Core Connections Integrated 3
Core Connections Integrated 3
1st Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283939
Textbook solutions

All Solutions

Page 483: Closure Activity

Exercise 143
Step 1
1 of 2
$y=sin (x)$

$$
y=cos (x)
$$

We are given the functions:
Step 2
2 of 2
The graphs of the two functions are the same except from a $dfrac{pi}{2}$ shifting. The graph of $sin x$ starts in $(0,0)$, while the graph of $cos x$ starts in $(0,1)$.
Exercise 144
Step 1
1 of 6
We convert the following angles from degrees to radians, using the formula:

$dfrac{pi}{180text{textdegree}}cdot xtext{textdegree}=y$ radians.

Step 2
2 of 6
$$
theta=225text{textdegree}=dfrac{pi}{180text{textdegree}}cdot 225text{textdegree}=dfrac{5pi}{4}
$$
a) $theta=225text{textdegree}$
Step 3
3 of 6
$$
theta=75text{textdegree}=dfrac{pi}{180text{textdegree}}cdot 75text{textdegree}=dfrac{5pi}{12}
$$
b) $theta=75text{textdegree}$
Step 4
4 of 6
$$
theta=-15text{textdegree}=-dfrac{pi}{180text{textdegree}}cdot 15text{textdegree}=-dfrac{pi}{12}
$$
c) $theta=-15text{textdegree}$
Step 5
5 of 6
$$
theta=330text{textdegree}=dfrac{pi}{180text{textdegree}}cdot 330text{textdegree}=dfrac{11pi}{6}
$$
d) $theta=330text{textdegree}$
Result
6 of 6
a) $dfrac{5pi}{4}$; b) $dfrac{5pi}{12}$; c) $-dfrac{pi}{12}$; d) $dfrac{11pi}{6}$;
Exercise 145
Step 1
1 of 4
a) The coordinates of the point $M$ are

$$
M(x,y) = M( cos theta , sin theta )
$$

For $theta = 110^{text{textdegree}}$ we have

$$
M( cos 110^{text{textdegree}} , sin 110^{text{textdegree}})
$$

Step 2
2 of 4
b) The exact coordinates of the point $M$

$$
M( cos 110^{text{textdegree}}, sin 110^{text{textdegree}}) = ( -0.34, 0.94)
$$

Step 3
3 of 4
c) We will examine if it is true

$$
begin{align*}
sin^2 theta + cos^2 theta &= 1\
sin^2 110^{text{textdegree}} + cos 110^{text{textdegree}} &= 1\
(0.94)^2 + 0-0.34)^2 &= 1\
0.8836 + 0.1156 &= 1\
0.99 &approx 1
end{align*}
$$

The Pythagorean identity is valid.

Result
4 of 4
a) $M( cos 110^{text{textdegree}} , sin 110^{text{textdegree}})$

b) $( -0.34, 0.94)$

c) The Pythagorean identity is valid.

Exercise 146
Step 1
1 of 13
$$
sin (60text{textdegree})
$$
a) We are given the expression:
Step 2
2 of 13
$$
sin (60text{textdegree})=dfrac{sqrt 3}{2}
$$
We give the exact value of the expression:
Step 3
3 of 13
$$
cos (180text{textdegree})
$$
b) We are given the expression:
Step 4
4 of 13
$$
cos(180text{textdegree})=-1
$$
We give the exact value of the expression:
Step 5
5 of 13
$$
tan (225text{textdegree})
$$
c) We are given the expression:
Step 6
6 of 13
$$
tan (225text{textdegree})=tan(225text{textdegree}-180text{textdegree})=tan (45text{textdegree})=1
$$
We give the exact value of the expression:
Step 7
7 of 13
$$
sinleft(dfrac{pi}{4}right)
$$
d) We are given the expression:
Step 8
8 of 13
$$
tan (225text{textdegree})=dfrac{sqrt 2}{2}
$$
We give the exact value of the expression:
Step 9
9 of 13
$$
cosleft(dfrac{2pi}{3}right)
$$
e) We are given the expression:
Step 10
10 of 13
$$
cosleft(dfrac{2pi}{3}right)=-cos left(pi-dfrac{2pi}{3}right)=-cosleft(dfrac{pi}{3}right)=-dfrac{1}{2}
$$
We give the exact value of the expression:
Step 11
11 of 13
$$
tanleft(dfrac{3pi}{2}right)
$$
f) We are given the expression:
Step 12
12 of 13
The tangent function is undefined in $x=dfrac{(2k+1)pi}{2}$.
Result
13 of 13
a) $dfrac{sqrt 3}{2}$; b) $-1$; c) $1$; d) $dfrac{sqrt 2}{2}$; e) $-dfrac{1}{2}$; f) undefined;
Exercise 147
Step 1
1 of 7
Exercise scan
a) We are given the right triangle:
Step 2
2 of 7
$$
x=y
$$
The triangle is isosceles, thus we have:
Step 3
3 of 7
$x^2+y^2=10^2$

$2x^2=2y^2=100$

$x^2=y^2=dfrac{100}{2}=50$

$$
x=y=sqrt{50}=5sqrt 2
$$

We determine $x$ and $y$ by using the Pythagorean Theorem:
Step 4
4 of 7
Exercise scan
b) We are given the right triangle:
Step 5
5 of 7
$sin x=dfrac{5sqrt 3}{10}$

$sin x=dfrac{sqrt 3}{2}$

$$
x=60text{textdegree}
$$

We determine $x$ using the sine function:
Step 6
6 of 7
$x+y=90text{textdegree}$

$$
y=90text{textdegree}-60text{textdegree}=30text{textdegree}
$$

We determine $y$:
Result
7 of 7
a) $x=y=5sqrt 2$

b) $x=60text{textdegree}; y=30text{textdegree}$

Exercise 148
Solution 1
Solution 2
Step 1
1 of 5
a) The solution of equation:

$$
5^x = 72
$$

We can use the $ln$ function

$$
ln 5^x = ln 72
$$

Using the formula

$$
begin{align*}
color{#c34632}{ln a^b = b ln a} tag {$*$}
end{align*}
$$

We have

$$
begin{align*}
x ln 5 &= ln 72\
x &= frac {ln 72}{ln 5}\
x &= frac {4.27}{1.61}\
x &= 2.65
end{align*}
$$

The solution of equation is

$$
x = 2.65
$$

Step 2
2 of 5
b) The solution of equation:

$$
2^{3x} =7
$$

We can use the $ln$ function

$$
ln 2^{3x} = ln 7
$$

Using the formula $(*)$

$$
begin{align*}
3x cdot ln 2 &= ln 7\
3x &= frac {ln 7}{ln 2}\
3x &= frac {1.94}{0.69}\
3x &= 2.81\
x &= 0.93
end{align*}
$$

The solution of equation is

$$
x = 0.93
$$

Step 3
3 of 5
c) The solution of equation

$$
3^{(2x+4)} = 17
$$

We can use the $ln$ formula

$$
ln 3^{(2x+4)} = ln 17
$$

According to $(*)$

$$
begin{align*}
(2x+4) ln 3 &= ln 17\
2x + 4 &= frac {ln 17}{ln 3}\
2x + 4 &= frac {2.83}{1.09}\
2x + 4 &= 2.59\
2x &= -1.4\
x &= -0.7
end{align*}
$$

The solution of equation is

$$
x=-0.7
$$

Step 4
4 of 5
d) The solution of equation:

$$
begin{align*}
3x^4 &= 150\
x^4 &= 50\
x &= sqrt[4]{50}\
x &=pm 2.66
end{align*}
$$

The solution of equation is

$$
x=pm 2.66
$$

Result
5 of 5
a) $x = 2.65$

b) $x = 0.93$

c) $x=-0.7$

d) $x=pm 2.66$

Step 1
1 of 9
$$
5^x=72
$$
a) We are given the equation:
Step 2
2 of 9
$log (5^x)=log (72)$

$xlog (5)=log (72)$

$x=dfrac{log (72)}{log (5)}$

$$
xapprox 2.657
$$

We apply the logarithm:
Step 3
3 of 9
$$
2^{3x}=7
$$
b) We are given the equation:
Step 4
4 of 9
$log (2^{3x})=log (7)$

$3xlog (2)=log (7)$

$x=dfrac{log (7)}{3log (2)}$

$$
xapprox 0.936
$$

We apply the logarithm:
Step 5
5 of 9
$$
3^{2x+4}=17
$$
c) We are given the equation:
Step 6
6 of 9
$log (3^{2x+4})=log (17)$

$(2x+4)log (3)=log (17)$

$2x+4=dfrac{log (17)}{log (3)}$

$2x=dfrac{log (17)}{log (3)}-4$

$x=dfrac{dfrac{log (17)}{log (3)}-4}{2}$

$$
xapprox -0.711
$$

We apply the logarithm:
Step 7
7 of 9
$$
3x^4=150
$$
d) We are given the equation:
Step 8
8 of 9
$x^4=dfrac{150}{3}$

$x^4=50$

$x=pmsqrt[4]{50}$

$$
x=pm 2.659
$$

We divide by 3 and find the solutions:
Result
9 of 9
a) $2.657$; b) $0.936$; c) $-0.711$; d) $pm 2.659$
Exercise 149
Solution 1
Solution 2
Step 1
1 of 5
a) In this exercise we can use the following formula

$$
color{#c34632}{ log_ca – log_cb = log_c {ab}}
$$

Therefore

$$
begin{align*}
log_8 {(9)} + log_8 {(x)} &= 1\
log_8 {(9x)} &= 1
end{align*}
$$

We can use the formula

$$
begin{align*}
color{#c34632}{log_ca =b} tag{$*$}\
color{#c34632}{a = c^b}
end{align*}
$$

Then

$$
begin{align*}
9x &= 8^1\
x &= frac 89\
x &= 0.88
end{align*}
$$

Step 2
2 of 5
b) In this exercise we can use the formula

$$
begin{align*}
color{#c34632}{ log_ca – log_cb = log_c {frac ab}} tag{**}\
end{align*}
$$

Therefore

$$
begin{align*}
log_x {(8)} – log_x {(19)} &= -1\
log_x {left( frac {8}{19} right) } &= -1
end{align*}
$$

Using the $(*)$

$$
begin{align*}
frac {8}{19} &= x^{-1}\
frac 1x &= frac {8}{19}\
x &= frac {19}{8}\
x &= 2.37
end{align*}
$$

Step 3
3 of 5
c) The solution of equation:

$$
begin{align*}
log_5 {(17+6x)} &= log_5 {(35)}\
17 + 6x &= 35\
6x &= 18\
x &= 3
end{align*}
$$

Step 4
4 of 5
d) In this exercise we can use $(**)$

$$
begin{align*}
log {(18x)} – log {(9)} &= log {(3)}\
log { left( frac {18x}{9} right) } &= log {(3)}\
log {(2x)} &= log {(3)}\
2x &= 3\
x &= frac 32\
x &= 1.5
end{align*}
$$

Result
5 of 5
a) $x = 0.88$

b) $x = 2.37$

c) $x = 3$

d) $x = 1.5$

Step 1
1 of 9
$$
log_8 (9)+log_8 (x)=1
$$
a) We are given the equation:
Step 2
2 of 9
$log_8 (9x)=1$

$9x=8^1$

$9x=8$

$$
x=dfrac{8}{9}
$$

We apply the Product Property of Logarithms:
Step 3
3 of 9
$$
log_x (8)-log_x (19)=-1
$$
b) We are given the equation:
Step 4
4 of 9
$log_x left(dfrac{8}{19}right)=-1$

$x^{-1}=dfrac{8}{19}$

$dfrac{1}{x}=dfrac{8}{19}$

$8x=19$

$$
x=dfrac{19}{8}
$$

We apply the Quotient Property of Logarithms:
Step 5
5 of 9
$$
log_5 (17+6x)=log_5 (35)
$$
c) We are given the equation:
Step 6
6 of 9
$17+6x=35$

$6x=35-17$

$6x=18$

$x=dfrac{18}{6}$

$$
x=3
$$

We solve the equation:
Step 7
7 of 9
$$
log (18x)-log (9)=log (3)
$$
d) We are given the equation:
Step 8
8 of 9
$log left(dfrac{18x}{9}right)=log (3)$

$log (2x)=log (3)$

$2x=3$

$$
x=dfrac{3}{2}
$$

We apply the Quotient Property of Logarithms:
Result
9 of 9
a) $dfrac{8}{9}$; b) $dfrac{19}{8}$; c) $3$; d) $dfrac{3}{2}$
Exercise 150
Solution 1
Solution 2
Solution 3
Step 1
1 of 3
We can write the given expression in the following form

$$
begin{align*}
(2x^3 + x^2 – 19x + 36) div (x+4) &= frac {2x^3 + x^2 – 19x + 36}{x+4}\
&= frac{2x^3 + 8x^2 +7x^2 -28x +9x + 36}{x+4} && text{ ($x^2=8x^2 +7x^2$)}\
&text{} && text{ ($- 19x=-28x +9x$)}\
&= frac{(2x^3 + 8x^2) +(7x^2 -28x) + (9x + 36)}{x+4}\
&= frac{ 2x^2 (x+4) -7x (x +4) + 9(x+4)}{x+4}\
&= frac{(x+4)(2x^2 -7x +9)}{x+4}\
&= 2x^2 -7x+9
end{align*}
$$

Step 2
2 of 3
Therefore

$$
(2x^3 + x^2 – 19x + 36) div (x+4) = 2x^2 -7x+9
$$

Result
3 of 3
$$
(2x^3 + x^2 – 19x + 36) div (x+4) = 2x^2 -7x+9
$$
Step 1
1 of 2
noindent
Solution to this example is given below\
begin{align*}
&frac{2x^3+x^2-19x+36}{x+4}&&boxed{text{Given proportion}}\
&2x^2+frac{-7x^2-19x+36}{x+4}&&boxed{text{Simplify}}\
&2x^2-7x+frac{9x+36}{x+4}&&boxed{text{Simplify}}\
&2x^2-7x+9&&boxed{text{Simplify}}\\
&boxed{{color{Maroon}2x^2-7x+9} }&&boxed{text{Final solution}}\
end{align*}
Result
2 of 2
$$
color{#4257b2} text{ } 2x^2-7x+9
$$
Step 1
1 of 2
$$
polylongdiv{2x^3+x^2-19x+36}{x+4}
$$
Result
2 of 2
$$
2x^2-7x+9
$$
Exercise 151
Step 1
1 of 8
a) We can write a given polynomial in the following form

$$
begin{align*}
P(x) &=x^3+8\
P(x) &= x^3 + 2^3
end{align*}
$$

Step 2
2 of 8
According to the formula

$$
color{#c34632}{ a^3 + b^3 = (a+b)(a^2 -ab + b^2)}
$$

Step 3
3 of 8
we obtain

$$
P(x) = (x + 2)(x^2 -2x +4)
$$

Step 4
4 of 8
The solution of a square equation $ax^2 + bx+c=0$ are shape

$$
x = frac {-b pm sqrt {b^2 -4ac}}{2a}
$$

Step 5
5 of 8
Now we have

$$
begin{align*}
x &= frac {2 pm sqrt {4-16}}{2}\
x &= frac {2 pm sqrt {-12}}{2}\
x &= frac {2 pm i 2 sqrt 3}{2}\
x &= 1 pm i sqrt 3
end{align*}
$$

Step 6
6 of 8
Therefore, the polynomial is

$$
begin{align*}
P(x) &= (x+2)(x -( 1 + i sqrt 3)) (x- ( 1 – i sqrt 3))\
&= (x+2) (x-1 – i sqrt 3)(x-1+ i sqrt 3)
end{align*}
$$

Step 7
7 of 8
b) Since

$$
P(x) = (x+2)(x^2 -2x+4)
$$

we can see that the factor of this polynomial is

$$
(x+2)
$$

Result
8 of 8
a) $P(x) = (x+2) (x-1 – i sqrt 3)(x-1+ i sqrt 3)$

b) $(x+2)$

Exercise 152
Step 1
1 of 7
The polynomial $P(x)$ can be represented as follows

$$
begin{align*}
P(x) &= x^4 – x^3 -2x -4\
&= x^4 -2x^3 + x^3 +2x^2 -2x^2 -4x + 2x -4\
&= x^4 + x^3 -2x^3 -2x^2 +2x^3 + 2x -4x -4\
&= x^3(x+1) – 2x^2 (x+1) + 2x (x+1) -4 (x+1)\
&= (x+1) (x^3 – 2x^2 +2x-4)
end{align*}
$$

Step 2
2 of 7
The polynomial $P_1(x) = x^3 -2x^2 +2x-4$ can be represented as follows

$$
begin{align*}
P_1 (x) &= x^3 -2x^2 + 2x -4\
&= x^2 (x-2) + 2 (x-2)\
&= (x-2)(x^2 +2)
end{align*}
$$

Step 3
3 of 7
Now, we have

$$
P(x) = (x+1)(x-2)(x^2 +2)
$$

Step 4
4 of 7
The roots of the polynomial $P(x) = (x+1)(x-2)(x^2 +2)$ are

$$
begin{align*}
x+1 &= 0\
x -2 &=0\
x^2 + 2 &= 0
end{align*}
$$

Step 5
5 of 7
Then

$$
begin{align*}
x &= -1\
x &= 2\
x^2 &= -2
end{align*}
$$

Step 6
6 of 7
and

$$
begin{align*}
x &= -1\
x &= 2\
x &=pm sqrt { -2} =pm i sqrt 2
end{align*}
$$

Result
7 of 7
$$
begin{align*}
x &= -1\
x &= 2\
x & =pm i sqrt 2
end{align*}
$$
Exercise 153
Step 1
1 of 2
The easiest problems seem to be the ones where we need to find the length of the missing side of a right triangle and converting degrees into radians because we have the formula for that.
Step 2
2 of 2
Solving equations with logarithms seems to give people the most trouble.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New