Core Connections Integrated 3
Core Connections Integrated 3
1st Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283939
Textbook solutions

All Solutions

Page 557: Closure Activity

Exercise 197
Step 1
1 of 4
Given,

$a$.

$$
begin{align*}
y = 3cdot cos(2x) tag{1} \
end{align*}
$$

Since we know that the amplitude and period of a function $y = A cdot cos(Bx)$ is given by,

$$
begin{align*}
text{Amplitude} & = A \
text{ Period} & = dfrac{2pi}{B}\
end{align*}
$$

Comparing $(1)$ with the general form, $A = 3$ and $B = 2$. Thus, the amplitude and the period of the given function are given as follows.

$$
begin{align*}
text{Amplitude} & = 3 \
text{ Period} & = dfrac{2pi}{2}\
& = pi\
end{align*}
$$

Step 2
2 of 4
Sketching the graph of $(1)$.

Exercise scan

Step 3
3 of 4
Given,

$b$.

$$
begin{align*}
y = 3cdot tan(x- dfrac{pi}{2}) tag{2}\
end{align*}
$$

Since we know that the tangent function does not have any amplitude. So, the period of a function $y = A cdot tan(Bx)$ is given by,

$$
begin{align*}
text{ Period} & = dfrac{pi}{left|Bright|} \
end{align*}
$$

Comparing $(1)$ with the general form,$B = 1$. Thus, the period of the given function is given as follows.

$$
begin{align*}
text{ Period} & = dfrac{pi}{left|1right|}\
& = pi\
end{align*}
$$

Step 4
4 of 4
Sketching the graph of $(2)$.

Exercise scan

Exercise 198
Step 1
1 of 2
The equation of a goniometric function is $y=asin{b(x-c)}+d$ where $a$ is the amplitude (difference between maximum and minimum, divided by 2), $b$ is $dfrac{2pi}{p}$ with $p$ the period of the function and $(c,d)$ is the locator point (starting point of a cycle).

a. $f(x)=sin{x+dfrac{pi}{2}}$ (period $2pi$)

b. $f(x)=sin{x-pi}-3$ (period $2pi$)

c. $f(x)=5sin{4x}$ (period $dfrac{pi}{2}$)

d. $f(x)=sin{dfrac{1}{3}left( x-dfrac{pi}{2}right)}$ (period $6pi$)

Result
2 of 2
a. $f(x)=sin{x+dfrac{pi}{2}}$

b. $f(x)=sin{x-pi}-3$

c. $f(x)=5sin{4x}$

d. $f(x)=sin{dfrac{1}{3}left( x-dfrac{pi}{2}right)}$

Exercise 199
Step 1
1 of 5
Given ,

$f( x) = x^{3} + 3x^{2} + x – 5$
Graph of $f(x)$ we can have a point that will satisfy the given function.

Exercise scan

Step 2
2 of 5
From the given graph, we can have a zero of $f( x)$ i.e. $x = 1$ and it will satisfy the given function. Mathematically which can be justified as follows,

$$
begin{align*}
f(x) &= x^{3} + 3x^{2} + x – 5\
f(1) & = (1)^{3} + 3 (1)^{2} + 1 – 5 \
&= 1 + 3 + 1 -5 \
&= 0 \
end{align*}
$$

According to the remainder theorem, we can say that $(x – 1)$ is the factor of the polynomial.

Step 3
3 of 5
Dividing $f( x)$ by the linear factor $(x – 1)$ in order to have other two zeroes.\

$
begin{array}{ccccccccccccccccccccc}
&&&&&&x^2 &+4x&+5&\
cline{3-10}
multicolumn{2}{r}{x – 1surd}
&x^3 & &+3x^2&+x&- 5& \
& &x^3& &+x^2& & & & \
cline{3-7}
&&&&4x^2&+x&-5& \
&&&&4x^2&+4x&& \
cline{4-8}
&&&&&5x&-5& \
&&&&&5x&+5& \
cline{5-9}
cline{6-10}
end{array}
$

Step 4
4 of 5
Thus, we can describe $f(x)$ as,

$$
begin{align*}
f(x) &= (x-1) (x^{2} + 4x + 5)\
end{align*}
$$

Solving $x^{2} + 4x + 5$ separately,

$$
begin{align*}
&= (x^{2}+ 4x + (2)^{2} – (2)^{2} + 5) left[text{ Using Completing the square method}right]\
&= (x+2)^{2} + (1)^{2}\
-1&= (x + 2)^{2}\
-1&= (x + 2)^{2} \
i^{2}&= (x+2)^{2} left[-1 = i^{2}right]\
end{align*}
$$

Taking square root both sides, we get

$$
begin{align*}
i &= +(x+ 2)\
x&= -2 + i \
text{ or}\
i&= – (x + 2)\
x&= -2 – i\
end{align*}
$$

Result
5 of 5
$1$ ; $-2 + i$ ; $-2 – i$
Exercise 200
Step 1
1 of 2
a. Since the first term is 3 and the consecutive terms increase by 3:

$$
sum_{n=1}^{10} (3+3(n-1))=sum_{n=1}^{10}(3n)
$$

b. Since the first term is $-7$ and the consecutive terms increase by 3:

$$
sum_{n=1}^{7} (-7+3(n-1))=sum_{n=1}^{7}(-10+3n)
$$

Result
2 of 2
a. $sum_{n=1}^{10}(3n)$

b. $sum_{n=1}^{7}(-10+3n)$

Exercise 201
Step 1
1 of 2
a. Geometric, because it has a common ratio of $r=-dfrac{2}{3}$.

b. No, because the upper boundary of the sum is $infty$.

c. Since $r<1$, the sum will exist. The infinite sum of a geometric sequence is

$$
dfrac{a}{1-r}
$$

with $a$ the first term and $r$ the common ratio.

Thus we then obtain:

$$
S=dfrac{4}{1+dfrac{2}{3}}=dfrac{12}{5}=2.4
$$

Result
2 of 2
a. Geometric

b. No

c. $dfrac{12}{5}$

Exercise 202
Solution 1
Solution 2
Step 1
1 of 2
a. The number of terms is the difference between the first and last term divided by the common difference and increased by 1:

$$
dfrac{63-3}{0.3}+1=200+1=201
$$

b. The sum of an arithmetic sequence is the sum of the first and last term, multiplied by the number of terms, divided by 2:

$$
dfrac{(3+63)201}{2}=6,633
$$

Result
2 of 2
a. 201 terms
b. 6,633
Step 1
1 of 3
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

The first term is $3$,
and the difference between the terms is $boldsymbol{0.3}$
Because $3+0.3=3.3$.

The number of terms is the
difference between the last and first term
divided by the common difference
and incerased by 1.

$$
begin{align*}
t&=frac{63-3}{0.3}+1&&boxed{text{Use the formula}}\
t&=frac{60}{0.3}+1&&boxed{text{Subtract the numbers: }63-3=60}\
t&=200+1&&boxed{text{Divide the numbers: } frac{60}{0.3}=200}\\
t&=201&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}t=201} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 2
2 of 3
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

The sum of an arithmetic series is
the sum of the first and last term,
multiplied by the number of terms
and divided by 2

$$
begin{align*}
S(n)&=frac{(3+63)n}{2}&&boxed{text{Use the formula}}\
S(201)&=frac{3+63)201}{2}&&boxed{text{Substitute }201 text{ for }n}\
S(201)&=frac{66cdot201}{2}&&boxed{text{Calculate within parentheses: }3+63=66}\
S(201)&=frac{13266}{2}&&boxed{text{Multiply the numbers: }66cdot201=13266
}\
S(201)&=6633&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}S(201)=6633} }&&boxed{text{Final solution}}\
end{align*}
$$

Result
3 of 3
$$
color{#4257b2} text{ a) }t=201
$$

$$
color{#4257b2} text{ b) }S(201)=6633
$$

Exercise 203
Step 1
1 of 2
The sum of a geometric sequence is given by
$$
adfrac{1-r^n}{1-r}
$$

with $a$ the first term and $r$ the common ratio and $n$ the number of terms:

$$
20dfrac{1-(0.7)^5}{1-0.7}=55.462
$$

Result
2 of 2
55.462 ft
Exercise 204
Step 1
1 of 3
a-

$dfrac {27}{sin {40}}=dfrac {x}{sin {30}}$          (The law of sins)

$dfrac {27}{0.6428}=dfrac {x}{0.5}$

$x=0.5 cdot dfrac {27}{0.6428}$

$$
x approx 21
$$

Step 2
2 of 3
b-

The missing angle of the triangle is: $180-(27+39)=114 text{textdegree}$

$dfrac {81}{sin {39}}=dfrac {x}{sin {114}}$          (The law of sins)

$dfrac {81}{0.6293}=dfrac {x}{0.9135}$

$x=0.9135 cdot dfrac {81}{0.6293}$

$$
x approx 117.58
$$

Result
3 of 3
a-          $x approx 21$

b-          $x approx 117.58$

Exercise 205
Step 1
1 of 4
Given ,

$$
begin{align*}
cos(alpha) & = dfrac{5}{13}\
end{align*}
$$

Also, the range is $dfrac{3pi}{2}$ $leq$ $alpha$ $leq$ $2pi$. The range explains fourth quadrant.

Step 2
2 of 4
The values of other trigonometric ratio is given as follows,

Using Identity $sin^{2}(x) + cos^{2}(x) = 1$. Thus, value of $sin$ $alpha$ is given as follows,

$$
begin{align*}
sin (alpha) &= sqrt{left[1-left(dfrac{5}{13}right)^{2}right]}\\
&=sqrt{1- dfrac{25}{169}} \\
&= sqrt{dfrac{169-25}{169}} \\
&= sqrt{dfrac{144}{169}} \\
&= +dfrac{12}{13} (text{ ignoring because of IV quadrant})\\
&= – dfrac{12}{13}\\
end{align*}
$$

Thus, $sin(alpha) = -dfrac{12}{13}$.

Step 3
3 of 4
Since , we know that $cosec(x) = dfrac{1}{sin( x)}$ and $sec(x) = dfrac{1}{cos(x)}$.

Thus,

$$
begin{align*}
cosec (alpha) &= -dfrac{13}{12} \
end{align*}
$$

And,

$$
begin{align*}
sec (alpha) &= dfrac{13}{5} \
end{align*}
$$

Step 4
4 of 4
And , $tan(x) = dfrac{sin( x)}{cos(x)}$ and $cot (x) = dfrac{1}{tan(x)}$.

$$
begin{align*}
tan (alpha) & = dfrac{-dfrac{12}{13}}{dfrac{5}{13}}\\
tan ( alpha) & = -dfrac{12}{5} \
end{align*}
$$

Also,

$$
begin{align*}
cot (alpha) & = – dfrac{5}{12}\
end{align*}
$$

Exercise 206
Step 1
1 of 2
The problems with summation of a series and the problems with finding the missing side length of a non-right triangle seem to be the hardest.
Step 2
2 of 2
Writting periodic functions and finding the roots of a given function seems to be the easiest.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New