Advanced Functions 12
Advanced Functions 12
1st Edition
Chris Kirkpatrick, Kristina Farentino, Susanne Trew
ISBN: 9780176678326
Table of contents
Textbook solutions

All Solutions

Page 246: Getting Started

Exercise 1
Step 1
1 of 2
#### (a)

Here we have next:

$$
begin{align*}
x^2-3x-10&=x^2+4x+4-7x-14\&=(x+2)^2-7(x+2)\&=(x+2)(x+2-7)\&=(x+2)(x-5)
end{align*}
$$

#### (b)

$$
begin{align*}
3x^2+12x-15&=3(x^2+4x-5)\&=3(x^2+4x+4-9)\&=3((x+2)^2-9)\&=3((x+2)-3)((x+2)+3)\&=3(x-1)(x+5)
end{align*}
$$

#### (c)

$$
begin{align*}
16x^2-49=(4x-7)(4x+7)
end{align*}
$$

#### (d)

$$
9x^2-12x+4=(3x-2)^2
$$

#### (e)

By solving this quadriatic equation where unknown is $a$, we have:

$$
3a^2+a-30=(a-3)(a+dfrac{10}{3})
$$

#### (f)

By solving this quadriatic equation where unknown is $x$, we have:

$$
6x^2-5xy-21y^2=(x-dfrac{7}{3}y)(x+dfrac{3}{2}y)
$$

Result
2 of 2
(a) $(x+2)(x-5)$; (b) $3(x-1)(x+5)$; (c) $(4x-7)(4x+7)$; (d) $(3x-2)^2$; (e) $(a-3)(a+dfrac{10}{3})$; (f) $(x-dfrac{7}{3}y)(x+dfrac{3}{4}y)$
Exercise 2
Step 1
1 of 2
#### (a)

$$
dfrac{12-8s}{4}=dfrac{4(3-2s)}{4}=3-s
$$

#### (b)

$dfrac{6m^2n^4}{18m^3n}=dfrac{n^3}{3m}$, $m,nne0$
#### (c)

$dfrac{9x^3-12x^2-3x}{3x}=dfrac{3x(3x^2-4x-1)}{3x}=3x^2-4x-1$, $xne0$
#### (d)

$dfrac{25x-10}{5(5x-2)^2}=dfrac{5(5x-2)}{5(5x-2)^2}=dfrac{1}{5x-2}$, $xnedfrac{2}{5}$
#### (e)

$dfrac{x^2+3x+8}{9-x^2}=dfrac{(x-3)(x+6)}{(3-x)(3+x)}=-dfrac{(3-x)(x+6)}{(3-x)(3+x)}=-dfrac{x+6}{x+3}$, $xnepm3$
#### (f)

$dfrac{a^2+4ab-5b^2}{2a^2+7ab-15b^2}=dfrac{(a-b)(a+5b)}{(a-dfrac{3}{2}b)(a+5b)}=dfrac{a-b}{a-dfrac{3}{2}b}$, $anedfrac{3}{2}b$

Result
2 of 2
(a) $3-s$; (b) $dfrac{n^3}{3m}$; (c) $3x^2-4x-1$; (d) $dfrac{1}{5x-2}$; (e) $-dfrac{x+6}{x+3}$; (f) $dfrac{a-b}{a-dfrac{3}{2}b}$
Exercise 3
Step 1
1 of 2
#### (a)

$$
dfrac{3}{5}timesdfrac{7}{9}=dfrac{7}{15}
$$

#### (b)

$dfrac{2x}{5}divdfrac{x^2}{15}=dfrac{2x}{5}timesdfrac{15}{x^2}=dfrac{6}{x}$, $xne0$
#### (c)

$$
begin{align*}
dfrac{x^2-4}{x-3}divdfrac{x+2}{12-4x}&=dfrac{x^2-4}{x-3}timesdfrac{12-4x}{x+2}\&=dfrac{(x-2)(x+2)}{x-3}timesdfrac{4(3-x)}{x+2}\&=-4(x-2), xne3,-2
end{align*}
$$

#### (d)

$dfrac{x^3+4x^2}{x^2-1}timesdfrac{x^2-5x+6}{x^2-3x}=dfrac{x^2(x+4)}{(x-1)(x+1)}timesdfrac{(x-2)(x-3)}{x(x-3)}=dfrac{x(x+4)(x-2)}{(x-1)(x+1)}$

$$
xnepm1,0,3
$$

Result
2 of 2
(a) $dfrac{7}{15}$; (b) $dfrac{6}{x}$; (c) $-4(x-2)$; (d) $dfrac{x(x+4)(x-2)}{(x-1)(x+1)}$
Exercise 4
Step 1
1 of 2
#### (a)

$$
dfrac{2}{3}+dfrac{6}{7}=dfrac{2cdot7+6cdot7}{21}=dfrac{56}{21}
$$

#### (b)

$$
dfrac{3x}{4}+dfrac{5x}{6}=dfrac{3cdot3x+2cdot5x}{12}=dfrac{19x}{12}
$$

#### (c)

$dfrac{1}{x}+dfrac{4}{x^2}=dfrac{x+4}{x^2}$, $xne0$
#### (d)

$dfrac{5}{x-3}-dfrac{2}{x}=dfrac{5x-2(x-3)}{x(x-3)}=dfrac{5x-2x+6}{x(x-3)}=dfrac{3x+6}{x(x-3)}=dfrac{3(x+2)}{x(x-3)}$, $xne0,3$
#### (e)

$dfrac{2}{x-5}+dfrac{y}{x^2-25}=dfrac{2}{x-5}+dfrac{y}{(x-5)(x+5)}=dfrac{2(x-5)+y}{(x-5)(x+5)}$, $xnepm5$
#### (f)

$dfrac{6}{a^2-9a+20}-dfrac{8}{a^2-2a-15}=dfrac{6}{(x-5)(x-4)}-dfrac{8}{(x-6)(x+2)}=dfrac{6(x-6)(x+2)-8(x-5)(x-4)}{(x-4)(x-5)(x-6)(x+2)}$,

$xne-2,4,5,6$

Result
2 of 2
(a) $dfrac{56}{21}$; (b) $dfrac{19x}{12}$; (c) $dfrac{x+4}{x^2}$; (d) $dfrac{3(x+2)}{x(x-3)}$; (e) $dfrac{2(x-5)+y}{(x-5)(x+5)}$; (f) $dfrac{6(x-6)(x+2)-8(x-5)(x-4)}{(x-4)(x-5)(x-6)(x+2)}$
Exercise 5
Step 1
1 of 3
#### (a)

$dfrac{5x}{8}=dfrac{15}{4} /cdot8$

$5x=15cdot2=30$

$x=dfrac{30}{5}=6$

$textbf{Check:}$

$$
dfrac{5cdot6}{8}=dfrac{30}{8}=dfrac{15}{4}
$$

#### (b)

$dfrac{x}{4}+dfrac{1}{3}=dfrac{5}{6}$

$dfrac{3x+4}{12}=dfrac{5}{6} /cdot12$

$3x+4=10$

$3x=10-4=6$

$x=dfrac{6}{3}=2$

$textbf{Check:}$

$$
dfrac{2}{4}+dfrac{1}{3}=dfrac{1}{2}+dfrac{1}{3}=dfrac{3+2}{6}=dfrac{5}{6}
$$

Step 2
2 of 3
#### (c)

$dfrac{4x}{5}-dfrac{3x}{10}=dfrac{3}{2} /cdot10$

$8x-3x=15$

$5x=15$

$x=dfrac{15}{5}=3$

$textbf{Check:}$

$$
dfrac{4cdot3}{5}-dfrac{3cdot3}{10}=dfrac{12}{5}-dfrac{9}{10}=dfrac{24-9}{10}=dfrac{15}{10}=dfrac{3}{2}
$$

#### (d)

$dfrac{x+1}{2}-dfrac{2x-1}{3}=-1 /cdot6$

$3(x+1)-2(2x-1)=-6$

$3x+3-4x+2=-6$

$-x+5=-6$

$-x=-6-5=-11$

$x=11$

$textbf{Check:}$

$$
dfrac{11+1}{2}-dfrac{2cdot11-1}{3}=dfrac{12}{2}-dfrac{21}{3}=6-7=-1
$$

Result
3 of 3
(a) $x=6$; (b) $x=2$; (c) $x=3$; (d) $x=11$
Exercise 6
Step 1
1 of 3
On the following picture is $textbf{the graph}$ of the function $f(x)=dfrac{1}{x}$:

Exercise scan

Step 2
2 of 3
$textbf{The domain}$ of this function is set $D=left{xinBbb{R}|xne0 right}$ and $textbf{range}$ is also set $R=left{xinBbb{R}|xne0 right}$.This function is $textbf{odd}$ and it is $textbf{decreasing}$ on $(0,+infty)$ and it is $textbf{increasing}$ on interval $(-infty,0)$.This function $textbf{has vertical and horizontal asymptotes}$, and their equations are $x=0$ for vertical and $y=0$ for horizontal asymtote.
Result
3 of 3
see solution
Exercise 7
Step 1
1 of 5
#### (a)

Here we have $textbf{translation}$ $3$ units to the left and on the following picture is graph of this transformed function:

Exercise scan

Step 2
2 of 5
#### (b)

Here we have $textbf{vertical compression}$ by a factor of $2$ and $textbf{translation}$ $1$ unit to the right.On the following picture is graph of this transformed function:

Exercise scan

Step 3
3 of 5
#### (c)

Here we have $textbf{vertical compression}$ by a factor of $-dfrac{1}{2}$ and $textbf{translation}$ $3$ units down.On the following picture is the graph of transformed function:

Exercise scan

Step 4
4 of 5
#### (d)

Here we have $textbf{vertical compression}$ by a factor of $2$ and $textbf{horizontal compression}$ by a factor of $-dfrac{1}{3}$, $textbf{translation}$ $2$ units to the right and $1$ unit up.On the following picture is graph oh transformed function:

Exercise scan

Result
5 of 5
see solution
Exercise 8
Step 1
1 of 2
When dividing two fractions, the first one does not work and the other is transformed by replacing the places with the numerator and the importer, and in the transformation of the second fraction thus performed, then the two fractions are multiplied.

According to this, we will simplify following expression:

$$
begin{align*}
dfrac{9y^2-4}{4y-12}divdfrac{9y^2+12y+4}{18-6y}&=dfrac{9y^2-4}{4y-12}timesdfrac{18-6y}{9y^2+12y+4}\&=dfrac{(3y-2)(3y+2)}{4(y-3)}timesdfrac{6(3-y)}{(3y+2)^2}\&=-dfrac{3(3y-2)}{2(3y+2)}
end{align*}
$$

Result
2 of 2
$-dfrac{3(3y-2)}{2(3y+2)}$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Functions: Characteristics and Properties
Page 2: Getting Started
Section 1-1: Functions
Section 1-2: Exploring Absolute Value
Section 1-3: Properties of Graphs of Functions
Section 1-4: Sketching Graphs of Functions
Section 1-5: Inverse Relations
Section 1-6: Piecewise Functions
Section 1-7: Exploring Operations with Functions
Page 62: Chapter Self-Test
Chapter 2: Functions: Understanding Rates of Change
Page 66: Getting Started
Section 2-1: Determining Average Rate of Change
Section 2-2: Estimating Instantaneous Rates of Change from Tables of Values and Equations
Section 2-3: Exploring Instantaneous Rates of Change Using Graphs
Section 2-4: Using Rates of Change to Create a Graphical Model
Section 2-5: Solving Problems Involving Rates of Change
Page 118: Chapter Self-Test
Chapter 3: Polynomial Functions
Page 122: Getting Started
Section 3-1: Exploring Polynomial Functions
Section 3-2: Characteristics of Polynomial Functions
Section 3-3: Characteristics of Polynomial Functions in Factored Form
Section 3-4: Transformation of Cubic and Quartic Functions
Section 3-5: Dividing Polynomials
Section 3-6: Factoring Polynomials
Section 3-7: Factoring a Sum or Difference of Cubes
Page 186: Chapter Self-Test
Page 188: Cumulative Review
Page 155: Check Your Understanding
Page 161: Practice Questions
Page 182: Check Your Understanding
Page 184: Practice Questions
Chapter 4: Polynomial Equations and Inequalities
Page 194: Getting Started
Section 4-1: Solving Polynomial Equations
Section 4-2: Solving Linear Inequalities
Section 4-3: Solving Polynomial Inequalities
Section 4-4: Rates of Change in Polynomial Functions
Page 242: Chapter Self-Test
Chapter 5: Rational Functions, Equations, and Inequalities
Page 246: Getting Started
Section 5-1: Graphs of Reciprocal Functions
Section 5-2: Exploring Quotients of Polynomial Functions
Section 5-3: Graphs of Rational Functions of the Form f(x) 5 ax 1 b cx 1 d
Section 5-4: Solving Rational Equations
Section 5-5: Solving Rational Inequalities
Section 5-6: Rates of Change in Rational Functions
Page 310: Chapter Self-Test
Chapter 6: Trigonometric Functions
Page 314: Getting Started
Section 6-1: Radian Measure
Section 6-2: Radian Measure and Angles on the Cartesian Plane
Section 6-3: Exploring Graphs of the Primary Trigonometric Functions
Section 6-4: Transformations of Trigonometric Functions
Section 6-5: Exploring Graphs of the Reciprocal Trigonometric Functions
Section 6-6: Modelling with Trigonometric Functions
Section 6-7: Rates of Change in Trigonometric Functions
Page 378: Chapter Self-Test
Page 380: Cumulative Review
Chapter 7: Trigonometric Identities and Equations
Page 386: Getting Started
Section 7-1: Exploring Equivalent Trigonometric Functions
Section 7-2: Compound Angle Formulas
Section 7-3: Double Angle Formulas
Section 7-4: Proving Trigonometric Identities
Section 7-5: Solving Linear Trigonometric Equations
Section 7-6: Solving Quadratic Trigonometric Equations
Page 441: Chapter Self-Test
Chapter 8: Exponential and Logarithmic Functions
Page 446: Getting Started
Section 8-1: Exploring the Logarithmic Function
Section 8-2: Transformations of Logarithmic Functions
Section 8-3: Evaluating Logarithms
Section 8-4: Laws of Logarithms
Section 8-5: Solving Exponential Equations
Section 8-6: Solving Logarithmic Equations
Section 8-7: Solving Problems with Exponential and Logarithmic Functions
Section 8-8: Rates of Change in Exponential and Logarithmic Functions
Page 512: Chapter Self-Test
Chapter 9: Combinations of Functions
Page 516: Getting Started
Section 9-1: Exploring Combinations of Functions
Section 9-2: Combining Two Functions: Sums and Differences
Section 9-3: Combining Two Functions: Products
Section 9-4: Exploring Quotients of Functions
Section 9-5: Composition of Functions
Section 9-6: Techniques for Solving Equations and Inequalities
Section 9-7: Modelling with Functions
Page 578: Chapter Self-Test
Page 580: Cumulative Review
Page 542: Further Your Understanding
Page 544: Practice Questions
Page 569: Check Your Understanding
Page 576: Practice Questions