

period: $dfrac{2pi}{|k|}=pi$

$k=2$

$f(x)=25 sin (2x)-4$

#### (b)

$a=dfrac{2}{5}$

period: $dfrac{2pi}{|k|}=10$

$k=dfrac{pi}{5}$

$f(x)=dfrac{2}{5}sinleft(dfrac{pi}{5}x right)+dfrac{1}{15}$

Step 2
2 of 3
#### (c)

$$
a=80
$$

period: $dfrac{2pi}{|k|}=6pi$

$k=dfrac{1}{3}$

$f(x)=80 sinleft(dfrac{1}{3}x right)-dfrac{9}{10}$

#### (d)

$a=11$

period: $dfrac{2pi}{|k|}=dfrac{1}{2}$

$k=4pi$

$f(x)=11sin(4pi x)$

Result
3 of 3
see solution
Exercise 5
Step 1
1 of 2
#### (a)

period$=2pi$, amplitude$=18$, equation of the axis is $y=0$; $y=18sin x$

#### (b)

period$=4pi$, amplitude$=6$, equation of the axis is $y=-2$; $y=-6sin(0.5x)-2$

#### (c)

period$=6pi$, amplitude$2.5$, equation of the axis is $y=6.5$;

$y=-2.5cosleft(dfrac{1}{3}x right)+6.5$

#### (d)

period$=4pi$, amplitude$=2$, equation of the axis is $y=-1$;

$y=-2cosleft(dfrac{1}{2}x right)-1$

Result
2 of 2
see solution
Exercise 6
Step 1
1 of 5
#### (a)

$textbf{Vertical stretch}$ by a factor of $4$, $textbf{vertical translation}$ $3$ units up.

Exercise scan

Step 2
2 of 5
#### (b)

$textbf{Reflection}$ in the $x$-axis, $textbf{horizontal stretch}$ by a factor of $4$.

Exercise scan

Step 3
3 of 5
#### (c)

$textbf{Horizontal translation}$ $pi$ to the right, $textbf{vertical translation}$ $1$ unit down.

Exercise scan

Step 4
4 of 5
#### (d)

$textbf{Horizontal compression}$ by a factor of $dfrac{1}{4}$, $textbf{horizontal translation}$ $dfrac{pi}{6}$ to the left.

Exercise scan

Result
5 of 5
see solution
Exercise 7
Step 1
1 of 5
$$
f(x)=dfrac{1}{2}cos x+3
$$

Exercise scan

Step 2
2 of 5
$f(x)=cosleft(-dfrac{1}{2}x right)$

Exercise scan

Step 3
3 of 5
$f(x)=3cosleft(x-dfrac{pi}{2} right)$

Exercise scan

Step 4
4 of 5
$f(x)=cosleft(2left(x+dfrac{pi}{2} right) right)$

Exercise scan

Result
5 of 5
see solution
Exercise 8
Step 1
1 of 7
#### (a)Exercise scan
Step 2
2 of 7
#### (b)Exercise scan
Step 3
3 of 7
#### (c)Exercise scan
Step 4
4 of 7
#### (d)Exercise scan
Step 5
5 of 7
#### (e)Exercise scan
Step 6
6 of 7
#### (f)Exercise scan
Result
7 of 7
see solution
Exercise 9
Step 1
1 of 4
#### (a)

period:$dfrac{2pi}{|k|}=dfrac{5pi}{3}$

$k=dfrac{6}{5}$

The period of the function is $dfrac{6}{5}$.

This represents the time between one beat of a person’s heart and the next beat.

#### (b)

$P(60)=-20cosleft(dfrac{5pi}{3}(60) right)+100=80$

Step 2
2 of 4
#### (c)Exercise scan
Step 3
3 of 4
#### (d)

The range for the function is between $80$ and $120$. The range means the lowest blood pressure is $80$ and the highest blood pressure is $120$.

Result
4 of 4
see solution
Exercise 10
Step 1
1 of 3
#### (a)Exercise scan
Step 2
2 of 3
#### (b)

There is $textbf{a vertical stretch}$ by a factor of $20$. The period is $0.8$ s.

$dfrac{2pi}{k}=0.8$

$k=dfrac{5pi}{2}$

There is $textbf{a horizontal compression}$ by a factor of $dfrac{1}{|k|}=dfrac{2}{5pi}$.

There is $textbf{a horizontal translation}$ $0.2$ to the left.

#### (c)

$$
y=20sin(dfrac{5pi}{2}(x+0.2))
$$

Result
3 of 3
see solution
Exercise 11
Step 1
1 of 3
#### (a)Exercise scan
Step 2
2 of 3
#### (a)

$textbf{Vertical stretch}$ by a factor of $25$, $textbf{reflection}$ in the $x$-axis, $textbf{vertical translation}$ $27$ units up, $textbf{the period}$ is $3$ s.

$dfrac{2pi}{k}=3$

$k=dfrac{2pi}{3}$

$textbf{horizontal compression}$ by a factor of $dfrac{1}{|k|}=dfrac{3}{2pi}$.
#### (c)

$y=-25cos(dfrac{2pi}{3}x)+27$

Result
3 of 3
see solution
Exercise 12
Step 1
1 of 2
By looking at the difference in the $x$-values of the two maximums, $-dfrac{5pi}{7}$ and $-dfrac{3pi}{7}$, we see that the period is $dfrac{2pi}{7}$.
Result
2 of 2
see solution
Exercise 13
Step 1
1 of 2
Answers may vary. For example, $left( dfrac{14pi}{13},5right)$.
Since the maximum is $4$ units above $y=9$, the minimum would be at $y=5$.If the period of the function is $2pi$, then the minimum would be at $dfrac{pi}{13}+pi$ of $dfrac{14pi}{13}$.
Result
2 of 2
see solution
Exercise 14
Step 1
1 of 2
#### (a)

This isa cosine function with amplitude$=1$.

period$=dfrac{2pi}{0.5}=4pi$

$y=cos(4pi x)$

#### (b)

This issine function with a reflection in the $x$-axis and an amplitude$=2$.

period$=dfrac{2pi}{8}=dfrac{pi}{4}$

$$
y=-2sinleft( dfrac{pi}{4}xright)
$$

#### (c)

The $y$-axis is $y=-1$ and the amplitude is $4$.The function is shifted horizontally to the right by $10$.

period$=dfrac{2pi}{40}=dfrac{pi}{20}$

$y=4 sinleft(dfrac{pi}{20}(x-10) right)-1$

Result
2 of 2
see solution
Exercise 15
Step 1
1 of 2
Exercise scan
Result
2 of 2
see solution
Exercise 16
Step 1
1 of 2
#### (a)

The car starts at the closest distance to the pole which is $100$ m.

#### (b)

The centre of the track is $400$ m from the pole because it is half the distance betwen the closest and furthest point.

#### (c)

The radius is $400-100=300$ m.

#### (d)

The period of the function is $80$ s.This is how long it takes to complete one lap.

#### (e)

$dfrac{2pi(300)}{80}m/s=23.56194$ m/s

Result
2 of 2
see solution
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New