Core Connections Integrated 3
Core Connections Integrated 3
1st Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283939
Textbook solutions

All Solutions

Page 643: Closure Activity

Exercise 115
Step 1
1 of 4
a. We have $cos(x) = dfrac{3}{4}$. Now we will first find values of x.

$$begin{aligned}
cos(x) &= dfrac{3}{4} \\
cos^{-1} (cos(x)) &= cos^{-1}dfrac{3}{4} \\
x& = 41.41degree
end{aligned}$$

Now we know cosine is positive in the first and fourth quadrant. This implies
$$cos (360degree – theta) = cos theta$$

Therefore,
$$begin{aligned}
cos(360 degree – x) &= cos (41.41degree) \
cos(360degree – 41.41degree ) &= (cos 41.41degree) \
cos(318.59degree)& = cos (41.41degree)
end{aligned}$$

This implies $x = 318.59degree$

The period of $costheta$ is $2pi$. Therefore the value will repeat if we add $360degree$, n number of times to the values of x where n is a positive integer.

Therefore for $cos x = dfrac{3}{4}$

$x=41.41degree + 360degree(n)$ and
$x=318.59degree + 360degree(n)$

Thus for these values of x $cos x = dfrac{3}{4}$ will always be true.

Step 2
2 of 4
b. We have $2tan(x) = 0$. Now we will first find values of x.

$$begin{aligned}
2tan(x) &= 0 \
tan(x) &= 0 \
tan^{-1} (tan(x)) &= tan^{-1} (0) \
x& = 0
end{aligned}$$

Now we know tan is positive in the first and third quadrant. This implies
$$tan (pi + theta) = tan theta$$

Therefore,
$$begin{aligned}
tan(pi + x) &= tan x \
tan(pi + 0) &= tan 0 \
tan(pi)& = tan 0
end{aligned}$$

This implies $x = pi$

The period of $tantheta$ is $2pi$. Therefore the value will repeat if we add $2pi$, n number of times to the values of x where n is a positive integer.

Therefore for $2tan x =0$

$x=0 + 2pi n$ or $2npi$ and
$x=pi + 2pi n$ or $x= pi(1+2n)$

As we can see the values are (2n) $pi$ and (2n+1)$pi$. We know (2n) implies an even integer and (2n+1) is an odd integer. So we can further simplify and state

For the values of x = n$pi$ we have $2tan x = 0$ and that will always be true.

Step 3
3 of 4
c. We have $sin(x) = dfrac{5}{2}$ or $sin(x) = 2.5$

Now we know $sintheta = dfrac{text{Prependicular}}{text{Hypotenuse}}$

and Hypotenuse is the longest side of the triangle. The value of $sintheta$ can, thus, never be greater than one.

Thus, $sin x = dfrac{5}{2}$ can never be true.

Step 4
4 of 4
d. We have $sin (x) = cos left(dfrac{pi}{2} – xright )$

$sintheta = dfrac{text{Prependicular}}{text{Hypotenuse}}$

$costheta = dfrac{text{Base}}{text{Hypotenuse}}$

We can see that sine and cosine are complementary to each other.
So $sin (x) = cos left(dfrac{pi}{2} – xright )$ is always true.

Exercise 116
Step 1
1 of 6
a. We have $2cos(x) = 1$.
Simplifying it,
$$begin{aligned}
2cos(x) &= 1 \\
cos (x) &= dfrac{1}{2} \\
cos^{-1} (cos(x)) &= cos^{-1}dfrac{1}{2} \\
x& = 60degree
end{aligned}$$

Now we know cosine is positive in the first and fourth quadrant. This implies
$$cos (360degree – theta) = cos theta$$

Therefore,
$$begin{aligned}
cos(360 degree – x) &= cos (60degree) \
cos(360degree – 60degree ) &= (cos 60degree) \
cos(300degree)& = cos (60degree)
end{aligned}$$

This implies $x = 300degree$

Therefore for $2cos x = 1$

$x=60degree$ or $dfrac{pi}{3}$ and

$x=300degree$ or $dfrac{5pi}{3}$

where $0<xle2pi$

Step 2
2 of 6
b. We have $4tan(x)+4 = 0$.
Simplifying it,

$$begin{aligned}
4tan(x)+4 &= 0 \
4tan(x)&= -4 \\
tan (x) &= -dfrac{4}{4} \\
tan (x) &= -1 \
tan^{-1} (tan(x)) &= tan^{-1}(-1) \
x&=tan^{-1}(-1)
end{aligned}$$

We know $tan(45degree) = 1$
Also $tan$ is negative in second quadrant.
So, $tan(180degree-theta) = -tantheta$
Therefore,
$$begin{aligned}
tan(180degree-45) &= -tan(45degree) \
tan(135degree)&= -1
tan^{-1}(tan(135degree))&=tan^{-1}(-1) \
135degree&=tan^{-1}(-1)
end{aligned}$$

Therefore we have x = $135 degree$

Now we know tangent is positive in the first and third quadrant. This implies
$$tan (180degree + theta) = tan theta$$

Therefore,
$$begin{aligned}
tan(180 degree + x) &= tan (x) \
tan(180 degree + 135degree) &= tan (135degree) \
tan(315degree)& = tan (135degree)
end{aligned}$$

This implies $x = 315degree$

Therefore for $4tan(x)+4 = 0$.

$x=135degree$ or $dfrac{3pi}{4}$ and

$x=315degree$ or $dfrac{7pi}{4}$

where $0<xle2pi$

Step 3
3 of 6
c. We have $2sin^2(x)-sin(x)-1 = 0$
We can simplify it by splitting the middle term

$$begin{aligned}
2sin^2(x)-sin(x)-1 &= 0 \
2sin^2(x)-2sin(x)+sin(x)-1 &= 0 \
2sin(x)[sin(x)-1]+1[sin(x)-1] &= 0 \
[sin(x)-1][2sin(x)+1] &=0 \
end{aligned}$$

We have $sin(x)-1 = 0$ and $2sin(x)+1 = 0$

Step 4
4 of 6
First we have $sin(x)-1 = 0$
$$begin{aligned}
sin(x)-1 &= 0 \
sin(x)&= 1 \
sin^{-1} (sin(x)) &= sin^{-1}(1) \
x&=90degree
end{aligned}$$

Therefore, we have $x = 90degree$ or $x = dfrac{pi}{2}$

Step 5
5 of 6
We will now solve $2sin(x)+1 = 0$.
Simplifying it,

$$begin{aligned}
2sin(x)+1 &= 0 \
2sin(x)&= -1 \\
sin (x) &= -dfrac{1}{2} \\
sin^{-1} (sin(x)) &= sin^{-1}left(-dfrac{1}{2}right) \\
x&=sin^{-1}left(-dfrac{1}{2}right)
end{aligned}$$

We know $sin(30degree) = dfrac{1}{2}$

Also, $sin$ is negative in the third quadrant.
So, $sin(180degree+theta) = -sintheta$
Therefore,
$$begin{aligned}
sin(180degree+30) &= -sin(30degree) \\
sin(210degree)&= -dfrac{1}{2} \\
sin^{-1}(sin(210degree))&=sin^{-1}left(-dfrac{1}{2}right) \\
210degree&=sin^{-1}left(-dfrac{1}{2}right)
end{aligned}$$

Therefore we have x = $210 degree$ or $x = dfrac{7pi}{6}$

Also, $sin$ is negative in the fourth quadrant.
So, $sin(360degree-theta) = -sintheta$
Therefore,
$$begin{aligned}
sin(360degree-30) &= -sin(30degree) \\
sin(330degree)&= -dfrac{1}{2} \\
sin^{-1}(sin(330degree))&=sin^{-1}left(-dfrac{1}{2}right) \\
330degree&=sin^{-1}left(-dfrac{1}{2}right)
end{aligned}$$

This implies $x = 330degree$ or $x = dfrac{11pi}{6}$

Therefore for $2sin^2(x)-sin(x)-1 = 0$

$x=90degree$ or $dfrac{pi}{2}$ and

$x=210degree$ or $dfrac{7pi}{6}$ and

$x=330degree$ or $dfrac{11pi}{6}$ and

where $0<xle2pi$

Step 6
6 of 6
d. We have $csc (x)=-2$

We know, $csctheta = dfrac{1}{sintheta}$

Thus, $dfrac{1}{sin (x)} = -2$ or $sin(x) = -dfrac{1}{2}$

Simplifying it,

$$begin{aligned}
sin (x) &= -dfrac{1}{2} \\
sin^{-1} (sin(x)) &= sin^{-1}left(-dfrac{1}{2}right) \\
x&=sin^{-1}left(-dfrac{1}{2}right)
end{aligned}$$

We know $sin(30degree) = dfrac{1}{2}$

Also, $sin$ is negative in the third quadrant.
So, $sin(180degree+theta) = -sintheta$
Therefore,
$$begin{aligned}
sin(180degree+30) &= -sin(30degree) \\
sin(210degree)&= -dfrac{1}{2} \\
sin^{-1}(sin(210degree))&=sin^{-1}left(-dfrac{1}{2}right) \\
210degree&=sin^{-1}left(-dfrac{1}{2}right)
end{aligned}$$

Therefore we have x = $210 degree$ or $x = dfrac{7pi}{6}$

Also, $sin$ is negative in the fourth quadrant.
So, $sin(360degree-theta) = -sintheta$
Therefore,
$$begin{aligned}
sin(360degree-30) &= -sin(30degree) \\
sin(330degree)&= -dfrac{1}{2} \\
sin^{-1}(sin(330degree))&=sin^{-1}left(-dfrac{1}{2}right) \\
330degree&=sin^{-1}left(-dfrac{1}{2}right)
end{aligned}$$

This implies $x = 330degree$ or $x = dfrac{11pi}{6}$

Therefore for $csc (x) = -2$

$x=210degree$ or $dfrac{7pi}{6}$ and

$x=330degree$ or $dfrac{11pi}{6}$

where $0<xle2pi$

Exercise 117
Solution 1
Solution 2
Step 1
1 of 5
a) The solution of equation:

$$
frac {-2}{x-4} + frac {x^2}{x^2 – 16} = frac {12}{x+4}
$$

Using the formula

$$
color{#c34632}{a^2 – b^2 = (a-b)(a+b)}
$$

then

$$
begin{align*}
frac {-2}{x-4} + frac {x^2}{(x-4)(x+4)} &= frac {12}{x+4}\
frac {-2 (x+4) + x^2}{(x-4)(x+4)} &= frac {12}{x+4}\
frac {-2x – 8 +x^2}{(x-4)(x+4)} &= frac {12}{x+4}\
(x+4) frac {x^2 -2x -8}{(x-4)(x+4)} &= 12\
frac {x^2 -2x-8}{x-4} &= 12\
x^2 -2x-8 &= 12(x-4)\
x^2 -2x-8 &= 12x – 48\
x^2 – 14x + 40 &= 0
end{align*}
$$

The solution of a square equation $ax^2 + bx+c=0$ are shape

$$
x + frac {-b pm sqrt {b^2 – 4ac}}{2a}
$$

Now, we have

$$
begin{align*}
x &= frac {14 pm sqrt {196-160}}{2}\
x &= frac {14 pm sqrt {36}}{2}\
x &= frac {14 pm 6}{2}\
x &= 10 qquad x=4
end{align*}
$$

The solutions are

$$
x = 10 qquad x=4
$$

Step 2
2 of 5
b) The solution of equation:

$$
begin{align*}
-8 log_3 ( 7+x) +1 &= -7\
-8 log_3 (7+x) &= -8\
log_3 (7+x) &= 1
end{align*}
$$

Using the formula

$$
begin{align*}
color{#c34632}{log_b a = x}\
color{#c34632}{a=b^x}
end{align*}
$$

we obtain

$$
begin{align*}
7+x &= 3^1\
7+x &=3\
x &= -4
end{align*}
$$

The solution is

$$
x=-4
$$

Step 3
3 of 5
c) The solution of equation:

$$
begin{align*}
-10 &= 10 |-3x + 4| – 4\
-6 &= 10 | -3x +4|\
|-3x &+4| = – frac {6}{10}
end{align*}
$$

The equation has no solution, because the left side of equation can never be negative.

Step 4
4 of 5
The solution of equation:

$$
begin{align*}
5+2 (9^{x+8}) &= 10\
2 ( 9^{x+8}) &= 5\
9^{x+8} &= frac 52
end{align*}
$$

Using the $ln$ function

$$
ln 9^{x+8} = ln frac 52
$$

According to the formula

$$
color{#c34632}{ ln a^b = b ln a}
$$

we obtain

$$
begin{align*}
(x+8) ln 9 &= ln frac 52\
x+8 &= frac {ln frac 52}{ln 9}
end{align*}
$$

Since

$$
color{#c34632}{ ln frac ab = ln a – ln b}
$$

we have

$$
begin{align*}
x+8 &= frac {ln 5 – ln 2}{ln 9}\
x+8 &= frac {ln 5}{ln 9}- frac {ln 2}{ln 9}
end{align*}
$$

According to the formula

$$
color{#c34632}{ frac {ln a}{ln b} = log_b a}
$$

we get

$$
begin{align*}
x+8 &= log_95 – log_92\
x &= log_95 – log_92 -8\
x &= log_{9}{frac 52} -8\
x &= 0.42 – 8\
x &= – 7.58
end{align*}
$$

The solution is

$$
x = – 7.58
$$

Result
5 of 5
a) $x = 10 qquad x=4$

b) $x=-4$

c) no solution

d) $x = – 7.58$

Step 1
1 of 15
$$
dfrac{-2}{x-4}+dfrac{x^2}{x^2-16}=dfrac{12}{x+4}
$$
a) We are given the equation:
Step 2
2 of 15
$$
(-infty,-4)cup(-4,4)cup(4,infty)
$$
The domain of the equation is:
Step 3
3 of 15
$dfrac{-2}{x-4}+dfrac{x^2}{(x-4)(x+4)}=dfrac{12}{x+4}$

$-2(x+4)+x^2=12(x-4)$

$-2x-8+x^2=12x-48$

$-2x-8+x^2-12x+48=0$

$x^2-14x+40=0$

$x^2-4x-10x+40=0$

$x(x-4)-10(x-4)=0$

$(x-4)(x-10)=0$

$x-4=0Rightarrow x_1=4$

$x-10=0Rightarrow x_2=10$

We solve the situation:
Step 4
4 of 15
$$
x=10
$$
$x_1=4$ doesn’t belong to the equation’s domain, the only solution is:
Step 5
5 of 15
$$
-8log_3(7+x)+1=-7
$$
b) We are given the equation:
Step 6
6 of 15
$7+x>0$

$x>-7$

Domain: $(-7,infty)$

The domain of the equation is:
Step 7
7 of 15
$-8log_3 (7+x)=-7-1$

$-8log_3 (7+x)=-8$

$log_3 (7+x)=1$

$7+x=3$

$x=3-7$

$$
x=-4
$$

We solve the equation:
Step 8
8 of 15
$-10=10|-3x+4|-4$
c) We are given the equation:
Step 9
9 of 15
$$
(-infty,infty)
$$
The domain of the equation is:
Step 10
10 of 15
$-10+4=10|-3x+4|$

$-6=10|-3x+4|$

$|-3x+4|=-dfrac{6}{10}$

We solve the equation:
Step 11
11 of 15
The equation has no solution because the left side of the equation is positive, while the right side is negative.
Step 12
12 of 15
$$
5+2(9^{x+8})=10
$$
d) We are given the equation:
Step 13
13 of 15
$$
(-infty,infty)
$$
The domain of the equation is:
Step 14
14 of 15
$2(9^{x+8})=10-5$

$2(9^{x+8})=5$

$9^{x+8}=dfrac{5}{2}$

$9^{x+8}=2.5$

$ln 9^{x+8}=ln 2.5$

$(x+8)ln 9=ln 2.5$

$x+8=dfrac{ln 2.5}{ln 9}$

$x=0.42-8$

$$
x=-7.58
$$

We solve the equation:
Result
15 of 15
a) $x=10$

b) $x=-4$

c) no solution

d) $x=-7.58$

Exercise 118
Step 1
1 of 7
$$
f(x)=3+sqrt{2x-1}
$$
We are given the function:
Step 2
2 of 7
Exercise scan
We sketch the graph of the function:
Step 3
3 of 7
$2x-1geq 0$

$2xgeq 1$

$xgeq 0.5$

The domain: $[0.5,infty)$

a) We determine the domain of the function:
Step 4
4 of 7
$$
[3,infty)
$$
The range of the function is:
Step 5
5 of 7
$y=3+sqrt{2x-1}$

$x=3+sqrt{2y-1}$

$x-3=sqrt{2y-1}$

$(x-3)^2=2y-1$

$2y=(x-3)^2+1$

$y=0.5(x-3)^2+0.5$

$f^{-1}(x)=0.5(x-3)^2+0.5$

b) We determine the inverse of $f(x)$:
Step 6
6 of 7
$$
[3,infty)
$$
c) We determine the domain of $f^{-1}(x)$:
Step 7
7 of 7
$$
[0.5,infty)
$$
We determine the range of $f^{-1}(x)$:
Exercise 119
Step 1
1 of 5
(a.) Given equation:

$$begin{aligned}
y &= 3 sin 2 ( x – dfrac{pi}{4})+ 1\
end{aligned}$$

Step 2
2 of 5
Sketch the graph.
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/7d9a8844-d44d-4ad5-be3e-2555c801f77e-1623252215610978.jpeg)
Step 3
3 of 5
(a.) Given equation:
$$begin{aligned}
f(x) &= -2 cos 2 ( x + dfrac{pi}{12})- 1\
end{aligned}$$
Step 4
4 of 5
Sketch the graph.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/f6fc9be2-3c6b-4f7d-870a-6cec81c32808-1623252363244523.jpeg)

Result
5 of 5
See the explanation
Exercise 120
Solution 1
Solution 2
Step 1
1 of 4
a) This is arithmetic sequence

$$
begin{align*}
7 + (-2) + (-11) + (-20) + dots =\
= 7+[7-9] + [7- 2 cdot 9] + [7-3 cdot 9] +dots
end{align*}
$$

where

$$
a=7 qquad text{and} qquad d=-9
$$

Using the formula

$$
color{#c34632}{a_{n}=a+(n-1)d}
$$

The $40^{th}$ term is

$$
a_{40} = 7-39 cdot 9 = 7 – 351 = – 344
$$

According to the formula

$$
color{#c34632}{ S = frac n2 [ 2a +(n-1) d]}
$$

we obtain

$$
begin{align*}
S &= frac {40}{2} [ 2 cdot 7 + (40-1)(-9)]\
S &= 20 [14 – 39 cdot 9]\
S &= 20 [ 14 – 351]\
S &= 20 cdot (-337)\
S &= -6740
end{align*}
$$

The sum is

$$
S=-6740
$$

Step 2
2 of 4
b) This is geometric series

$$
begin{align*}
150 &+ 100 + frac {200}{3} + frac {400}{9} + dots =\
= 150 &+ 150 cdot frac 23 + 150 cdot left( frac 23 right)^2 + 150 cdot left( frac 23 right)^3 + dots
end{align*}
$$

where

$$
a=150 qquad text{and} qquad r=frac 23
$$

The $10^{th}$ term is

$$
begin{align*}
a_{10} = 150 cdot left( frac 23 right)^9 &= 150 cdot frac {512}{19683} \
&= frac {76800}{19683}\
&= frac {25600}{6561}\
&= 3.9
end{align*}
$$

According to the formula

$$
color{#c34632}{S= a left( frac {1-r^{n+1}}{1-r} right)}
$$

we obtain

$$
begin{align*}
S &= 150 left( frac {1- left( frac 23 right)^{9+1}}{1 – frac 23} right)\
S &= 150 left( frac {1- left( frac 23 right)^{10}}{frac {3-2}{3}} right)\
S &= 150 left( frac {frac {3^{10} – 2^{10}}{3^{10}}}{frac 13} right)\
S &= 150 frac {left( 3^{10} – 2^{10} right)}{3^9}\
S &= 150 frac {( 59049 – 1024)}{19683}\
S &= 150 cdot frac {58025}{19683}\
S &= 150 cdot 2.95\
S &= 442.5
end{align*}
$$

Step 3
3 of 4
The sum for first $10$ terms is

$$
S = 442.5
$$

The sum for infinite terms is

$$
color{#c34632}{S= frac a{1-r}}
$$

Then

$$
begin{align*}
S&= frac {150}{1- frac 23}\
S&= frac {150}{frac13}\
S&= 150 cdot 3\
S&=450
end{align*}
$$

Result
4 of 4
a) $S = -6740$

b) $S = 442.5 text{ and } S = 450$

Step 1
1 of 10
$$
7+(-2)+(-11)+(-20)+…..
$$
a) We are given the series:
Step 2
2 of 10
$a_1=7$

$$
r=-9
$$

We determine the elements of the arithmetic sequence:
Step 3
3 of 10
$a_{n}=a_1+(n-1)r$

$a_{40}=7+(40-1)(-9)$

$=7+39(-9)$

$$
=-344
$$

We determine the 40th term:
Step 4
4 of 10
$S_n=dfrac{n(a_1+a_n)}{2}$

$S_{40}=dfrac{40(7-344)}{2}$

$$
=-6740
$$

We determine the sum of the first 40 terms:
Step 5
5 of 10
An arithmetic sequence doesn’t have an infinite sum.
Step 6
6 of 10
$$
150+100+dfrac{200}{3}+dfrac{400}{9}+….
$$
b) We are given the series:
Step 7
7 of 10
$a_1=150$

$$
q=dfrac{100}{150}=dfrac{2}{3}
$$

We determine the elements of the geometric sequence:
Step 8
8 of 10
$a_n=a_1q^{n-1}$

$a_{10}=150left(dfrac{2}{3}right)^9=150cdotdfrac{512}{19,683}$

$$
=dfrac{25,600}{6,561}approx 3.9
$$

We determine the 10th term:
Step 9
9 of 10
$S_{n}=dfrac{a_1(1-q^n}{1-q}$

$$
S_{10}=150cdotdfrac{1-left(dfrac{2}{3}right)^{10}}{1-dfrac{2}{3}}approx 442.2
$$

We determine the sum of the first 10 terms:
Step 10
10 of 10
$$
S=dfrac{a_1}{1-q}=dfrac{150}{1-dfrac{2}{3}}=450
$$
We determine the sum of the series as $|q|=left|dfrac{2}{3}right|=dfrac{2}{3}<1$:
Exercise 121
Step 1
1 of 3
The given polynomial can be written in the following form

$$
begin{align*}
P(x) &= x^5 – 9x^4 + 17x^3 – 153x^2 -200x + 1800\
&= x^4(x-9) + 17x^2(x-9) – 200(x-9)\
&= (x-9)(x^4 + 17x^2 -200)
end{align*}
$$

Now we have

$$
begin{align*}
x-9 &= 0\
x &= 9
end{align*}
$$

and

$$
x^4 + 17x^2 -200 =0
$$

Let $x^2 = y$ then

$$
y^2 + 17y -200 =0
$$

The solutions of a square equation $ax^2 + bx +c = 0$ are shape

$$
x = frac {-b pm sqrt {b^2 -4ac}}{2a}
$$

Now, we have

$$
begin{align*}
y &= frac {-17 pm sqrt {17^2 – 4 cdot 200}}{2}\
y &= frac {-17 pm sqrt {289+800}}{2}\
y &= frac {-17 pm sqrt {1089}}{2}\
y &= frac {-17 pm 33}{2}\
y &= -25 qquad y = 8
end{align*}
$$

Substitute $y=x^2$ we obtain

$$
x^2 = -25 qquad x^2 = 8
$$

Now, we have

$$
begin{align*}
x &= pm sqrt {-25}\
x &= pm 5i
end{align*}
$$

Step 2
2 of 3
and

$$
begin{align*}
x &= pm sqrt 8\
x &= pm 2 sqrt 2
end{align*}
$$

The solutions are

$$
begin{align*}
x &=9\
x &= 5_i qquad x = – 5_i\
x &= 2 sqrt 2 qquad x = – 2 sqrt 2
end{align*}
$$

Result
3 of 3
$$
begin{align*}
x &=9\
x &= 5_i qquad x = – 5_i\
x &= 2 sqrt 2 qquad x = – 2 sqrt 2
end{align*}
$$
Exercise 122
Step 1
1 of 3
The solution of the system of equations:

$$
begin{align*}
5x – 4y – 6z &= – 19 tag{$1$}\
-2x + 2y + z &= 5 tag{$2$}\
3x – 6y – 5z &= 16 tag{$3$}
end{align*}
$$

From $(2)$ we obtain

$$
z=5+2x-2y
$$

Substitution in $(1)$ and $(3)$

$$
begin{align*}
5x -4y – 6(5+2x -2y) &= -19\
3x -6y -5(5+2x -2y) &= -16
end{align*}
$$

Simplify

$$
begin{align*}
5x – 4y -30 – 12x + 12y &= -19\
3x -6y -25 -10x +10y &= -16
end{align*}
$$

and

$$
begin{align*}
-7x +8y -30 &= -19\
-7x + 4y -25 &= -16
end{align*}
$$

We have the system of two equations

$$
begin{align*}
-7x + 8y &= 11\
-7x +4y &= 9 tag{$star$}
end{align*}
$$

We can subtract these two equations

$$
begin{align*}
-7x + 8y – ( -7x +4y) &= 11-9\
-7x +8y + 7x -4y &= 2\
4y &= 2\
y &= frac 24\
y &= frac 12
end{align*}
$$

Substitution $y= frac 12$ in $(*)$

$$
begin{align*}
-7x + 4 cdot frac 12 &= 9\
-7x + 2 &= 9\
– 7x &= 7\
x &= -1
end{align*}
$$

Step 2
2 of 3
Now, we can substitute $x=1$ and $y=frac 12$ in $(2)$

$$
begin{align*}
-2 cdot (-1) + 2 cdot frac 12 + z &= 5\
2 + 1 + z &= 5\
3 + z &= 5\
z &= 2
end{align*}
$$

The solution of the system of equations is

$$
(x,y,z) = left( -1, frac 12, 2 right)
$$

Result
3 of 3
$$
(x,y,z) = left( -1, frac 12, 2 right)
$$
Exercise 123
Step 1
1 of 2
The equation of the parabola is

$$
y= ax^2 + bx + c
$$

It is necessary to calculate $a$, $b$ and $c$.

We have three points

$$
begin{align*}
(2,11) – 11 &= 2^2a + 2b +c\
11 &= 4a + 2b + c tag{$*$}\
(-1, -4) – -4 &= (-1)^2 a + (-1) b + c\
-4 &= a-b+c tag{$**$}\
(0, -5) – -5 &= 0 cdot a + 0 cdot b + c\
-5 &= c
end{align*}
$$

Substitution $c=-5$ in $(*)$ and $(**)$

$$
begin{align*}
11 &= 4a + 2b -5\
-4 &= a-b-5
end{align*}
$$

Then we have

$$
begin{align*}
16 &= 4a +2b\
1 &= a-b
end{align*}
$$

The first equation divide by 2

$$
begin{align*}
8 &= 2a + b\
a &= 1 + b
end{align*}
$$

Substitution $a=1+b$ in the first equation

$$
begin{align*}
8 &= 2 ( 1+b) +b\
8 &= 2 + 2b + b\
6 &= 3b\
b &= 2
end{align*}
$$

Now, we can calculate

$$
a=1+b = 1+2=3
$$

The equation of the parabola is

$$
y= 3x^2 + 2b -5
$$

Result
2 of 2
$$
y= 3x^2 + 2b -5
$$
Exercise 124
Step 1
1 of 8
a. We are given the expression,

$$
dfrac{5x}{x+3} + dfrac{3+x}{x^2-9}
$$

Now we will simplify the equation,

$$
begin{align*}
dfrac{5x}{x+3} + dfrac{3+x}{x^2-9} &= dfrac{5x}{x+3} + dfrac{3+x}{x^2-(3)^2} \\
&=dfrac{5x}{x+3} + dfrac{3+x}{(x-3)(x+3)} tag{text{using} $a^2-b^2=(a-b)(a+b)$}\\
&=dfrac{5x(x+3) + (3+x)}{(x-3) (x+3)} &tag{text{Taking L.C.M}} \\
&=dfrac{5x(x+3) + 1(x+3)}{(x-3) (x+3)}\\
&=dfrac{(x+3)(5x+1)}{(x+3)(x-3)} &tag{text{Taking (x+3) common}}\\
&=dfrac{5x+1}{x-3} &tag{(x+3) text{are canceled}} \\
end{align*}
$$

Therefore we get,

$dfrac{5x}{x+3} + dfrac{3+x}{x^2-9} = dfrac{5x+1}{x-3}$

As we know (x-3) is in the denominator, therefore the value of x cannot be 3, for if x=3 is punched into the equation, the denominator becomes 0 and the result is thus not defined. This implies x $ne$ 3

Therefore, the domain of the equation is $left(-infty, 3right)cup left(3, inftyright)$

Step 2
2 of 8
We can confirm this with the help of a graph,Exercise scan
Step 3
3 of 8
b. We are given the expression,

$$
dfrac{x}{x-1}-1
$$

$$
begin{align*}
dfrac{x}{x-1}-1 & = dfrac{x – 1(x-1)}{x-1} tag{text{Taking L.C.M}} \\
&= dfrac{x-x+1}{x-1} \\
&=dfrac{1}{x-1} \\
end{align*}
$$

We get,

$dfrac{x}{x-1}-1= dfrac{1}{x-1}$

As we know (x-1) is in the denominator, therefore the value of x cannot be 1, for if x=1 is punched into the equation, the denominator becomes 0 and the result is thus not defined. This implies x $ne$ 1

Therefore, the domain of the equation is $left(-infty, 1right)cup left(1, inftyright)$

Step 4
4 of 8
We can confirm this with the help of a graph,Exercise scan
Step 5
5 of 8
c. We are given the expression,

$$
dfrac{x^2+5x+6}{x^2-4x} . dfrac{4x}{x+2}
$$

Now we will simplify the equation,

$$
begin{align*}
dfrac{x^2+5x+6}{x^2-4x} . dfrac{4x}{x+2} &= dfrac{x^2+3x+2x+6}{x^2-4x} times dfrac{4x}{x+2} \\
&=dfrac{x(x+3)+2(x+3)}{x^2-4x} times dfrac{4x}{x+2} \\
&=dfrac{(x+3) (x+2)}{x^2-4x} times dfrac{4x}{x+2} tag{text{Taking (x+3) common}}\\
&=dfrac{x+3}{x(x-4)} times dfrac{4x}{x+2} \\
&=dfrac{(x+3)4x}{x(x-4)(x+2)} \\
&=dfrac{4x^2+12x}{x(x-4)(x+2)} \
end{align*}
$$

Therefore we get,

$dfrac{x^2+5x+6}{x^2-4x} . dfrac{4x}{x+2} = dfrac{4x^2+12x}{x(x-4)(x+2)}$

As we know x, (x-$4$), (x+2) is in the denominator, therefore the value of x cannot be 0, 4, or -2 for if x=0, or x=4, or x=$-2$ is punched into the equation, the denominator becomes 0 and the result is thus not defined. This implies x $ne 0, -2, 4$

Therefore, the domain of the equation is $left(-infty, -2right)cup left(-2, 0right)cup left(0, 4right)cup left(4, infty right)$

Step 6
6 of 8
We can confirm this with the help of a graph,Exercise scan
Step 7
7 of 8
d. We are given the expression,

$$
dfrac{x^2-2x}{x^2-4x+4} div dfrac{4x^2}{x-2}
$$

Now we will simplify the equation,

$$
begin{align*}
dfrac{x^2-2x}{x^2-4x+4} div dfrac{4x^2}{x-2} &= dfrac{x^2-2x}{x^2-2x-2x+4} div dfrac{4x^2}{x-2}\\
&=dfrac{x(x-2)}{x(x-2)-2(x-2)} times dfrac{(x-2)}{4x^2}\\
&=dfrac{x(x-2)}{(x-2) (x-2)} times dfrac{(x-2)}{4x^2} \\
&=dfrac{x}{4x^2} \\
&=dfrac{1}{4x} \
end{align*}
$$

Therefore we get,

$dfrac{x^2-2x}{x^2-4x+4} div dfrac{4x^2}{x-2} =dfrac{1}{4x}$

As we know 4x is in the denominator, therefore the value of x cannot be 0 for if x=0 is punched into the equation, the denominator becomes 0 and the result is thus not defined. This implies x $ne 0$

Therefore, the domain of the equation is $left(-infty, 0right)cup left(0, infty right)$

Step 8
8 of 8
We can confirm this with the help of a graph,Exercise scan
Exercise 125
Step 1
1 of 2
Solving the system of equation and finding the equation of a parabola with the three given points seems to be the easiest. This involves only substituting points into the equation and solving the equations for certain variables.
Step 2
2 of 2
Solving the equations with trigonometric functions seems to be the hardest because we need to work with their domains and know their properties.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New