Advanced Functions 12
Advanced Functions 12
1st Edition
Chris Kirkpatrick, Kristina Farentino, Susanne Trew
ISBN: 9780176678326
Textbook solutions

All Solutions

Section 1-4: Sketching Graphs of Functions

Exercise 1
Step 1
1 of 3
#### (a)

We $textbf{subtract}$ 1 from the $y$-coordinates of the parent function to $textbf{translate}$ the graph 1 unit down on $y$-axis.

#### (b)

We first $textbf{multiply}$ the $x$-coordinates of the parent function by $dfrac{1}{2}$, to apply a $textbf{horizontal compression}$ by a factor $dfrac{1}{2}$. Next,we $textbf{subtract}$ -1from the x-coordinates of the previous function,in order to $textbf{translate}$ the graph 1 unit to the right.

#### (c)

First, we $textbf{multiply}$ the $y$-coordinates by -1 to apply a $textbf{vertical strech}$ by a factor of 1. Then, $textbf{subtract}$ -3 from the $x$-coordinates and $textbf{add}$ 2 to $y$-coordinates to $textbf{translate}$ the graph 3 units to the right and 2 units up.

#### (d)

First, we $textbf{multiply}$ the $x$-coordinates of points on the parent function by $dfrac{1}{4}$, then we $textbf{multiply}$ the $y$-coordinates by -2 to apply $textbf{horizontal compression}$ by a factor of $dfrac{1}{4}$ and a $textbf{vertical strech}$ by a factor of 2.

Step 2
2 of 3
#### (e)

First, we $textbf{multiply}$ the $x$-coordinates of points of the parent function by -1, then we $textbf{multiply}$ the $y$-coordinates by -1 toapply $textbf{horizontal compression}$ by -1 and $textbf{vertical strech}$ by a factor of -1. Then, $textbf{subtract}$ 2 from the $x$-coordinates and 3 from $y$-coordinates of points on the previous function, this we do to apply $textbf{transaltion}$ the graph 2 points tothe left and 3 units down.

#### (f)

First, we $textbf{multiply}$ the $x$-coordinates of points on the parent function by 4, then we $textbf{multiply}$ the $y$-coordinates by $dfrac{1}{2}$ to apply $textbf{horizontal compression}$ by 4 and $textbf{vertical strech}$ by a factor $dfrac{1}{2}$. Then,textbf{subtract} -5 from the $x$-coordinates and $textbf{add}$ 6 to the $y$-coordinates of points on the previous function. This we do to apply $textbf{translation}$ the graph 5 units to the right and 6 units up.

Result
3 of 3
see solution
Exercise 2
Step 1
1 of 2
#### (a)

Representing the reflection in the $x$-axis: $a=-1$, representing the horizontal stretch by a factor of $2$: $k=dfrac{1}{2}$, representing the horizontal the horizontal translation: $d=0$, representing the vertical translation $3$ units up: $c=3$. The function is $y=-sin(dfrac{1}{2}x)+3$.

#### (b)

Representing the amplitude: $a=3$, representing the horizontal stretch by a factor of $2$: $k=dfrac{1}{2}$, representing the horizontal translation: $d=0$, representing the vertical.The function is $y=3sin(dfrac{1}{2}x)-2$.

Result
2 of 2
see solution
Exercise 3
Step 1
1 of 2
We have that our function is $y=f(x)$ and $textbf{transformed function}$ is $y=-2f(x+5)-4$ and point $(2,3)$ which is on the graph of our origin function.

Now, we are going to $textbf{transform coordinates}$ of point $(2,3)$ according to transformation we had at the origin function:

First, we have the transformation which follows.There is $textbf{horizontal comression}$ by $dfrac{1}{2}$,and $textbf{vertical strech}$ by a factor of -2:

$left(x,y right)rightarrowleft(dfrac{1}{2}x,-2y right)$ $Rightarrow$ $left(2,3 right)rightarrowleft(1,-6 right)$

After this, we have transformation of previous coordinates in order to make $textbf{translation}$ of the graph 5 units to the left and 4 units down:

$left(dfrac{1}{2}x,-2y right)rightarrowleft(dfrac{1}{2}x-5,-2y-4 right)$ $Rightarrow$ $left(1,-6 right)rightarrowleft(-4,-10 right)$

So, $textbf{corresponding point}$ on the graph of transformed function is $left(-4,-10 right)$

Result
2 of 2
$$
left(-4,-10 right)
$$
Exercise 4
Step 1
1 of 2
According to explanation in previous tasks, here we are going to transform coordinates of given functions.

#### (a)

$left(x,y right)rightarrowleft(x,2y right)$, here we have $textbf{vertical strech}$ by a factor of 2.

$Rightarrow$ $left(2,3 right)rightarrowleft(2,6 right)$, $left(4,7 right)rightarrowleft(4,14 right)$, $left(-2,5 right)rightarrowleft(-2,10 right)$, $left(-4,6 right)rightarrowleft(-4,12 right)$

#### (b)

$left(x,y right)rightarrowleft(x+3,y right)$, here we have $textbf{translation}$ of the graph 3 units on the right.

$Rightarrow$ $left(2,3 right)rightarrowleft(5,3 right)$, $left(4,7 right)rightarrowleft(7,7 right)$, $left(-2,5 right)rightarrowleft(1,5 right)$, $left(-4,6 right)rightarrowleft(-1,6 right)$

#### (c)

$left(x,y right)rightarrowleft(x,y+2 right)$, here we have $textbf{translation}$ of the graph 3 units down.

$Rightarrow$ $left(2,3 right)rightarrowleft(2,5 right)$, $left(4,7 right)rightarrowleft(4,9 right)$, $left(-2,5 right)rightarrowleft(-2,7 right)$, $left(-4,6 right)rightarrowleft(-4,8 right)$

#### (d)

$left(x,y right)rightarrowleft(x-1,y-3 right)$, here we have $textbf{translation}$ of the graph 1unit on the left and 3 units down.

$Rightarrow$ $left(2,3 right)rightarrowleft(1,0 right)$, $left(4,7 right)rightarrowleft(3,4 right)$, $left(-2,5 right)rightarrowleft(-3,2right)$, $left(-4,6 right)rightarrowleft(-5,3 right)$

Step 2
2 of 2
#### (e)

$left(x,y right)rightarrowleft(-x,y right)$, here we have $textbf{horizontal compression}$ by -1.

$Rightarrow$ $left(2,3 right)rightarrowleft(-2,3 right)$, $left(4,7 right)rightarrowleft(-4,7 right)$, $left(-2,5 right)rightarrowleft(2,5 right)$, $left(-4,6 right)rightarrowleft(4,6 right)$

#### (f)

$left(x,y right)rightarrowleft(dfrac{1}{2}x,y-1 right)$, here we have $textbf{horizontal compression}$ by $dfrac{1}{2}$ and $textbf{translation}$ of the graph 1 unit down.

$Rightarrow$ $left(2,3 right)rightarrowleft(1,2 right)$, $left(4,7 right)rightarrowleft(2,6 right)$, $left(-2,5 right)rightarrowleft(-1,4 right)$, $left(-4,6 right)rightarrowleft(-2,5 right)$

Exercise 5
Step 1
1 of 6
#### (a)

$textbf{Parent}$ function is $y=x^2$

Transformation which has been made is $textbf{translation}$ of the graph 1 unit to the left.

Exercise scan

Step 2
2 of 6
#### (b)

$textbf{Parent}$ function is $y=left|x right|$

Transformation which has been made is $textbf{vertical strech}$ by a factor of 2.

Exercise scan

Step 3
3 of 6
#### (c)

$textbf{Parent}$ function is $y=sin{x}$

Transformation which has been made is $textbf{horizontal compression}$ by $dfrac{1}{2}$ and $textbf{translation}$ the graph 1 unit up.

Exercise scan

Step 4
4 of 6
#### (d)

$textbf{Parent}$ function is $y=dfrac{1}{x}$

Transformation which has been made is $textbf{translation}$ the graph 3 units up.

Exercise scan

Step 5
5 of 6
#### (e)

$textbf{Parent}$ function is $y=2^x$

Transformation which has been made is $textbf{horizontal compression}$ by 2.

Exercise scan

Step 6
6 of 6
#### (f)

$textbf{Parent}$ function is $y=sqrt{x}$

Transformation which has been made is $textbf{horizontal compression}$ by $dfrac{1}{2}$ and $textbf{translation}$ the graph 6 units to the right.

Exercise scan

Exercise 6
Step 1
1 of 2
Here, we have the $textbf{domain and range}$ of $textbf{transformed}$ functions in previous task:

#### (a)

$D=Bbb{R}$

$R=left[0,infty right)$

#### (b)

$D=Bbb{R}$

$R=left[0,infty right)$

#### (c)

$D=Bbb{R}$

$R=left[0,2 right]$

#### (d)

$D=Bbb{R}/left{ 0right}$

$R=Bbb{R}$

Step 2
2 of 2
#### (e)

$D=Bbb{R}$

$R=left(0,infty right)$

#### (f)

$D=left[6,infty right)$

$R=left[0,infty right)$

Exercise 7
Step 1
1 of 2
#### (a)

Here we have $textbf{graphs of the parent and transformed function}$.Red one is graph of parent function $y=2^x$ and blue one is graph of transformed function.

Exercise scan

Step 2
2 of 2
#### (b)

$textbf{The parent function:}$

$D=Bbb{R}$

$R=left(0,infty right)$

This function is $textbf{increasing}$ on $left(0,infty right)$ and have $textbf{horizontal asymptote}$ defined by $y=0$.

$textbf{Transformed function:}$

$D=Bbb{R}$

$R=left(-infty,2 right)$

This function is $textbf{decreasing}$ on $left(-infty,2 right)$ and have a $textbf{horizontal asymptote}$ defined by $y=4$.

#### (c)

$y=-2f(3(x-1))+4=-2cdot2^{3(x-1)}+4=-2^{3(x-1)+1}+4=-2^{3x-2}+4$

Exercise 8
Step 1
1 of 1
$textbf{Transformed function}$ of given function $y=sqrt{x}$ is function $y=3sqrt{x-5}$, and here is its $textbf{graph}$:

Exercise scan

Exercise 9
Step 1
1 of 2
#### (a)

Here we have $textbf{vertical strech}$ by a factor of 3 and $textbf{translation}$ for 2 units to the right. So, the transformation of coordinates is:

$left(x,y right)rightarrowleft(x+2,3y right)$

$Rightarrow$ $left(1,8 right)rightarrowleft(3,24 right)$

#### (b)

Here we have $textbf{horizontal compression}$ by a factor of $dfrac{1}{2}$ and $textbf{translation}$ for 1 unit to the left and for 4 units down. So, the transformation of coordinates is:

$left(x,y right)rightarrowleft(dfrac{1}{2}x-1,y-4 right)$

$Rightarrow$ $left(1,8 right)rightarrowleft(-dfrac{1}{2},4 right)$

#### (c)

Here we have $textbf{horizontal compression}$ by -1, $textbf{vertical strech}$ by a factor of -2 and $textbf{translation}$ 7 units down. So, the transformation of coordinates is:

$left(x,y right)rightarrowleft(-x,-2y-7 right)$

$Rightarrow$ $left(1,8 right)rightarrowleft(-1,-23 right)$

#### (d)

Here we have $textbf{horizontal strech}$ by $dfrac{1}{4}$ and $textbf{vertical strech}$ by a factor of -1 and $textbf{translation}$ for 1 unit to the left. So, the transformation of coordinates is:

$left(x,y right)rightarrowleft(dfrac{1}{4}x-1,-y right)$

$Rightarrow$ $left(1,8 right)rightarrowleft(-dfrac{3}{4},-8 right)$

Step 2
2 of 2
#### (e)

Here we have $textbf{horizontal compression}$ by factor -1 and $textbf{vertical strech}$ by a factor of -1 and $textbf{translation}$. So, the transformation of coordinates is:

$left(x,y right)rightarrowleft(-x,-y right)$

$Rightarrow$ $left(1,8 right)rightarrowleft(-1,-8 right)$

#### (f)

Here we have $textbf{horizontal compression}$ by a factor of 2 and $textbf{vertical strech}$ by a factor of $dfrac{1}{2}$ and $textbf{translation}$ for 3 units to the left and 3 units up. So, the transformation of coordinates is:

$left(x,y right)rightarrowleft(2x-3,dfrac{1}{2}y+3 right)$

$Rightarrow$ $left(1,8 right)rightarrowleft(-1,7 right)$

Exercise 10
Step 1
1 of 1
#### (a)

$textbf{Transformed function}$ is $g(x)=sqrt{x-2}$

$D=left[2,infty right)$

$R=left[0,infty right)$

#### (b)

$textbf{Transformed function}$ is $h(x)=2sqrt{x-1}+4$

$D=left[1,infty right)$

$R=left[4,infty right)$

#### (c)

$textbf{Transformed function}$ is $k(x)=sqrt{-x}+1$

$D=left(-infty,0 right]$

$R=left[1,infty right)$

#### (d)

$textbf{Transformed function}$ is $j(x)=3sqrt{2(x-5)}-3$

$D=left[5,infty right)$

$R=left[-3,infty right)$

Exercise 11
Step 1
1 of 1
$textbf{Parent function}$ of both those transformed functions is $y=x^2$.

First transformed function, $y=5x^2-3$ has $textbf{horizontal comression}$ by $dfrac{1}{5}$ and $textbf{translation}$ 3 units down.

The second transformed function is $y=5(x^2-3)$, it has $textbf{vertical strech}$ by a factor of 5 and $textbf{translation}$ 3 units on the right.

Exercise 12
Step 1
1 of 4
Here we have the graph of the function $f(x)=x^3-3x^2$:

Exercise scan

Step 2
2 of 4
Here we have the graph of the function $g(x)=f(x-1)=(x-1)^3-3(x-1)^2$:

Exercise scan

Step 3
3 of 4
Here we have the graph of the function $h(x)=-f(x)=-(x^3-3x^2)=3x^2-x^3$:

Exercise scan

Step 4
4 of 4
First, compare the functions $f$ and $h$:

$f$ is $textbf{increasing}$ on intervals $left(-infty,0 right]$ and on $left[2,infty right)$ and it is $textbf{decreasing}$ on interval $left(0,2 right)$

$h$ is $textbf{decreasing}$ on intervals $left(-infty,0 right]$ and on $left[2,infty right)$ and it is $textbf{increasing}$ on interval $left(0,2 right)$

Now, we are comparing functions $f$ and $g$:

$g$ has the same properties as function $f$ except that graph of $g$ is $textbf{translated}$ 1 unit to the right.

Exercise 13
Step 1
1 of 1
#### (a)

Here we have $textbf{vertically strech}$ by a factor of 4.

#### (b)

Here we have $textbf{horizontall compression}$ by $dfrac{1}{2}$

#### (c)

Here we are prooving that those two functions are the same functions:

$y=(2x)^2=2^2x^2=4x^2$

So, they are really the same functions.

Exercise 14
Step 1
1 of 2
Answers may vary. For example:Exercise scan
Result
2 of 2
see solution
Exercise 15
Step 1
1 of 2
For this parent function $y=f(x)$, we have $textbf{transformed function}$
$y=2f(x+1)-4$.

So, according to this, we have following $textbf{transformation of coordinates}$:

$left(x,y right)rightarrowleft(x-1,2y-4 right)$

We are given transformed coordinates, and that is point $left(4,5 right)$. In order to find the appropriate point on the parental function graph, the coordinates of the transfor- mated points must satisfy the following equations:

$x-1=3$ $wedge$ $2y-4=6$ $Rightarrow$ $x=4$ $wedge$ $y=5$

So, original point on the graph of $y=f(x)$ is $left(4,5 right)$.

Result
2 of 2
$$
left(4,5 right)
$$
Exercise 16
Step 1
1 of 1
#### (a)

Here we have $textbf{horizontal compression}$ by $dfrac{1}{3}$ and $textbf{translation}$ 2 units left.

#### (b)

Because, $textbf{algebraically}$, those functios are the same. Really:

$y=f(3(x+2))=f(3x+6)$

#### (c)

We have that our $textbf{parent function}$ in this case is $f(x)=x^2$.

First transformation of this function is: $y=f(3(x+2))=(3(x+2))^2$

Second transformation is: $y=f(3x+6)=(3x+6)^2$

Here we have the graphs of previous transformed functions, where that one with red dots is first transformation, and with green dots is second transformation. We can see from this graph that $textbf{they are the same transformed function}$.

Exercise scan

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New