All Solutions
Page 440: Practice Questions
$$
sin dfrac{3pi}{10}=sin left(pi-dfrac{7pi}{10}right)
$$
Now we note that our trigonometric ratio is on the form $color{#4257b2}sin left(pi-thetaright)$ where $color{#4257b2}theta$ is considered to be $color{#4257b2}dfrac{7pi}{10}$ in our trigonometric ratio, so we can use the transformation where we know that $color{#4257b2}sin left(pi-thetaright)=sin theta$.
$$
sin dfrac{3pi}{10}=sin left(pi-dfrac{7pi}{10}right)=sin dfrac{7pi}{10}
$$
So the trigonometric ratio $color{#4257b2}sin dfrac{3pi}{10}$ can be written in the equivalent ratio $boxed{ sin dfrac{7pi}{10} }$
(b) We would like to state a trigonometric ratio that is equivalent to the trigonometric ratio $color{#4257b2}cos dfrac{6pi}{7}$. First, we know that $color{#4257b2}dfrac{6pi}{7}=pi-dfrac{pi}{7}$, so we can rewrite our trigonometric ratio using this fact.
$$
cos dfrac{6pi}{7}=cos left(pi-dfrac{pi}{7}right)
$$
Now we note that our trigonometric ratio is on the form $color{#4257b2}cos left(pi-thetaright)$ where $color{#4257b2}theta$ is considered to be $color{#4257b2}dfrac{pi}{7}$ in our trigonometric ratio, so we can use the transformation where we know that $color{#4257b2}cos left(pi-thetaright)=-cos theta$.
$$
cos dfrac{6pi}{7}=cos left(pi-dfrac{pi}{7}right)=-cos dfrac{pi}{7}
$$
So the trigonometric ratio $color{#4257b2}cos dfrac{6pi}{7}$ can be written in the equivalent ratio $boxed{ -cos dfrac{pi}{7} }$
$$
-sin dfrac{13pi}{7}=-sin left(2pi-dfrac{pi}{7}right)
$$
Now we note that our trigonometric ratio is on the form $color{#4257b2}sin left(2pi-thetaright)$ where $color{#4257b2}theta$ is considered to be $color{#4257b2}dfrac{pi}{7}$ in our trigonometric ratio, so we can use the transformation where we know that $color{#4257b2}sin left(2pi-thetaright)=-sin theta$.
$$
-sin dfrac{13pi}{7}=-sin left(2pi-dfrac{pi}{7}right)=-left(-sin dfrac{pi}{7}right)=sin dfrac{pi}{7}
$$
So the trigonometric ratio $color{#4257b2}-sin dfrac{13pi}{7}$ can be written in the equivalent ratio $boxed{ sin dfrac{pi}{7} }$
(d) We would like to state a trigonometric ratio that is equivalent to the trigonometric ratio $color{#4257b2}-cos dfrac{8pi}{7}$. First, we know that $color{#4257b2}dfrac{8pi}{7}=pi+dfrac{pi}{7}$, so we can rewrite our trigonometric ratio using this fact.
$$
-cos dfrac{8pi}{7}=-cos left(pi+dfrac{pi}{7}right)
$$
Now we note that our trigonometric ratio is on the form $color{#4257b2}cos left(pi+thetaright)$ where $color{#4257b2}theta$ is considered to be $color{#4257b2}dfrac{pi}{7}$ in our trigonometric ratio, so we can use the transformation where we know that $color{#4257b2}cos left(pi+thetaright)=-cos theta$.
$$
-cos dfrac{8pi}{7}=-cos left(pi+dfrac{pi}{7}right)=-left(-cos dfrac{pi}{7}right)=cos dfrac{pi}{7}
$$
So the trigonometric ratio $color{#4257b2}-cos dfrac{8pi}{7}$ can be written in the equivalent ratio $boxed{ cos dfrac{pi}{7} }$
\
\
\
(b) $-cos dfrac{pi}{7}$ (d) $cos dfrac{pi}{7}$}$
$color{#4257b2}y=-5sin left(x-dfrac{pi}{2}right)-8$, using the cosine function. First, we can take $-1$ as a common factor from the angle of the sine function $color{#4257b2}x-dfrac{pi}{2}$.
$$
y=-5sin left(x-dfrac{pi}{2}right)-8
$$
$$
y=-5sin left[-left(dfrac{pi}{2}-xright)right]-8
$$
Now we note that our trigonometric ratio is on the form $color{#4257b2}sin left(-thetaright)$ where $color{#4257b2}theta$ is considered to be $color{#4257b2}dfrac{pi}{2}-x$ in our trigonometric ratio, so we can use the transformation where we know that $color{#4257b2}sin left(-thetaright)=-sin theta$.
$$
y=-5sin left[-left(dfrac{pi}{2}-xright)right]-8
$$
$$
y=5sin left(dfrac{pi}{2}-xright)-8
$$
Now we note that our trigonometric ratio is on the form $color{#4257b2}sin left(dfrac{pi}{2}-thetaright)$ where $color{#4257b2}theta$ is considered to be $color{#4257b2}dfrac{pi}{2}$ in our trigonometric ratio, so we can use the transformation where we know that $color{#4257b2}sin left(dfrac{pi}{2}-thetaright)=cos theta$.
$$
y=5sin left(dfrac{pi}{2}-xright)-8
$$
$$
y=5cos x-8
$$
So the equation $color{#4257b2}y=-5sin left(x-dfrac{pi}{2}right)-8$ can be written in the equivalent equation $boxed{ -y=5cos x-8 }$
$$
begin{align*}
sin left(x-dfrac{4pi}{3}right)&=sin xcos dfrac{4pi}{3}-cos xsin dfrac{4pi}{3}
\ \
&=sin xcdot left(-dfrac{1}{2}right)-cos xcdot left(-dfrac{sqrt{3}}{2}right)
\ \
&=-dfrac{1}{2} sin x+dfrac{sqrt{3}}{2} cos x
\ \
&=dfrac{-sin x+sqrt{3} cos x}{2}
end{align*}
$$
Note that $color{#4257b2}dfrac{4pi}{3}$ is a special angle which we know the values of the sine and cosine functions of it where $color{#4257b2}sin dfrac{4pi}{3}=-dfrac{sqrt{3}}{2}$ and $color{#4257b2}cos dfrac{4pi}{3}=-dfrac{1}{2}$.
So the expression $color{#4257b2}sin left(x-dfrac{4pi}{3}right)$ can be written in the equivalent expression $boxed{ dfrac{-sin x+sqrt{3} cos x}{2} }$
$$
begin{align*}
cos left(x+dfrac{3pi}{4}right)&=cos xcos dfrac{3pi}{4}-sin xsin dfrac{3pi}{4}
\ \
&=cos xcdot left(-dfrac{sqrt{2}}{2}right)-sin xcdot left(dfrac{sqrt{2}}{2}right)
\ \
&=-dfrac{sqrt{2}}{2} cos x-dfrac{sqrt{2}}{2} sin x
\ \
&=-dfrac{sqrt{2}}{2}left(cos x+sin xright)
end{align*}
$$
Note that $color{#4257b2}dfrac{3pi}{4}$ is a special angle which we know the values of the sine and cosine functions of it where $color{#4257b2}sin dfrac{3pi}{4}=dfrac{sqrt{2}}{2}$ and $color{#4257b2}cos dfrac{3pi}{4}=-dfrac{sqrt{2}}{2}$.
So the expression $color{#4257b2}cos left(x+dfrac{3pi}{4}right)$ can be written in the equivalent expression $boxed{ -dfrac{sqrt{2}}{2}left(cos x+sin xright) }$
$color{#4257b2}tan (a+b)=dfrac{tan a+tan b}{1-tan atan b}$.
$$
begin{align*}
tan left(x+dfrac{pi}{3}right)&=dfrac{tan x+tan dfrac{pi}{3}}{1-tan xtan dfrac{pi}{3}}
\ \
&=dfrac{tan x+sqrt{3}}{1-tan xcdot left(sqrt{3}right)}
\ \
&=dfrac{tan x+sqrt{3}}{1-sqrt{3} tan x}
end{align*}
$$
Note that $color{#4257b2}dfrac{pi}{3}$ is a special angle which we know the value of the tangent function of it where $color{#4257b2}tan dfrac{pi}{3}=sqrt{3}$.
So the expression $color{#4257b2}tan left(x+dfrac{pi}{3}right)$ can be written in the equivalent expression $boxed{ dfrac{tan x+sqrt{3}}{1-sqrt{3} tan x} }$
$$
begin{align*}
cos left(x-dfrac{3pi}{4}right)&=cos xcos dfrac{5pi}{4}+sin xsin dfrac{5pi}{4}
\ \
&=cos xcdot left(-dfrac{sqrt{2}}{2}right)+sin xcdot left(-dfrac{sqrt{2}}{2}right)
\ \
&=-dfrac{sqrt{2}}{2} cos x-dfrac{sqrt{2}}{2} sin x
\ \
&=-dfrac{sqrt{2}}{2}left(cos x+sin xright)
end{align*}
$$
Note that $color{#4257b2}dfrac{3pi}{4}$ is a special angle which we know the values of the sine and cosine functions of it where $color{#4257b2}sin dfrac{3pi}{4}=dfrac{sqrt{2}}{2}$ and $color{#4257b2}cos dfrac{3pi}{4}=-dfrac{sqrt{2}}{2}$.
So the expression $color{#4257b2}cos left(x-dfrac{5pi}{4}right)$ can be written in the equivalent expression $boxed{ -dfrac{sqrt{2}}{2}left(cos x+sin xright) }$
\
\
\
Large{color{#c34632}(b) $-dfrac{sqrt{2}}{2}left(cos x+sin xright)$ (d) $-dfrac{sqrt{2}}{2}left(cos x+sin xright)$}$}$
$$
begin{align*}
dfrac{tan dfrac{pi}{12}+tan dfrac{7pi}{4}}{1-tan dfrac{pi}{12}tan dfrac{7pi}{4}}&=tan left(dfrac{pi}{12}+dfrac{7pi}{4}right)
\ \
&=tan left(dfrac{pi}{12}+dfrac{21pi}{12}right)
\ \
&=tan dfrac{22pi}{12}
\ \
&=tan dfrac{11pi}{6}
\ \
&=-dfrac{1}{sqrt{3}}
end{align*}
$$
Note that $color{#4257b2}dfrac{11pi}{6}$ is a special angle which we know the value of the tangent function of it where $color{#4257b2}tan dfrac{11pi}{6}=-dfrac{1}{sqrt{3}}$.
So the expression $color{#4257b2}dfrac{tan dfrac{pi}{12}+tan dfrac{7pi}{4}}{1-tan dfrac{pi}{12}tan dfrac{7pi}{4}}$ equals $boxed{ -dfrac{1}{sqrt{3}} }$
$$
begin{align*}
cos dfrac{pi}{9}cos dfrac{19pi}{18}-sin dfrac{pi}{9}sin dfrac{19pi}{18}&=cos left(dfrac{pi}{9}+dfrac{19pi}{18}right)
\ \
&=cos left(dfrac{2pi}{18}+dfrac{19pi}{18}right)
\ \
&=cos dfrac{21pi}{18}
\ \
&=cos dfrac{7pi}{6}
\ \
&=-dfrac{sqrt{3}}{2}
end{align*}
$$
Note that $color{#4257b2}dfrac{7pi}{6}$ is a special angle which we know the value of the cosine function of it where $color{#4257b2}cos dfrac{7pi}{6}=-dfrac{sqrt{3}}{2}$.
So the expression $color{#4257b2}cos dfrac{pi}{9}cos dfrac{19pi}{18}-sin dfrac{pi}{9}sin dfrac{19pi}{18}$ equals $boxed{ -dfrac{sqrt{3}}{2} }$
$$
begin{align*}
2sin dfrac{pi}{12}cos dfrac{pi}{12}&=sin left(2cdot dfrac{pi}{12}right)
\ \
&=sin dfrac{pi}{6}
\ \
&=dfrac{1}{2}
end{align*}
$$
Note that $color{#4257b2}dfrac{pi}{6}$ is a special angle which we know the value of the sine function of it where $color{#4257b2}sin dfrac{pi}{6}=dfrac{1}{2}$.
So the expression $color{#4257b2}2sin dfrac{pi}{12}cos dfrac{pi}{12}$ can be simplified to $boxed{ dfrac{1}{2} }$
(b) We would like to simplify the expression $color{#4257b2}cos^{2}dfrac{pi}{12}-sin^{2}dfrac{pi}{12}$. First, we note that our expression is on the form of the double angle formula of the cosine function where $color{#4257b2}cos 2theta=cos^{2}theta-sin^{2}theta$ where $color{#4257b2}theta$ here is considered to be $color{#4257b2}dfrac{pi}{12}$ in our expression, so we can use this formula to simplify our expression.
$$
begin{align*}
cos^{2}dfrac{pi}{12}-sin^{2}dfrac{pi}{12}&=cos left(2cdot dfrac{pi}{12}right)
\ \
&=cos dfrac{pi}{6}
\ \
&=dfrac{sqrt{3}}{2}
end{align*}
$$
Note that $color{#4257b2}dfrac{pi}{6}$ is a special angle which we know the value of the cosine function of it where $color{#4257b2}cos dfrac{pi}{6}=dfrac{sqrt{3}}{2}$.
So the expression $color{#4257b2}cos^{2}dfrac{pi}{12}-sin^{2}dfrac{pi}{12}$ can be simplified to $boxed{ dfrac{sqrt{3}}{2} }$
$$
begin{align*}
1-2sin^{2}dfrac{3pi}{8}&=cos left(2cdot dfrac{3pi}{8}right)
\ \
&=cos dfrac{3pi}{4}
\ \
&=cos left(pi-dfrac{pi}{4}right)
\ \
&=-cos dfrac{pi}{4}
\ \
&=-dfrac{1}{sqrt{2}}
end{align*}
$$
Note that we used the transformation to write the cosine function in the angle $color{#4257b2}dfrac{pi}{4}$ because it is a special angle which we know the value of the cosine function of it where $color{#4257b2}cos dfrac{pi}{4}=dfrac{1}{sqrt{2}}$
So the expression $color{#4257b2}1-2sin^{2}dfrac{3pi}{8}$ can be simplified to $boxed{ -dfrac{1}{sqrt{2}} }$
$$
begin{align*}
dfrac{2tan dfrac{pi}{6}}{1-tan^{2}dfrac{pi}{6}}&=tan left(2cdot dfrac{pi}{6}right)
\ \
&=tan dfrac{pi}{3}
\ \
&=sqrt{3}
end{align*}
$$
Note that $color{#4257b2}dfrac{pi}{3}$ is a special angle which we know the value of the tangent function of it where $color{#4257b2}tan dfrac{pi}{3}=sqrt{3}$.
So the expression $color{#4257b2}dfrac{2tan dfrac{pi}{6}}{1-tan^{2}dfrac{pi}{6}}$ can be simplified to $boxed{ sqrt{3} }$
\
\
Large{color{#c34632}(b) $dfrac{sqrt{3}}{2}$ (d) $sqrt{3}$}$}$
$$
sin^{2}x+cos^{2}x=1
$$
$$
left(dfrac{3}{5}right)^{2}+cos^{2}x=1
$$
$$
dfrac{9}{25}+cos^{2}x=1
$$
$$
cos^{2}x=1-dfrac{9}{25}=dfrac{16}{25}
$$
Now we can take the square root for each side to find the value of $color{#4257b2}cos x$.
$$
cos x=pm sqrt{dfrac{16}{25}}=pm dfrac{4}{5}
$$
But we know that $color{#4257b2}x$ is acute angle which means that $color{#4257b2}x$ is in quadrant $1$, so the value of $color{#4257b2}cos x$ is positive and the negative solution is refused.
$$
boxed{ cos x=dfrac{4}{5} }
$$
$$
begin{align*}
sin 2x&=2sin xcos x
\ \
&=2cdot left(dfrac{3}{5}right)cdot left(dfrac{4}{5}right)
\ \
&=boxed{ dfrac{24}{25} }
end{align*}
$$
$$
begin{align*}
cos 2x&=cos^{2}x-sin^{2}x
\ \
&=left(dfrac{4}{5}right)^{2}-left(dfrac{3}{5}right)^{2}
\ \
&=dfrac{16}{25}-dfrac{9}{25}
\ \
&=boxed{ dfrac{7}{25} }
end{align*}
$$
$$
begin{align*}
tan 2x&=dfrac{sin 2x}{cos 2x}
\ \
&=dfrac{dfrac{24}{25}}{dfrac{7}{25}}
\ \
&=dfrac{dfrac{24}{cancel{25}}}{dfrac{7}{cancel{25}}}
\ \
&=boxed{ dfrac{24}{7} }
end{align*}
$$
$$
1+cot^{2}x=csc^{2}x
$$
$$
1+left(-dfrac{7}{24}right)^{2}=csc^{2}x
$$
$$
csc^{2}x=1+dfrac{49}{576}=dfrac{625}{576}
$$
Now we can take the square root for each side to find the value of $color{#4257b2}csc x$.
$$
csc x=pm sqrt{dfrac{625}{576}}=pm dfrac{25}{24}
$$
But we know that $color{#4257b2}x$ is obtuse angle which means that $color{#4257b2}x$ is in quadrant $2$, so the value of $color{#4257b2}csc x$ is positive and the negative solution is refused.
$$
csc x=dfrac{25}{24}
$$
But we know that $color{#4257b2}csc x=dfrac{1}{sin x}$, so we can use this identity to find the value of $color{#4257b2}sin x$.
$$
dfrac{1}{sin x}=dfrac{25}{24}
$$
$$
boxed{ sin x=dfrac{24}{25} }
$$
$$
tan x=dfrac{1}{cot x}
$$
$$
tan x=dfrac{1}{-dfrac{7}{24}}
$$
$$
boxed{ tan x=-dfrac{24}{7} }
$$
Now we have the values of $color{#4257b2}sin x$ and $color{#4257b2}tan x$, so to determine $color{#4257b2}cos 2x$ and $color{#4257b2}tan 2x$ we can use the double angle formulas of the cosine and tangent functions where $color{#4257b2}cos 2x=1-2sin^{2}x$ and $color{#4257b2}tan 2x=dfrac{2tan x}{1-tan^{2}x}$.
$$
begin{align*}
cos 2x&=1-2sin^{2}x
\ \
&=1-2cdot left(dfrac{24}{25}right)^{2}
\ \
&=1-2cdot left(dfrac{576}{625}right)=1-dfrac{1152}{625}
\ \
&=boxed{ -dfrac{527}{625} }
end{align*}
$$
begin{align*}
tan 2x&=dfrac{2tan x}{1-tan^{2}x}
\ \
&=dfrac{2cdot left(-dfrac{24}{7}right)}{1-left(dfrac{24}{7}right)^{2}}
\ \
&=boxed{ dfrac{336}{527} }
end{align*}
$$
Now we have the values of $color{#4257b2}cos 2x$ and $color{#4257b2}tan 2x$, so we can use the identity $color{#4257b2}tan theta=dfrac{sin theta}{cos theta}$ to determine $color{#4257b2}sin 2x$.
$$
tan 2x=dfrac{sin 2x}{cos 2x}
$$
$$
sin 2x=tan 2xcos 2x
$$
$$
sin 2x=left(dfrac{336}{527}right)left(-dfrac{527}{625}right)
$$
$$
sin 2x=left(dfrac{336}{cancel{527}}right)left(-dfrac{cancel{527}}{625}right)
$$
$$
sin 2x=-dfrac{336}{625}
$$
$$
sin^{2}x+cos^{2}x=1
$$
$$
sin^{2}x+left(dfrac{12}{13}right)^{2}=1
$$
$$
sin^{2}x+dfrac{144}{169}=1
$$
$$
sin^{2}x=1-dfrac{144}{169}=dfrac{25}{169}
$$
Now we can take the square root for each side to find the value of $color{#4257b2}sin x$.
$$
sin x=pm sqrt{dfrac{25}{169}}=pm dfrac{5}{13}
$$
But we know that $color{#4257b2}dfrac{3pi}{2} leq x leq 2pi$ which means that $color{#4257b2}x$ is in quadrant $4$, so the value of $color{#4257b2}sin x$ is negative and the positive solution is refused.
$$
boxed{ sin x=-dfrac{5}{13} }
$$
$$
begin{align*}
sin 2x&=2sin xcos x
\ \
&=2cdot left(-dfrac{5}{13}right)cdot left(dfrac{12}{13}right)
\ \
&=boxed{ -dfrac{120}{169} }
end{align*}
$$
$$
begin{align*}
cos 2x&=cos^{2}x-sin^{2}x
\ \
&=left(dfrac{12}{13}right)^{2}-left(-dfrac{5}{13}right)^{2}
\ \
&=dfrac{144}{169}-dfrac{25}{169}
\ \
&=boxed{ dfrac{119}{169} }
end{align*}
$$
$$
begin{align*}
tan 2x&=dfrac{sin 2x}{cos 2x}
\ \
&=dfrac{-dfrac{120}{169}}{dfrac{119}{169}}
\ \
&=dfrac{-dfrac{120}{cancel{169}}}{dfrac{119}{cancel{169}}}
\ \
&=boxed{ -dfrac{120}{119} }
end{align*}
$$
\
\
\
Large{color{#c34632}(b) $sin 2x=-dfrac{336}{625}, cos 2x=-dfrac{527}{625}$ {color{Black}text{and}} $tan 2x=dfrac{336}{527}$
\
\
\
Large{color{#c34632}(c) $sin 2x=-dfrac{120}{169}, cos 2x=dfrac{119}{169}$ {color{Black}text{and}} $tan 2x=-dfrac{120}{119}$}$}$}$
We note that the right side is $color{#4257b2}dfrac{2sin xcos x}{1-2sin^{2}x}$ where the numerator is on the form of the double angle formula of the sine function where $color{#4257b2}sin 2theta=2sin thetacos theta$ and the denominator is on the form of the double angle formula of the cosine function where $color{#4257b2}cos 2theta=1-2sin^{2}theta$, so we can use these formulas to simplify the right side.
$$
begin{align*}
dfrac{2sin xcos x}{1-2sin^{2}x}&=dfrac{sin 2x}{cos 2x}
\ \
&=tan 2x
end{align*}
$$
Note that we used the identity $color{#4257b2}tan 2x=dfrac{sin 2x}{cos 2x}$. Now we note that the right side is simplified to $color{#4257b2}tan 2x$ which equals the left side, so $color{#4257b2}tan 2x=dfrac{2sin xcos x}{1-2sin^{2}x}$ $boxed{ text{is a trigonometric identity} }$
(b) We would like to determine if $color{#4257b2}sec^{2}x-tan^{2}x=cos x$ is a trigonometric equation or a trigonometric identity. First, we will simplify the left side and see it will equal the right side or not where if it equals the right side it will be a trigonometric identity and if not it will be a trigonometric equation.
We note that the left side is $color{#4257b2}sec^{2}x-tan^{2}x$, so we can use the Pythagorean identity $color{#4257b2}1+tan^{2}x=sec^{2}x$ to replace $color{#4257b2}sec^{2}x$ in the left side by $color{#4257b2}1+tan^{2}x$.
$$
begin{align*}
sec^{2}x-tan^{2}x&=1+tan^{2}x-tan^{2}x
\ \
&=1
end{align*}
$$
Now we note that the left side is simplified to $color{#4257b2}1$ which doesn’t equal the right side, so $color{#4257b2}sec^{2}x-tan^{2}x=cos x$ $boxed{ text{is a trigonometric equation} }$
We note that the left side is $color{#4257b2}csc^{2}x-cot^{2}x$, so we can use the Pythagorean identity $color{#4257b2}1+cot^{2}x=csc^{2}x$ to replace $color{#4257b2}csc^{2}x$ in the left side by $color{#4257b2}1+cot^{2}x$.
$$
begin{align*}
csc^{2}x-cot^{2}x&=1+cot^{2}x-cot^{2}x
\ \
&=1
end{align*}
$$
Now we note that the left side is simplified to $color{#4257b2}1$. Now we will simplify the right side.
We note that the right side is $color{#4257b2}sin^{2}x+cos^{2}x$, so we can use the Pythagorean identity $color{#4257b2}sin^{2}x+cos^{2}x=1$.
$$
sin^{2}x+cos^{2}x=1
$$
Now we note that the right side is simplified to $color{#4257b2}1$ which equals the left side, so $color{#4257b2}csc^{2}x-cot^{2}x=sin^{2}x+cos^{2}x$ $boxed{ text{is a trigonometric identity} }$.
(d) We would like to determine if $color{#4257b2}tan^{2}x=1$ is a trigonometric equation or a trigonometric identity. First, we note that the left side is $color{#4257b2}tan^{2}x$ which doesn’t equal the right side except for some values of $color{#4257b2}x$, so $color{#4257b2}tan^{2}x=1$ $boxed{ text{is a trigonometric equation} }$
\
\
Large{color{#c34632}(b) Trigonometric equation (d) Trigonometric equation}$}$
We note that the left side is $color{#4257b2}dfrac{1-sin^{2}x}{cot^{2}x}$ but we know that the Pythagorean identity $color{#4257b2}sin^{2}x+cos^{2}x=1$, so $color{#4257b2}cos^{2}x=1-sin^{2}x$ and we can use this identity to replace $color{#4257b2}1-sin^{2}x$ from the numerator by $color{#4257b2}cos^{2}x$
$$
dfrac{1-sin^{2}x}{cot^{2}x}=dfrac{cos^{2}x}{cot^{2}x}
$$
Now we can use the identity $color{#4257b2}cot x=dfrac{cos x}{sin x}$ to replace $color{#4257b2}cot^{2}x$ from the denominator by $color{#4257b2}dfrac{cos^{2}x}{sin^{2}x}$.
$$
begin{align*}
dfrac{1-sin^{2}x}{cot^{2}x}&=dfrac{cos^{2}x}{cot^{2}x}
\ \
&=dfrac{cos^{2}x}{dfrac{cos^{2}x}{sin^{2}x}}
\ \
&=dfrac{cancel{cos^{2}x}}{dfrac{cancel{cos^{2}x}}{sin^{2}x}}
\ \
&=dfrac{1}{dfrac{1}{sin^{2}x}}
\ \
&=sin^{2}x
\ \
&=1-cos^{2}x
end{align*}
$$
Note that in the final step we used the Pythagorean identity one more time but this by replacing $color{#4257b2}sin^{2}x$ by $color{#4257b2}1-cos^{2}x$. Now we note that the left side can be simplified to $color{#4257b2}1-cos^{2}x$ which equals the right side, so
$color{#4257b2}dfrac{1-sin^{2}x}{cot^{2}x}=1-cos^{2}x$ is a trigonometric identity.
We note that the left side is $color{#4257b2}dfrac{2sec^{2}x-2tan^{2}x}{csc x}$ but we know that the Pythagorean identity $color{#4257b2}1+tan^{2}x=sec^{2}x$, so we can use this identity to replace $color{#4257b2}sec^{2}x$ from the numerator by $color{#4257b2}1+tan^{2}x$.
$$
begin{align*}
dfrac{2sec^{2}x-2tan^{2}x}{csc x}&=dfrac{2left(1+tan^{2}xright)-2tan^{2}x}{csc x}
\ \
&=dfrac{2+2tan^{2}x-2tan^{2}x}{csc x}
\ \
&=dfrac{2+cancel{2tan^{2}x}cancel{-2tan^{2}x}}{csc x}
\ \
&=dfrac{2}{csc x}
\ \
&=dfrac{2}{dfrac{1}{sin x}}
\ \
&=boxed{ 2sin x }
end{align*}
$$
Note that in the final step we used the identity $color{#4257b2}csc x=dfrac{1}{sin x}$. Now we note that the left side can be simplified to $color{#4257b2}2sin x$, so the next step is to simplify the right side and see if it will equal the left side or not.
$$
begin{align*}
sin 2xsec x&=2sin xcos xsec x
\ \
&=2sin xcos xcdot left(dfrac{1}{cos x}right)
\ \
&=2sin xcancel{cos x}cdot left(dfrac{1}{cancel{cos x}}right)
\ \
&=boxed{ 2sin x }
end{align*}
$$
Note that in the second step we used the identity $color{#4257b2}sec x=dfrac{1}{cos x}$ to simplify. Now we note that the right side can be simplified also to $color{#4257b2}2sin x$, so the left side equals the right side and we proved that $color{#4257b2}dfrac{2sec^{2}x-2tan^{2}x}{csc x}=sin 2xsec x$ is a trigonometric identity.
$$
dfrac{2}{sin x}+10=6
$$
$$
dfrac{2}{sin x}+10-10=6-10
$$
$$
dfrac{2}{sin x}=-4
$$
$$
sin x=dfrac{2}{-4}=-dfrac{1}{2}
$$
Now we can take $color{#4257b2}sin^{-1}$ for each side to find the values of $color{#4257b2}x$.
$$
sin^{-1}left(sin xright)=sin^{-1}left(-dfrac{1}{2}right)
$$
$$
x=sin^{-1}left(-dfrac{1}{2}right)
$$
Now we will calculate $color{#4257b2}sin^{-1}left(dfrac{1}{2}right)$ to find the related acute angle.
$$
x=dfrac{pi}{6}
$$
Note that $color{#4257b2}dfrac{pi}{6}$ is a special angle which we know the value of the sine function of it where $color{#4257b2}sin dfrac{pi}{6}=dfrac{1}{2}$.
$$
x=pi+dfrac{pi}{6} text{or} x=2pi-dfrac{pi}{6}
$$
$$
x=dfrac{7pi}{6} text{or} x=dfrac{11pi}{6}
$$
So the solutions of the equation are $boxed{ x=dfrac{7pi}{6} } text{or} boxed{ x=dfrac{11pi}{6} }$
$$
-dfrac{5cot x}{2}+dfrac{7}{3}=-dfrac{1}{6}
$$
$$
-dfrac{5cot x}{2}+dfrac{7}{3}-dfrac{7}{3}=-dfrac{1}{6}-dfrac{7}{3}
$$
$$
-dfrac{5cot x}{2}=-dfrac{5}{2}
$$
Now we can multiply the two sides by $color{#4257b2}-dfrac{2}{5}$.
$$
left(-dfrac{2}{5}right)left(-dfrac{5cot x}{2}right)=left(-dfrac{2}{5}right)left(-dfrac{5}{2}right)
$$
$$
left(cancel{-dfrac{2}{5}}right)left(dfrac{cancel{-5}cot x}{cancel{2}}right)=left(cancel{-dfrac{2}{5}}right)left(cancel{-dfrac{5}{2}}right)
$$
$$
cot x=1
$$
Now we can take $color{#4257b2}cot^{-1}$ for each side to find the values of $color{#4257b2}x$.
$$
cot^{-1}left(cot xright)=cot^{-1}left(1right)
$$
$$
x=cot^{-1}left(1right)
$$
$$
x=dfrac{pi}{4}
$$
Note that $color{#4257b2}dfrac{pi}{4}$ is a special angle which we know the value of the cotangent function of it where $color{#4257b2}cot dfrac{pi}{4}=1$.
$$
x=dfrac{pi}{4} text{or} x=pi+dfrac{pi}{4}
$$
$$
x=dfrac{pi}{4} text{or} x=dfrac{5pi}{4}
$$
So the solutions of the equation are $boxed{ x=dfrac{pi}{4} } text{or} boxed{ x=dfrac{5pi}{4} }$
$$
3+10sec x-1=-18
$$
$$
2+10sec x=-18
$$
Now we can subtract $color{#4257b2}2$ from each side to make $color{#4257b2}sec x$ in the left side alone.
$$
2+10sec x-2=-18-2
$$
$$
10sec x=-20
$$
Now we can divide the two sides by $color{#4257b2}10$.
$$
dfrac{10sec x}{10}=dfrac{-20}{10}
$$
$$
sec x=-2
$$
But we know that $color{#4257b2}sec x=dfrac{1}{cos x}$, so we can use this identity in our equation.
$$
dfrac{1}{cos x}=-2
$$
$$
cos x=-dfrac{1}{2}
$$
Now we can take $color{#4257b2}cos^{-1}$ for each side to find the values of $color{#4257b2}x$.
$$
cos^{-1}left(cos xright)=cos^{-1}left(-dfrac{1}{2}right)
$$
$$
x=cos^{-1}left(-dfrac{1}{2}right)
$$
$$
x=dfrac{pi}{3}
$$
Note that $color{#4257b2}dfrac{pi}{3}$ is a special angle which we know the value of the cosine function of it where $color{#4257b2}cos dfrac{pi}{3}=dfrac{1}{2}$.
Now we determined the related acute angle for the equation $color{#4257b2}cos x=-dfrac{1}{2}$, so the next step is to know in which quadrants the solutions will be exist. We note that $color{#4257b2}cos x=-dfrac{1}{2}$ which means that it is negative, so the solutions will be in quadrant $2$ and quadrant $3$ where the cosine ratio is negative in these quadrants. Now we can use the related acute angle to find the solutions of the equation.
$$
x=pi-dfrac{pi}{3} text{or} x=pi+dfrac{pi}{3}
$$
$$
x=dfrac{2pi}{3} text{or} x=dfrac{4pi}{3}
$$
So the solutions of the equation are $boxed{ x=dfrac{2pi}{3} } text{or} boxed{ x=dfrac{4pi}{3} }$
text{color{#c34632}(a) $x=dfrac{7pi}{6}$ {color{Black}text{or}} $x=dfrac{11pi}{6}$
\
\
\
Large{color{#c34632}(b) $x=dfrac{pi}{4}$ {color{Black}text{or}} $x=dfrac{5pi}{4}$}
\
\
\
Large{color{#c34632}(c) $x=dfrac{2pi}{3}$ {color{Black}text{or}} $x=dfrac{4pi}{3}$}}
$$
$$
y^{2}-4=0
$$
$$
y^{2}=4
$$
Now we can take the square root for each side to find the values of $color{#4257b2}y$.
$$
y=pm sqrt{4}=pm 2
$$
So the solutions of the equation are $boxed{ y=2 } text{or} boxed{ y=-2 }$
(b) We would like to solve the equation $color{#4257b2}csc^{2}x-4=0$. First, we can add $color{#4257b2}4$ to each side to make $color{#4257b2}y$ in the left side alone.
$$
csc^{2}x-4=0
$$
$$
csc^{2}x=4
$$
Now we can take the square root for each side to find the values of $color{#4257b2}csc x$.
$$
csc x=pm sqrt{4}=pm 2
$$
But we know that $color{#4257b2}csc x=dfrac{1}{sin x}$, so we can use this identity.
$$
dfrac{1}{sin x}=pm 2
$$
$$
sin x=pm dfrac{1}{2}
$$
Now we have two cases for $color{#4257b2}sin x$, so we will solve each case to find the values of $color{#4257b2}x$.
$$
sin^{-1}left(sin xright)=sin^{-1}left(dfrac{1}{2}right)
$$
$$
x=sin^{-1}left(dfrac{1}{2}right)
$$
$$
x=dfrac{pi}{6}
$$
Now we determined the related acute angle for the equation $color{#4257b2}sin x=dfrac{1}{2}$, so the next step is to know in which quadrants the solutions will be exist. We note that $color{#4257b2}sin x=dfrac{1}{2}$ which means that it is positive, so the solutions will be in quadrant $1$ and quadrant $2$ where the sine ratio is positive in these quadrants. Now we can use the related acute angle to find the solutions of the equation.
$$
x=dfrac{pi}{6} text{or} x=pi-dfrac{pi}{6}
$$
$$
x=dfrac{pi}{6} text{or} x=dfrac{5pi}{6}
$$
So the solutions of the first case are $boxed{ x=dfrac{pi}{6} } text{or} boxed{ x=dfrac{5pi}{6} }$
$$
sin^{-1}left(sin xright)=sin^{-1}left(-dfrac{1}{2}right)
$$
$$
x=sin^{-1}left(-dfrac{1}{2}right)
$$
Now we will calculate $color{#4257b2}sin^{-1}left(dfrac{1}{2}right)$ to find the related acute angle.
$$
x=dfrac{pi}{6}
$$
Now we determined the related acute angle for the equation $color{#4257b2}sin x=-dfrac{1}{2}$, so the next step is to know in which quadrants the solutions will be exist. We note that $color{#4257b2}sin x=-dfrac{1}{2}$ which means that it is negative, so the solutions will be in quadrant $3$ and quadrant $4$ where the sine ratio is negative in these quadrants. Now we can use the related acute angle to find the solutions of the equation.
$$
x=pi+dfrac{pi}{6} text{or} x=2pi-dfrac{pi}{6}
$$
$$
x=dfrac{7pi}{6} text{or} x=dfrac{11pi}{6}
$$
So the solutions of the second case are $boxed{ x=dfrac{7pi}{6} } text{or} boxed{ x=dfrac{11pi}{6} }$
Now we found the solutions of each case, so the solutions of the equation are $color{#4257b2}x=left{dfrac{pi}{6}, dfrac{5pi}{6}, dfrac{7pi}{6}, dfrac{11pi}{6}right}$
text{color{#c34632}(a) $y=2$ {color{Black}text{or}} $y=-2$
\
\
\
Large{color{#c34632}(b) $x=left{dfrac{pi}{6}, dfrac{5pi}{6}, dfrac{7pi}{6}, dfrac{11pi}{6}right}$}}
$$
$$
2sin^{2}x-sin x-1=0
$$
$$
left(sin x-1right)left(2sin x+1right)=0
$$
Now we can use the zero-factor property to find the values of $color{#4257b2}sin x$.
$$
sin x-1=0 text{or} 2sin x+1=0
$$
$$
sin x=1 text{or} sin x=-dfrac{1}{2}
$$
Now we have two cases for $color{#4257b2}sin x$, so we can solve each case to find the values of $color{#4257b2}x$.
For $color{#4257b2}sin x=1$
$$
sin^{-1}left(sin xright)=sin^{-1}left(1right)
$$
$$
x=sin^{-1}left(1right)
$$
$$
x=dfrac{pi}{2}
$$
Note that $color{#4257b2}dfrac{pi}{2}$ is a special angle which we know the value of the sine function of it where $color{#4257b2}sin dfrac{pi}{2}=1$
So the solution of the first case is $boxed{ x=dfrac{pi}{2} }$
$$
sin^{-1}left(sin xright)=sin^{-1}left(-dfrac{1}{2}right)
$$
$$
x=sin^{-1}left(-dfrac{1}{2}right)
$$
Now we will calculate $color{#4257b2}sin^{-1}left(dfrac{1}{2}right)$ to find the related acute angle.
$$
x=dfrac{pi}{6}
$$
Note that $color{#4257b2}dfrac{pi}{6}$ is a special angle which we know the value of the sine function of it where $color{#4257b2}sin dfrac{pi}{6}=dfrac{1}{2}$.
Now we determined the related acute angle for the equation $color{#4257b2}sin x=-dfrac{1}{2}$, so the next step is to know in which quadrants the solutions will be exist. We note that $color{#4257b2}sin x=-dfrac{1}{2}$ which means that it is negative, so the solutions will be in quadrant $3$ and quadrant $4$ where the sine ratio is negative in these quadrants. Now we can use the related acute angle to find the solutions of the equation.
$$
x=pi+dfrac{pi}{6} text{or} x=2pi-dfrac{pi}{6}
$$
$$
x=dfrac{7pi}{6} text{or} x=dfrac{11pi}{6}
$$
So the solutions of the second case are $boxed{ x=dfrac{7pi}{6} } text{or} boxed{ x=dfrac{11pi}{6} }$
Now we found the solutions of each case, so the solutions of the equation are $color{#4257b2}x=left{dfrac{pi}{2}, dfrac{7pi}{6}, dfrac{11pi}{6}right}$
$$
tan^{2}xsin x-dfrac{sin x}{3}=0
$$
$$
sin xleft(tan^{2}x-dfrac{1}{3}right)=0
$$
Now we note that the term $color{#4257b2}tan^{2}x-dfrac{1}{3}$ is on the form $color{#4257b2}a^{2}-b^{2}$, so we can factor it where $color{#4257b2}a^{2}-b^{2}=left(a+bright)left(a-bright)$.
$$
sin xleft(tan x+dfrac{1}{sqrt{3}}right)left(tan x-dfrac{1}{sqrt{3}}right)=0
$$
Now we can use the zero-factor property.
$$
sin x=0, tan x+dfrac{1}{sqrt{3}}=0 text{or} tan x-dfrac{1}{sqrt{3}}=0
$$
$$
sin x=0, tan x=-dfrac{1}{sqrt{3}} text{or} tan x=dfrac{1}{sqrt{3}}
$$
Now we have three cases, so we can solve each case to find the values of $color{#4257b2}x$.
For $color{#4257b2}sin x=0$
$$
sin^{-1}left(sin xright)=sin^{-1}left(0right)
$$
$$
x=sin^{-1}left(0right)
$$
$$
x=0, pi text{or} x=2pi
$$
So the solutions of the first case are $boxed{ x=0, pi } text{or} boxed{ x=2pi }$
For $color{#4257b2}tan x=-dfrac{1}{sqrt{3}}$
$$
tan^{-1}left(tan xright)=tan^{-1}left(-dfrac{1}{sqrt{3}}right)
$$
$$
x=tan^{-1}left(-dfrac{1}{sqrt{3}}right)
$$
Now we will calculate $color{#4257b2}tan^{-1}left(dfrac{1}{sqrt{3}}right)$ to find the related acute angle.
$$
x=dfrac{pi}{6}
$$
Note that $color{#4257b2}dfrac{pi}{6}$ is a special angle which we know the value of the tangent function of it where $color{#4257b2}tan dfrac{pi}{6}=dfrac{1}{sqrt{3}}$.
Now we determined the related acute angle for the equation $color{#4257b2}tan x=-dfrac{1}{sqrt{3}}$, so the next step is to know in which quadrants the solutions will be exist. We note that $color{#4257b2}tan x=-dfrac{1}{sqrt{3}}$ which means that it is negative, so the solutions will be in quadrant $2$ and quadrant $4$ where the tangent ratio is negative in these quadrants. Now we can use the related acute angle to find the solutions of the equation.
$$
x=pi-dfrac{pi}{6} text{or} x=2pi-dfrac{pi}{6}
$$
$$
x=dfrac{5pi}{6} text{or} x=dfrac{11pi}{6}
$$
So the solutions of the second case are $boxed{ x=dfrac{5pi}{6} } text{or} boxed{ x=dfrac{11pi}{6} }$
$$
tan^{-1}left(tan xright)=tan^{-1}left(dfrac{1}{sqrt{3}}right)
$$
$$
x=tan^{-1}left(dfrac{1}{sqrt{3}}right)
$$
$$
x=dfrac{pi}{6}
$$
Note that $color{#4257b2}dfrac{pi}{6}$ is a special angle which we know the value of the tangent function of it where $color{#4257b2}tan dfrac{pi}{6}=dfrac{1}{sqrt{3}}$.
Now we determined the related acute angle for the equation $color{#4257b2}tan x=dfrac{1}{sqrt{3}}$, so the next step is to know in which quadrants the solutions will be exist. We note that $color{#4257b2}tan x=dfrac{1}{sqrt{3}}$ which means that it is positive, so the solutions will be in quadrant $1$ and quadrant $3$ where the tangent ratio is positive in these quadrants. Now we can use the related acute angle to find the solutions of the equation.
$$
x=dfrac{pi}{6} text{or} x=pi+dfrac{pi}{6}
$$
$$
x=dfrac{pi}{6} text{or} x=dfrac{7pi}{6}
$$
So the solutions of the third case are $boxed{ x=dfrac{pi}{6} } text{or} boxed{ x=dfrac{7pi}{6} }$
Now we found the solutions of each case, so the solutions of the equation are $color{#4257b2}x=left{0, dfrac{pi}{6}, dfrac{5pi}{6}, pi, dfrac{7pi}{6}, dfrac{11pi}{6}, 2piright}$
$$
cos^{2}x+left(dfrac{1-sqrt{2}}{2}right) cos x-dfrac{sqrt{2}}{4}=0
$$
$$
4cos^{2}x+2left(1-sqrt{2}right) cos x-sqrt{2}=0
$$
Now we note that we have a quadratic equation on the form $color{#4257b2}a y^{2}+b y+c=0$ where $color{#4257b2}y$ here is considered to be $color{#4257b2}sin x$ in our equation, so we can factor to find the values of $color{#4257b2}cos x$.
$$
left(2cos x-sqrt{2}right)left(2cos x+1right)=0
$$
Now we can use the zero-factor property to find the values of $color{#4257b2}cos x$.
$$
2cos x-sqrt{2}=0 text{or} 2cos x+1=0
$$
$$
cos x=dfrac{sqrt{2}}{2} text{or} cos x=-dfrac{1}{2}
$$
Now we have two cases for $color{#4257b2}cos x$, so we can solve each case to find the values of $color{#4257b2}x$.
$$
cos^{-1}left(cos xright)=cos^{-1}left(dfrac{sqrt{2}}{2}right)
$$
$$
x=cos^{-1}left(dfrac{sqrt{2}}{2}right)
$$
$$
x=dfrac{pi}{4}
$$
Note that $color{#4257b2}dfrac{pi}{4}$ is a special angle which we know the value of the cosine function of it where $color{#4257b2}cos dfrac{pi}{4}=dfrac{sqrt{2}}{2}$.
Now we determined the related acute angle for the equation $color{#4257b2}cos x=dfrac{sqrt{2}}{2}$, so the next step is to know in which quadrants the solutions will be exist. We note that $color{#4257b2}cos x=dfrac{sqrt{2}}{2}$ which means that it is positive, so the solutions will be in quadrant $1$ and quadrant $4$ where the cosine ratio is positive in these quadrants. Now we can use the related acute angle to find the solutions of the equation.
$$
x=dfrac{pi}{4} text{or} x=2pi-dfrac{pi}{4}
$$
$$
x=dfrac{pi}{4} text{or} x=dfrac{7pi}{4}
$$
So the solutions of the first case are $boxed{ x=dfrac{pi}{4} } text{or} boxed{ x=dfrac{7pi}{4} }$
$$
cos^{-1}left(cos xright)=cos^{-1}left(-dfrac{1}{2}right)
$$
$$
x=cos^{-1}left(-dfrac{1}{2}right)
$$
Now we will calculate $color{#4257b2}cos^{-1}left(dfrac{1}{2}right)$ to find the related acute angle.
$$
x=dfrac{pi}{3}
$$
Note that $color{#4257b2}dfrac{pi}{3}$ is a special angle which we know the value of the cosine function of it where $color{#4257b2}cos dfrac{pi}{3}=dfrac{1}{2}$.
Now we determined the related acute angle for the equation $color{#4257b2}cos x=-dfrac{1}{2}$, so the next step is to know in which quadrants the solutions will be exist. We note that $color{#4257b2}cos x=-dfrac{1}{2}$ which means that it is negative, so the solutions will be in quadrant $2$ and quadrant $3$ where the cosine ratio is negative in these quadrants. Now we can use the related acute angle to find the solutions of the equation.
$$
x=pi-dfrac{pi}{3} text{or} x=pi+dfrac{pi}{3}
$$
$$
x=dfrac{2pi}{3} text{or} x=dfrac{4pi}{3}
$$
So the solutions of the second case are $boxed{ x=dfrac{2pi}{3} } text{or} boxed{ x=dfrac{4pi}{3} }$
Now we found the solutions of each case, so the solutions of the equation are $color{#4257b2}x=left{dfrac{pi}{4}, dfrac{2pi}{3}, dfrac{4pi}{3}, dfrac{7pi}{4}right}$
$$
25tan^{2}x-70tan x=-49
$$
$$
25tan^{2}x-70tan x+49=0
$$
Now we note that we have a quadratic equation on the form $color{#4257b2}a y^{2}+b y+c=0$ where $color{#4257b2}y$ here is considered to be $color{#4257b2}tan x$ in our equation, so we can factor to find the values of $color{#4257b2}tan x$.
$$
left(5tan x-7right)left(5tan x-7right)=0
$$
Now we can use the zero-factor property to find the values of $color{#4257b2}tan x$.
$$
5tan x-7=0 text{or} 5tan x-7=0
$$
$$
tan x=dfrac{7}{5} text{or} tan x=dfrac{7}{5}
$$
$$
tan x=dfrac{7}{5}
$$
$$
tan^{-1}left(tan xright)=tan^{-1}left(dfrac{7}{5}right)
$$
$$
x=tan^{-1}left(dfrac{7}{5}right)
$$
$$
x=0.95 text{radians}
$$
Now we determined the related acute angle for the equation $color{#4257b2}tan x=dfrac{7}{5}$, so the next step is to know in which quadrants the solutions will be exist. We note that $color{#4257b2}tan x=dfrac{7}{5}$ which means that it is positive, so the solutions will be in quadrant $1$ and quadrant $3$ where the tangent ratio is positive in these quadrants. Now we can use the related acute angle to find the solutions of the equation.
$$
x=0.95 text{or} x=pi+0.95
$$
$$
x=0.95 text{radians} text{or} x=4.09 text{radians}
$$
So the solutions of the equation are $color{#4257b2}x=left{0.95 text{rdains}, 4.09 text{radians}right}$
\
\
\
Large{color{#c34632}(b) $x=left{0, dfrac{pi}{6}, dfrac{5pi}{6}, pi, dfrac{7pi}{6}, dfrac{11pi}{6}, 2piright}$}
\
\
\
Large{color{#c34632}(c) $x=left{dfrac{pi}{4}, dfrac{2pi}{3}, dfrac{4pi}{3}, dfrac{7pi}{4}right}$}
\
\
\
Large{color{#c34632}(d) $x=left{0.95 text{rdains}, 4.09 text{radians}right}$}$}$
$$
dfrac{1}{1+tan^{2}x}=-cos x
$$
$$
dfrac{1}{sec^{2}x}=-cos x
$$
Now we can use the identity $color{#4257b2}sec x=dfrac{1}{cos x}$ to replace $color{#4257b2}sec^{2}x$ by $color{#4257b2}dfrac{1}{cos^{2}x}$.
$$
dfrac{1}{dfrac{1}{cos^{2}x}}=-cos x
$$
$$
cos^{2}x=-cos x
$$
Now we can add $color{#4257b2}cos x$ to each side to make the right side equals zero.
$$
cos^{2}x+cos x=0
$$
Now we can take $color{#4257b2}cos x$ as a common factor.
$$
cos xleft(cos x+1right)=0
$$
Now we can use the zero-factor property.
$$
cos x=0 text{or} cos x+1=0
$$
$$
cos x=0 text{or} cos x=-1
$$
Now we have two cases for $color{#4257b2}cos x$, so we will solve each case to find the values of $color{#4257b2}x$.
$$
cos^{-1}left(cos xright)=cos^{-1}left(0right)
$$
$$
x=cos^{-1}left(0right)
$$
$$
x=dfrac{pi}{2} text{or} x=dfrac{3pi}{2}
$$
But we know that the range of the tangent function is $color{#4257b2}R-left{dfrac{pi}{2}+n piright}$ where $n$ is any integer number, so the solutions $color{#4257b2}x=dfrac{pi}{2} {color{Black}text{or}} x=dfrac{3pi}{2}$ are refused because the original equation contains $color{#4257b2}tan^{2}x$.
For $color{#4257b2}cos x=-1$
$$
cos^{-1}left(cos xright)=cos^{-1}left(-1right)
$$
$$
x=cos^{-1}left(-1right)
$$
$$
x=pi
$$
Note that $color{#4257b2}pi$ is a special angle which we know the value of the cosine function of it where $color{#4257b2}cos pi=-1$.
So the solution of the equation is $color{#4257b2}x=left{piright}$