Advanced Functions 12
Advanced Functions 12
1st Edition
Chris Kirkpatrick, Kristina Farentino, Susanne Trew
ISBN: 9780176678326
Textbook solutions

All Solutions

Page 246: Getting Started

Exercise 1
Step 1
1 of 2
#### (a)

Here we have next:

$$
begin{align*}
x^2-3x-10&=x^2+4x+4-7x-14\&=(x+2)^2-7(x+2)\&=(x+2)(x+2-7)\&=(x+2)(x-5)
end{align*}
$$

#### (b)

$$
begin{align*}
3x^2+12x-15&=3(x^2+4x-5)\&=3(x^2+4x+4-9)\&=3((x+2)^2-9)\&=3((x+2)-3)((x+2)+3)\&=3(x-1)(x+5)
end{align*}
$$

#### (c)

$$
begin{align*}
16x^2-49=(4x-7)(4x+7)
end{align*}
$$

#### (d)

$$
9x^2-12x+4=(3x-2)^2
$$

#### (e)

By solving this quadriatic equation where unknown is $a$, we have:

$$
3a^2+a-30=(a-3)(a+dfrac{10}{3})
$$

#### (f)

By solving this quadriatic equation where unknown is $x$, we have:

$$
6x^2-5xy-21y^2=(x-dfrac{7}{3}y)(x+dfrac{3}{2}y)
$$

Result
2 of 2
(a) $(x+2)(x-5)$; (b) $3(x-1)(x+5)$; (c) $(4x-7)(4x+7)$; (d) $(3x-2)^2$; (e) $(a-3)(a+dfrac{10}{3})$; (f) $(x-dfrac{7}{3}y)(x+dfrac{3}{4}y)$
Exercise 2
Step 1
1 of 2
#### (a)

$$
dfrac{12-8s}{4}=dfrac{4(3-2s)}{4}=3-s
$$

#### (b)

$dfrac{6m^2n^4}{18m^3n}=dfrac{n^3}{3m}$, $m,nne0$
#### (c)

$dfrac{9x^3-12x^2-3x}{3x}=dfrac{3x(3x^2-4x-1)}{3x}=3x^2-4x-1$, $xne0$
#### (d)

$dfrac{25x-10}{5(5x-2)^2}=dfrac{5(5x-2)}{5(5x-2)^2}=dfrac{1}{5x-2}$, $xnedfrac{2}{5}$
#### (e)

$dfrac{x^2+3x+8}{9-x^2}=dfrac{(x-3)(x+6)}{(3-x)(3+x)}=-dfrac{(3-x)(x+6)}{(3-x)(3+x)}=-dfrac{x+6}{x+3}$, $xnepm3$
#### (f)

$dfrac{a^2+4ab-5b^2}{2a^2+7ab-15b^2}=dfrac{(a-b)(a+5b)}{(a-dfrac{3}{2}b)(a+5b)}=dfrac{a-b}{a-dfrac{3}{2}b}$, $anedfrac{3}{2}b$

Result
2 of 2
(a) $3-s$; (b) $dfrac{n^3}{3m}$; (c) $3x^2-4x-1$; (d) $dfrac{1}{5x-2}$; (e) $-dfrac{x+6}{x+3}$; (f) $dfrac{a-b}{a-dfrac{3}{2}b}$
Exercise 3
Step 1
1 of 2
#### (a)

$$
dfrac{3}{5}timesdfrac{7}{9}=dfrac{7}{15}
$$

#### (b)

$dfrac{2x}{5}divdfrac{x^2}{15}=dfrac{2x}{5}timesdfrac{15}{x^2}=dfrac{6}{x}$, $xne0$
#### (c)

$$
begin{align*}
dfrac{x^2-4}{x-3}divdfrac{x+2}{12-4x}&=dfrac{x^2-4}{x-3}timesdfrac{12-4x}{x+2}\&=dfrac{(x-2)(x+2)}{x-3}timesdfrac{4(3-x)}{x+2}\&=-4(x-2), xne3,-2
end{align*}
$$

#### (d)

$dfrac{x^3+4x^2}{x^2-1}timesdfrac{x^2-5x+6}{x^2-3x}=dfrac{x^2(x+4)}{(x-1)(x+1)}timesdfrac{(x-2)(x-3)}{x(x-3)}=dfrac{x(x+4)(x-2)}{(x-1)(x+1)}$

$$
xnepm1,0,3
$$

Result
2 of 2
(a) $dfrac{7}{15}$; (b) $dfrac{6}{x}$; (c) $-4(x-2)$; (d) $dfrac{x(x+4)(x-2)}{(x-1)(x+1)}$
Exercise 4
Step 1
1 of 2
#### (a)

$$
dfrac{2}{3}+dfrac{6}{7}=dfrac{2cdot7+6cdot7}{21}=dfrac{56}{21}
$$

#### (b)

$$
dfrac{3x}{4}+dfrac{5x}{6}=dfrac{3cdot3x+2cdot5x}{12}=dfrac{19x}{12}
$$

#### (c)

$dfrac{1}{x}+dfrac{4}{x^2}=dfrac{x+4}{x^2}$, $xne0$
#### (d)

$dfrac{5}{x-3}-dfrac{2}{x}=dfrac{5x-2(x-3)}{x(x-3)}=dfrac{5x-2x+6}{x(x-3)}=dfrac{3x+6}{x(x-3)}=dfrac{3(x+2)}{x(x-3)}$, $xne0,3$
#### (e)

$dfrac{2}{x-5}+dfrac{y}{x^2-25}=dfrac{2}{x-5}+dfrac{y}{(x-5)(x+5)}=dfrac{2(x-5)+y}{(x-5)(x+5)}$, $xnepm5$
#### (f)

$dfrac{6}{a^2-9a+20}-dfrac{8}{a^2-2a-15}=dfrac{6}{(x-5)(x-4)}-dfrac{8}{(x-6)(x+2)}=dfrac{6(x-6)(x+2)-8(x-5)(x-4)}{(x-4)(x-5)(x-6)(x+2)}$,

$xne-2,4,5,6$

Result
2 of 2
(a) $dfrac{56}{21}$; (b) $dfrac{19x}{12}$; (c) $dfrac{x+4}{x^2}$; (d) $dfrac{3(x+2)}{x(x-3)}$; (e) $dfrac{2(x-5)+y}{(x-5)(x+5)}$; (f) $dfrac{6(x-6)(x+2)-8(x-5)(x-4)}{(x-4)(x-5)(x-6)(x+2)}$
Exercise 5
Step 1
1 of 3
#### (a)

$dfrac{5x}{8}=dfrac{15}{4} /cdot8$

$5x=15cdot2=30$

$x=dfrac{30}{5}=6$

$textbf{Check:}$

$$
dfrac{5cdot6}{8}=dfrac{30}{8}=dfrac{15}{4}
$$

#### (b)

$dfrac{x}{4}+dfrac{1}{3}=dfrac{5}{6}$

$dfrac{3x+4}{12}=dfrac{5}{6} /cdot12$

$3x+4=10$

$3x=10-4=6$

$x=dfrac{6}{3}=2$

$textbf{Check:}$

$$
dfrac{2}{4}+dfrac{1}{3}=dfrac{1}{2}+dfrac{1}{3}=dfrac{3+2}{6}=dfrac{5}{6}
$$

Step 2
2 of 3
#### (c)

$dfrac{4x}{5}-dfrac{3x}{10}=dfrac{3}{2} /cdot10$

$8x-3x=15$

$5x=15$

$x=dfrac{15}{5}=3$

$textbf{Check:}$

$$
dfrac{4cdot3}{5}-dfrac{3cdot3}{10}=dfrac{12}{5}-dfrac{9}{10}=dfrac{24-9}{10}=dfrac{15}{10}=dfrac{3}{2}
$$

#### (d)

$dfrac{x+1}{2}-dfrac{2x-1}{3}=-1 /cdot6$

$3(x+1)-2(2x-1)=-6$

$3x+3-4x+2=-6$

$-x+5=-6$

$-x=-6-5=-11$

$x=11$

$textbf{Check:}$

$$
dfrac{11+1}{2}-dfrac{2cdot11-1}{3}=dfrac{12}{2}-dfrac{21}{3}=6-7=-1
$$

Result
3 of 3
(a) $x=6$; (b) $x=2$; (c) $x=3$; (d) $x=11$
Exercise 6
Step 1
1 of 3
On the following picture is $textbf{the graph}$ of the function $f(x)=dfrac{1}{x}$:

Exercise scan

Step 2
2 of 3
$textbf{The domain}$ of this function is set $D=left{xinBbb{R}|xne0 right}$ and $textbf{range}$ is also set $R=left{xinBbb{R}|xne0 right}$.This function is $textbf{odd}$ and it is $textbf{decreasing}$ on $(0,+infty)$ and it is $textbf{increasing}$ on interval $(-infty,0)$.This function $textbf{has vertical and horizontal asymptotes}$, and their equations are $x=0$ for vertical and $y=0$ for horizontal asymtote.
Result
3 of 3
see solution
Exercise 7
Step 1
1 of 5
#### (a)

Here we have $textbf{translation}$ $3$ units to the left and on the following picture is graph of this transformed function:

Exercise scan

Step 2
2 of 5
#### (b)

Here we have $textbf{vertical compression}$ by a factor of $2$ and $textbf{translation}$ $1$ unit to the right.On the following picture is graph of this transformed function:

Exercise scan

Step 3
3 of 5
#### (c)

Here we have $textbf{vertical compression}$ by a factor of $-dfrac{1}{2}$ and $textbf{translation}$ $3$ units down.On the following picture is the graph of transformed function:

Exercise scan

Step 4
4 of 5
#### (d)

Here we have $textbf{vertical compression}$ by a factor of $2$ and $textbf{horizontal compression}$ by a factor of $-dfrac{1}{3}$, $textbf{translation}$ $2$ units to the right and $1$ unit up.On the following picture is graph oh transformed function:

Exercise scan

Result
5 of 5
see solution
Exercise 8
Step 1
1 of 2
When dividing two fractions, the first one does not work and the other is transformed by replacing the places with the numerator and the importer, and in the transformation of the second fraction thus performed, then the two fractions are multiplied.

According to this, we will simplify following expression:

$$
begin{align*}
dfrac{9y^2-4}{4y-12}divdfrac{9y^2+12y+4}{18-6y}&=dfrac{9y^2-4}{4y-12}timesdfrac{18-6y}{9y^2+12y+4}\&=dfrac{(3y-2)(3y+2)}{4(y-3)}timesdfrac{6(3-y)}{(3y+2)^2}\&=-dfrac{3(3y-2)}{2(3y+2)}
end{align*}
$$

Result
2 of 2
$-dfrac{3(3y-2)}{2(3y+2)}$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New