Core Connections Integrated 3
Core Connections Integrated 3
1st Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283939
Textbook solutions

All Solutions

Page 151: Closure Activity

Exercise 116
Step 1
1 of 2
$textbf{(a)}$ $y=x^3$ is the parent graph for $y=0.25(x-8)^2+2$.

Parent graph is shifted up by 2 units, then shifted right by 8 units. and then it is horizontally compressed by factor 4.

$textbf{(b)}$ $x^2+y^2=5^2$ i.e. circle with radius of 5 units and centre at (0,0) is the parent graph for $(x+3)^2+y^2=25$.

Parent graph is shifted left by 3 units.

$textbf{(c)}$ $y=|x|$ is the parent graph for $y=|x-5|+3$.

Parent graph is shifted right by 5 units and shifted up 3 units

Result
2 of 2
(a) $y=x^3$, ~ (b) $x^2+y^2=5^2$, ~ (c) $y=|x|$
Exercise 117
Step 1
1 of 4
a-

$y=dfrac {1}{3}x^2+1$          (1)

$y=2x-2$          (2)

$dfrac {1}{3}x^2+1=2x-2$          (Equating both equations)

$x^2+3=6x-6$          (Multiply each side by 3)

$x^2-6x+9=0$

$(x-3)^2=0$

$$
x=3
$$

Substituting for $x=3$ in equation (1)

$y=dfrac {1}{3} (9)+1$

$$
y=4
$$

This solution tells us that the line of the equation $y=2x-2$ intersects the parabola of the quadratic equation $y=dfrac {1}{3}x^2+1$ at only one point $(3, 4)$

Step 2
2 of 4
b-

$y=sqrt {x-3}$          (1)

$y=x-5$          (2)

$sqrt {x-3}=x-5$          (Equating both equations)

$x-3=(x-5)^2$          (Square of each side)

$x-3=x^2-10x+25$

$x^2-11x+28=0$

$(x-7)(x-4)=0$

$x=7$ or $x=4$

Checking solution with the original equations:

For $x=7$

$y=sqrt {7-3}=sqrt {4}=2$          (Equation (1))

$y=7-5=2$          (Equation (2))

$x=7$ is a valid solution.

For $x=4$

$y=sqrt {4-3}=sqrt {1}=1$          (Equation (1))

$y=4-5=-1$          (Equation (2))

$x=4$ is an extraneous solution.

This solution tells us that this system has only one valid solution $(7, 2)$

Step 3
3 of 4
c-

$6x-2y=-4$          (Given)

$2y=6x+4$          (Solving for $y$)

$y=3x+2$          (1)

This equation is the equivalent to equation (2)

Result
4 of 4
a-          Both equations intersect at only one point $(3, 4)$

b-          Both equations intersect at only one point $(7, 2)$

c-          Both equations are equivalent.

Exercise 118
Step 1
1 of 3
First we mark the price of a lemon meringue pie as $x$ and the price of a blueberry pie as $y$.

Now we can write two equations. The first one is:

$$
begin{equation}
2x=4y-3
end{equation}
$$

And the second is:

$$
begin{equation}
3x=3y+9
end{equation}
$$

We can start solving the equations by expressing $x$ from equation (1) and we can do that by dividing the whole equation (1) by $2$.

$$
begin{equation}
x=2y- frac{3}{2}
end{equation}
$$

Now we can take that $x$ and implement it in the equation (2).

$$
begin{equation}
3(2y- frac{3}{2})=3y+9
end{equation}
$$

We can divide the whole equation (4) by $3$.

$$
begin{equation}
2y- frac{3}{2}=y+3
end{equation}
$$

To find $y$ from equation (5) we must put all the parts of the equation with $y$ on the left hand side and all the others on the right hand side.

$$
begin{equation}
2y-y=3+ frac{3}{2}
end{equation}
$$

From that we can see that:

$$
begin{equation}
y= frac{9}{2}
end{equation}
$$

Now we can take that $y$ and return it to the equation (1) to find $x$.

$$
begin{equation}
2x=4 frac{9}{2}-3
end{equation}
$$

We just have to divide equation (8) by $2$ and we get the solution to the $x$.

$$
begin{equation}
x=9- frac {3}{2}
end{equation}
$$

$$
begin{equation}
x=frac{15}{2}
end{equation}
$$

Step 2
2 of 3
Now we know that the price of the lemon meringue pie is 7.5$ and the price of the blueberry one is 4.5$.
Result
3 of 3
x=7.5
y=4.5
Exercise 119
Step 1
1 of 4
Given,

$$
begin{align*}
g(x)&=(x+1)^{2} \
end{align*}
$$

Step 2
2 of 4
$a.$ We found the value of g$(5)$,

$$
begin{align*}
g(x)&=(x+1)^{2}\
g(5)&=(5+1)^{2}\
g(5)&=(6)^{2}\
g(5)&=36 \
end{align*}
$$

Therefore the value of g$(5)$ is $36$.

Step 3
3 of 4
$b.$ We found the value of g$(2m+4)$,

$$
begin{align*}
g(x)&=(x+1)^{2}\
g(2m+4)&=(2m+4+1)^{2}\
g(2m+4)&=(2m+5)^{2} \
g(2m+4)&=4m^{2}+20m+25\
end{align*}
$$

Therefore the value of g$(2m+4)$ is $4m^{2}+20m+25$.

Step 4
4 of 4
$c.$ We found the value of g$(x) = 9$,

$$
begin{align*}
g(x)&=(x+1)^{2}\
9&=x^{2}+2x+1 \
9&=x^{2}+x+x+1\
9&=x(x+1)+1(x+1)\
x&=-1,-1\
end{align*}
$$

Therefore the value of g$(x) = 9$ is $x = -1,-1$.

Exercise 120
Step 1
1 of 5
Given,

$$
begin{align*}
& y=x^{2}+4x+6\
& x^{2}+6x+y^{2}-8y=0\
end{align*}
$$

Step 2
2 of 5
$a.$ We bring the equation into the graphing form,

$$
begin{align*}
y&=x^{2}+4x+6\
y&=(x^{2}+4)+2 \
end{align*}
$$

Therefore the equation describes a parabola with vertex $(-2,2)$.

Step 3
3 of 5
Thus we graph the parabola,Exercise scan
Step 4
4 of 5
$b.$ We bring the equation into the graphing form,

$$
begin{align*}
x^{2}+6x+y^{2}-8y&=0\
(x^{2}+6x+9)+(y^{2}-8y+16)&=0+9+16\
(x+3)^{2}+(y-4)^{2}&=25\
& text{Center}:(-3,4)\
& text{Radius}= sqrt{25}\
& text{Radius}= 5\end{align*}
$$

Therefore the equation describes a circle with center $(-3,4)$ and radius $5$.

Step 5
5 of 5
Thus we graph the circle,Exercise scan
Exercise 121
Step 1
1 of 3
(a) Algebraically; $mid3x-5midgeq2rightarrow 3xgeq7rightarrow xgeqdfrac{7}{3}$ or $3x-5leq-2rightarrow 3xleq3rightarrow xleq1$

Exercise scan

Step 2
2 of 3
(b) $(3x-6)^{3}<27rightarrow3x-6<3rightarrow3x<9rightarrow x<3$

Exercise scan

Result
3 of 3
see multiple solutions and plots
Exercise 122
Step 1
1 of 8
(a.) The given system of inequalities:

$$begin{aligned}
y leq 4x+16tag1\
end{aligned}$$
$$begin{aligned}
y > dfrac{-4}{3} x – 4tag2\
end{aligned}$$

Step 2
2 of 8
Plot the straight line corresponding to the linear equation.
$$begin{aligned}
y &=4x+16\ \
y &= dfrac{-4}{3} x – 4\\
end{aligned}$$

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/054fdbe5-2832-444b-a608-636c73520241-1622378246063012.png)

Step 3
3 of 8
Now, put x = 0, y = 0.

For equation (1).
$$begin{aligned}
y leq 4x+16\\
0 leq 16\
end{aligned}$$

For equation (2).

$$begin{aligned}
y > dfrac{-4}{3} x – 4\\
0 > – 4\
end{aligned}$$
Both equations hold true for the given inequality.

So, shade the half-plane in the linear inequality graph, which includes the point (0,0).

Step 4
4 of 8
The graph is given below:

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/998220e5-6aab-407f-8f9d-251e0c0e1f43-1622379439792681.png)

Step 5
5 of 8
(b.) The given system of inequalities:

$$begin{aligned}
y < x^{2} -2x – 3tag1\
end{aligned}$$
$$begin{aligned}
y leq dfrac{3}{4} x + 2tag2\
end{aligned}$$

Step 6
6 of 8
Plot the straight line corresponding to the linear equation.
$$begin{aligned}
y &= x^{2} – 2x – 3\\
y &= dfrac{3}{4} x + 2\\
end{aligned}$$

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/29337c8f-e903-4290-8030-df31589eb23e-1622379682568744.png)

Step 7
7 of 8
Now, put x = 0, y = 0.

For equation (1).
$$begin{aligned}
y < x^{2} -2x – 3\\
0 < -3\
end{aligned}$$

For equation (2).

$$begin{aligned}
y leq dfrac{3}{4} x + 2\\
0 leq 2\
end{aligned}$$
Equation (1) doesn't hold true for the given inequality but equation (2) holds true for the given inequality.

So, doesn't shade the half-plane in the linear inequality graph, which doesn't include the point (0,0) $but$ shade the half-plane in the linear inequality graph, which includes the point (0,0)

Step 8
8 of 8
The graph is given below:

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/3d930bc6-1c93-4f13-8d89-96329157968e-1622380320386438.png)

Exercise 123
Step 1
1 of 10
Given,

$$
begin{align*}
&a. 3(2x-1)^{2}+12=4x-3\
&b. sqrt{3x+1}-x=-3\
&c. dfrac{3}{4}x^{2}=dfrac{5}{4}x+dfrac{1}{2} \
&d. 4x(x-2)=(2x+1)(2x-3) \
end{align*}
$$

Step 2
2 of 10
$a.$ We first simplify the first given equation,

$$
begin{align*}
3(2x-1)^{2}+12&=4x-3\
3(2x-1)^{2}+12-4x+3&=0\
3(4x^{2}-4x+1)+15-4x&=0\
12x^{2}-12x+3+15-4x&=0\
12x^{2}-16x+18&=0\
2(6x^{2}-8x+9)&=0\
6x^{2}-8x+9&=dfrac{0}{2}\
6x^{2}-8x+9&=0\
end{align*}
$$

Step 3
3 of 10
Now, we determine the solutions for $x$ by quadratic formula,

$$
begin{align*}
x&=dfrac{8pm sqrt{(-8)^{2}-(6)(9)}}{2(6)} \
x&=dfrac{8pm sqrt{-152}}{12}\
x&=dfrac{8pm 2sqrt{-38}}{12}\
x&=dfrac{8pm 2sqrt{38i}}{12}\
x&=dfrac{2(4pm sqrt{38i})}{12}\
x&=dfrac{4pm sqrt{38i}}{6}\
x&=dfrac{4+ 2sqrt{-38}}{12},dfrac{4- 2sqrt{-38}}{12}\
end{align*}
$$

Therfore the value of $x$ is $dfrac{4+ 2sqrt{38i}}{12},dfrac{4- 2sqrt{38i}}{12}$.

Step 4
4 of 10
$b.$We first simplify the second given equation,

$$
begin{align*}
sqrt{3x+1}-x&=-3\
sqrt{3x+1}&=x-3\
end{align*}
$$

Thus, the domain of the function is,

$$
begin{align*}
&3x+1 geq 0 = x geq -dfrac{1}{3}\
&x-3 geq 0 = x geq 3 \
end{align*}
$$

So, the domain of the function is $x = [3,infty)$.

Step 5
5 of 10
Now, we square the given equation to find the solutions of $x$,

$$
begin{align*}
(sqrt{3x+1})^{2}&=(x-3)^{2}\
3x+1&=x^{2}-6x+9\
x^{2}-6x+9-3x-1&=0\
x^{2}-9x+8&=0\
x^{2}-x-8x+8&=0\
x(x-1)-8(x-1)&=0\
(x-1)(x-8)&=0\
x&=1,8\
end{align*}
$$

Thus the value of $x$ is $8$ as $8$ belongs to the equation’s domain.

Step 6
6 of 10
$c.$ We first simplify the third gievn equation,

$$
begin{align*}
dfrac{3}{4}x^{2}&=dfrac{5}{4}x+dfrac{1}{2} \
dfrac{3}{4}x^{2}&=dfrac{5x+2}{4}\
3x^{2}&=5x+2\
end{align*}
$$

Step 7
7 of 10
Now, we will find the solutions of $x$,

$$
begin{align*}
3x^{2}&=5x+2\
3x^{2}-5x-2&=0\
3x^{2}-6x+x-2&=0\
3x(x-2)+1(x-2)&=0\
(3x+1)(x-2)&=0 \
x&=-dfrac{1}{3},2\
end{align*}
$$

Therefore the value of $x$ is $-dfrac{1}{3},2$.

Step 8
8 of 10
$d.$We first simplify the third given equation,

$$
begin{align*}
4x(x-2)&=(2x+1)(2x-3)\
4x^{2}-8x&=4x^{2}-6x+2x-3 \
4x^{2}-8x&=4x^{2}-4x-3\
end{align*}
$$

Step 9
9 of 10
Now, we subtract $4x^{2}+8x$ from both the sides to get the solutions of $x$,

$$
begin{align*}
4x^{2}-8x-4x^{2}+8x&=4x^{2}-4x-3-4x^{2}+8x \
0&=4x-3\
4x&=3\
x&=dfrac{3}{4}\
end{align*}
$$

Therefore the value of $x$ is $dfrac{3}{4}$.

Result
10 of 10
See the explanation .
Exercise 124
Step 1
1 of 5
It is given that an average classroom holds 36 students.
In order to show the relationship between the number of students in a school and the average number of classrooms required graphically, we will conclude the data.
Step 2
2 of 5
The data representations are given as follows :-
$textbf{ Case 1}$:
” If the number of students is under 36 i.e. 1,2,3,4,…. 36″
$$begin{aligned}
&boxed{f(x)= 1, 0<xleq 36}rightarrow(1)\
end{aligned}$$
where $x$ is an integer.
Step 3
3 of 5
$textbf{ Case 2}$:
” If the number of students is more than 36 i.e. 37,38,39…..72″
$$begin{aligned}
&boxed{f(x)= 2, 36<xleq 72}rightarrow(2)\
end{aligned}$$
where $x$ is an integer.
Step 4
4 of 5
$textbf{ Case 3}$:
” If the number of students is more than 72 i.e. 72,73,74…….108″
$$begin{aligned}
&boxed{f(x)= 3, 72<xleq 108}rightarrow(3)\
end{aligned}$$
where $x$ is an integer.
Step 5
5 of 5
Sketching the graph of the conditions formed in (1), (2), and (3).
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/6290a3e3-49e8-40db-b1e1-8c5645ed6077-1622703306638334.png)
Exercise 125
Step 1
1 of 4
Given,

$$
begin{align*}
&a. y=x^{3}+x\
&b. y=6x^{2}-x\
&c. y=x^{4}+3x^{2}\
end{align*}
$$

Step 2
2 of 4
$a.$ We find out if the function is odd or negative,

$$
begin{align*}
y&=x^{3}+x\
f(x)&=x^{3}+x\
f(-x)&=(-x)^{3}-x\
f(-x)&=-x^{3}-x\
f(-x)&=-(x^{3}+x)\
-f(x)&=-(x^{3}+x)\
end{align*}
$$

Thus, the given function is an even function.

Step 3
3 of 4
$b.$ We find out if the function is odd or negative,

$$
begin{align*}
y&=6x^{2}-x\
f(x)&=6x^{2}-x\
f(-x)&=6(-x)^{2}-(-x)\
f(-x)&=6x^{2}+x\
f(x)&ne6x^{2}+x\
-f(x)&ne6x^{2}+x\
end{align*}
$$

Thus, the given function is neither odd nor even.

Step 4
4 of 4
$c.$ We find out if the function is odd or negative,

$$
begin{align*}
y&=x^{4}+3x^{2}\
f(x)&=x^{4}+3x^{2}\
f(-x)&=(-x)^{4}+3(-x)^{2}\
f(-x)&=x^{4}+3x^{2}\
f(x)&=x^{4}+3x^{2}\
end{align*}
$$

Thus, the given function is odd.

Exercise 126
Step 1
1 of 1
To apply this exercise
1. Check your answers using the table at the end of this section.
2. Construct a table in your Learning Log.
3. Write a list of topics you need help on.
4. Write a list of topics you need to practice more.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New