All Solutions
Page 107: Questions
(x+3)^2-5=0
$$
(x+3)^2-5=4
$$

$$
(0,4)
$$
$(-3)^2-5stackrel{?}{=}4$
$4=4checkmark$
$(0+3)^2-5stackrel{?}{=}4$
$(3)^2-5stackrel{?}{=}4$
$4=4checkmark$
b) 2 solutions
c) ${-6,0}$
(x+3)^2-5=11
$$
$(x+3)^2-16=0$
$(x+3-4)(x+3+4)=0$
$(x-1)(x+7)=0$
$x-1Rightarrow x_1=1$
$x+7Rightarrow x_2=-7$

$$
x_2=1
$$
$(x+3)^2=16$
$x+3=pm 4$
$x+3=-4Rightarrow x_1=-4-3=-7$
$x+3=4Rightarrow x_2=4-3=1$
(x+3)^2-5=3
$$
$(x+3)^2-8=0$
$(x+3-2sqrt 2)(x+3+2sqrt 2)=0$
$x+3-2sqrt 2Rightarrow x_1=-3+2sqrt 2$
$x+3+2sqrt 2Rightarrow x_2=-3-2sqrt 2$

$$
x_2approx-0.172
$$
$(x+3)^2=8$
$x+3=pm 2sqrt 2$
$x+3=-2sqrt 2Rightarrow x_1=-3-2sqrt 2$
$x+3=2sqrt 2Rightarrow x_2=-3+2sqrt 2$
ii) ${-3-2sqrt 2,-3+2sqrt 2}$
dfrac{x-5}{4}+dfrac{2}{5}=dfrac{9}{10}
$$
$5(x-5)+4(2)=2(9)$
$5x-25+8=18$
$5x-17=18$
$5x=18+17$
$5x=35$
$x=dfrac{35}{5}$
$$
x=7
$$
$textcolor{#4257b2}{text{to write a new equivalent equation that is easier to solve}}$:
$$
5(x-5)=10
$$
$textcolor{#4257b2}{text{doing the opposite of an operation}}$
$textcolor{#4257b2}{text{expression inside the parantheses}}$.
$$
begin{align*}
x^{2}+2.5x-1.5&=0 \
end{align*}
$$
So, we will multiply the given equation by $2$.
$$
begin{align*}
x^{2}+2.5x-1.5&=0 \
2(x^{2}+2.5x-1.5&=0) \
2x^{2}+5x-3&=0 tag{1}\
end{align*}
$$
$$
begin{align*}
2x^{2}+5x-3&=0 \
2x^{2}+6x-x-3&=0 \
2x(x+3)-1(x+3)&=0 \
(2x-1)(x+3)&=0\
x&=0.5,-3\
end{align*}
$$
Then, we will plot the graph for $(1)$.
By putting $x$ as $(-3)$ in $(1)$,
$$
begin{align*}
2x^{2}+5x-3&=0\
2(-3)^{2}+5(-3)-3&=0 \
2(9)-15-3&=0\
18-18&=0\
0&=0\
end{align*}
$$
By putting $x$ as negative $(0.5)$ in $(1)$,
$$
begin{align*}
2x^{2}+5x-3&=0\
2(0.5)^{2}+5(0.5)-3&=0\
2(0.25)+2.5-3&=0\
0.5-2.5-3&=0\
3-3&=0\
0&=0\
end{align*}
$$
Therefore the obtained solution is correct.
4|8x-2|=8
$$
$8x-2=-2Rightarrow 8x=0Rightarrow x_1=0$
$8x-2=2Rightarrow 8x=4Rightarrow x_2=0.5$
$4|8(0)-2|stackrel{?}{=}8$
$4|-2|stackrel{?}{=}8$
$8=8checkmark$
$x_2=0.5$
$4|8(0.5)-2|stackrel{?}{=}8$
$4|2|stackrel{?}{=}8$
$8=8checkmark$
3sqrt{4x-8}+9=15
$$
$3sqrt{4x-8}=6$
$sqrt{4x-8}=2$
$(sqrt{4x-8})^2=2^2$
$4x-8=4$
$4x=12$
$$
x=3
$$
$3sqrt{4}+9stackrel{?}{=}15$
$6+9stackrel{?}{=}15$
$$
15=15checkmark
$$
(2y-3)(y-2)=-12y+18
$$
$(2y-3)(y-2)+6(2y-3)=0$
$(2y-3)(y-2+6)=0$
$(2y-3)(y+4)=0$
$2y-3=0Rightarrow y_1=dfrac{3}{2}$
$y+4=0Rightarrow y_2=-4$
$(2(1.5)-3)(1.5-2)stackrel{?}{=}-12(1.5)+18$
$0(-0.5)stackrel{?}{=}-18+18$
$0=0checkmark$
$y_2=-4$
$(2(-4)-3)(-4-2)stackrel{?}{=}-12(-4)+18$
$-11(-6)stackrel{?}{=}48+18$
$$
66=66checkmark
$$
dfrac{5}{x}+dfrac{1}{3x}=dfrac{4x}{3}
$$
$15+1=4x^2$
$16=4x^2$
$x^2=4$
$x=pm 2$
$x_1=-2$
$$
x_2=2
$$
$dfrac{5}{-2}+dfrac{1}{3(-2)}stackrel{?}{=}dfrac{4(-2)}{3}$
$-dfrac{5}{2}-dfrac{1}{6}stackrel{?}{=}-dfrac{8}{3}$
$-dfrac{15}{6}-dfrac{1}{6}stackrel{?}{=}-dfrac{8}{3}$
$-dfrac{16}{6}stackrel{?}{=}-dfrac{8}{3}$
$-dfrac{8}{3}=-dfrac{8}{3}checkmark$
$x_2=2$
$dfrac{5}{2}+dfrac{1}{3(2)}stackrel{?}{=}dfrac{4(2)}{3}$
$dfrac{5}{2}+dfrac{1}{6}stackrel{?}{=}dfrac{8}{3}$
$dfrac{15}{6}+dfrac{1}{6}stackrel{?}{=}dfrac{8}{3}$
$dfrac{16}{6}stackrel{?}{=}dfrac{8}{3}$
$dfrac{8}{3}=dfrac{8}{3}checkmark$
|3-7x|=-6
$$
dfrac{6w-1}{5}-3w=dfrac{12w-16}{15}
$$
$3(6w-1)-45w=12w-16$
$18w-3-45w=12w-16$
$-27w-3=12w-16$
$-3=12w-16+27w$
$-3+16=39w$
$13=39w$
$w=dfrac{13}{39}$
$$
w=dfrac{1}{3}
$$
$dfrac{1}{5}-1stackrel{?}{=}dfrac{-12}{15}$
$$
-dfrac{4}{5}=-dfrac{4}{5}checkmark
$$
(x-3)^2-2=-5
$$
$$
(x-3)^2=-3
$$
(x+2)^2+4(x+2)-5=0
$$
$(y^2+4y+4)-4-5=$
$(y+2)^2-9=0$
$(y+2-3)(y+2+3)=0$
$(y-1)(y+5)=0$
$y-1=0Rightarrow y_1=1$
$y+5=0Rightarrow y_2=-5$
$y=x+2$.
We solve the equation in $y$ by $textcolor{#4257b2}{text{rewriting}}$:
$y_1=1$
$x_1=y_1-2=1-2=-1$
$y_2=-5$
$$
x_2=y_2-2=-5-2=-7
$$
$(-1+2)^2+4(-1+2)-5stackrel{?}{=}0$
$1+4-5stackrel{?}{=}0$
$0=0checkmark$
$x_2=-7$
$(-7+2)^2+4(-7+2)-5stackrel{?}{=}0$
$25-20-5stackrel{?}{=}0$
$0=0checkmark$
$$
begin{align*}
i) x^{2}+7x+12&=0\
ii) (dfrac{1}{2}x+7)^{2}+7(dfrac{1}{2}x+7)+12&=0\
end{align*}
$$
$$
begin{align*}
x^{2}+7x+12&=0\
x^{2}+3x+4x+12&=0 \
x(x+3)+4(x+3)&=0\
(x+4)(x+3)&=0\
x&=-4,-3\
end{align*}
$$
Therefore the solution of the first given equation is $(-4)$ and $(-3)$.
$$
begin{align*}
dfrac{1}{2}x+7&=-3\
dfrac{1}{2}x&=-3-7\
x&=dfrac{-10times2}{1}\
x&=-20\
end{align*}
$$
Now we equate $dfrac{1}{2}x+7$ to $(-4)$ to find the second value of $x$.
$$
begin{align*}
dfrac{1}{2}x+7&=-4\
dfrac{1}{2}x&=-4-7\
x&=dfrac{-11times2}{1}\
x&=-22\
end{align*}
$$
Therefore the value of $x$ is $(-22)$ and $(-20)$.
Now, putting $x$ as $(-22)$.
$$
begin{align*}
(dfrac{1}{2}x+7)^{2}+7(dfrac{1}{2}x+7)+12&=0\
(dfrac{1}{2}(-22)+7)^{2}+7(dfrac{1}{2}(-22)+7)+12&=0\
(-11+7)^{2}+7(-11+7)+12&=0\
(-4)^{2}+7(-4)+12&=0\
16-28+12&=0\
28-28&=0\
0&=0\
end{align*}
$$
Now, putting $x$ as $(-20)$.
$$
begin{align*}
(dfrac{1}{2}x+7)^{2}+7(dfrac{1}{2}x+7)+12&=0\
(dfrac{1}{2}(-20)+7)^{2}+7(dfrac{1}{2}(-20)+7)+12&=0\
(-10+7)^{2}+7(-10+7)+12&=0\
(-3)^{2}+7(-3)+12&=0\
9-21+12&=0\
21-21&=0\
0&=0\
end{align*}
$$
There fore the obtained solutions are correct.
$$
begin{align*}
&a.(m^{2}+5m-24)^{2}-(m^{2}+5m-24)=6 \\
&b. x^{tfrac{2}{3}}-x^{tfrac{1}{3}}-56=0\\
&c. y^{6}+3y^{3}-18=0\\
&d. p-12sqrt{p}=35 \\
&e. 3^{sqrt{x+tfrac{1}{4}}}=9^({sqrt{x+tfrac{1}{4}}})^{2}\\
end{align*}
$$
Now, we rewrite and solve the given equation,
$$
begin{align*}
y^{2}-y&=6\\
y^{2}-y-6&=0\\
end{align*}
$$
Now, we rewrite and solve the given equation,
$$
begin{align*}
y^{2}-y-56&=0\\
end{align*}
$$
Now, we rewrite and solve the given equation,
$$
begin{align*}
x^{2}+3x-18&=0\
x^{2}+6x-3x-18&=0\
x(x+6)-3(x-6)&=0\
x(x+6)-3(x+6)&=0\
(x-3)(x+6)&=0\
y&=3,-6\
end{align*}
$$
So, when we take $x$ as $3$,
$$
begin{align*}
y^{2}&=3\
y&=sqrt{3}\
end{align*}
$$
Now we equate the value of $x$ to $y^{2}$ to get the value of $y$,
So, when we take $x$ as $-6$,
$$
begin{align*}
y^{2}&=-6\
y&=sqrt{-6}\
end{align*}
$$
Therefore the value of $y$ is $sqrt{3}$ and $sqrt{-6}$.
Now, we rewrite and solve the given equation,
$$
begin{align*}
y^{2}-12y+35&=0\
end{align*}
$$
Now, we rewrite and solve the given equation,
$$
begin{align*}
3^{y}&=(3^{2})^{y^{2}}\
end{align*}
$$
$textbf{Solving an equation graphically:}$ We can solve an equation graphically by putting the right side and the left side of the equation on the graph and then finding their intersection points. The intersection points will be called as the solution of the equation.
For example, let us have to solve an equation $3x+4=-5$. To solve this, graph the right side and the left side of the equation on the graph that means we have to graph $y=3x+4$ and $y=-5$ on the coordinate plane.
Now, let us look at the intersection point of both these lines. The intersection point is $(-3,-5)$ that means both these equations gives equal values of $y$ for $x=-3$. Thus, the solution of the equation $3x+4=-5$ is $x=-3$.
For example, let us solve the same example algebraically as shown below.
$$
begin{align*}
3x+4&=-5tag{subtract $4$ from both sides}\
3x+4-4&=-5-4\
3x&=-9tag{divide both sides by $3$}\
dfrac{3x}{3}&=dfrac{-9}{3}\
x&=-3
end{align*}
$$
The solution is coming out to be the same by this method as well that is $x=-3$.
There is one another example, we have to solve $2(x-1)^2+5=7$.
$$
begin{align*}
2(x-1)^2+5&=7tag{subtract $5$ from both sides}\
2(x-1)^2+5-5&=7-5\
2(x-1)^2&=2tag{divide both sides by $2$}\
dfrac{2(x-1)^2}{2}&=dfrac{2}{2}\
(x-1)^2&=1tag{take square roots on both sides}\
x-1&=pm1tag{add $1$ on both sides}\
x&=pm1+1\
x&=2,0
end{align*}
$$
Solving
$$
(x-2)^2-3=1
$$
algebraically:
$$
begin{align*}
(x-2)^2-3&=1\
(x-2)^2&=4\
x-2&=pm 2\
x&=2+2 & & big| &x&=-2+2\
x&=4& & big| &x&=0\
end{align*}
$$
a)
$$
$$
2(x-1)^2 + 7=39
$$
$$
2(x-1)^2=32
$$
$$
(x-1)^2=16
$$
$$
(x-1)^2 – 4^2=0
$$
$$
(x-1-4)(x-1+4)=0
$$
$(x-5)(x+3)=0$
$$
x_{1}=5, x_{2}=-3
$$
c)
$$
$$
dfrac{x}{2} + dfrac{x}{3}=dfrac{5x+2}{6}
$$
Let’s multiply both sides of the equation with 6:
$$
3x + 2x=5x+2
$$
$$
5x=5x+2
$$
This means that equation can’t be solved.
b)
$$
$$
7(sqrt{m+1} – 3)=21
$$
$$
sqrt{m+1}-3=3
$$
$$
sqrt{m+1}=3+3
$$
$$
sqrt{m+1}=6
$$
Let’s raise to 2nd power:
$$
m+1=36
$$
$$
m=35
$$
d)
$$
$$
-7 + (dfrac{4x+2}{2})=8
$$
$$
dfrac{4x+2}{2}=15
$$
Let’s multiply both sides with $2$:
$$
4x+2=30
$$
$$
4x=28
$$
Finally:
$x=dfrac{28}{4}$
$$
x=7
$$
$g(x)=-x^2$ (Given)
b- $g(-2)=-(-2)^2=-4$
c- $f(x)=0 rightarrow 3x-9=0$
$3x=9$
$$
x=3
$$
d- $g(m)=-m^2$
b- $g(-2)=-4$
c- $f(x)=0 rightarrow x=3$
d- $g(m)=-m^2$
$f(x)=x^2+6x+15$ (Write the equation)
$f(x)=x^2+2(3)x+3^2-3^2+15$ (Completing the squares)
$f(x)=(x+3)^2+6$ (Graphing Form)
The equation of the axis of symmetry: $x=-3$
The vertex is: $(-3, 6)$
$y=x^2-4x+9$ (Write the equation)
$y=x^2-2(2)x+(-2)^2-(-2)^2+9$ (Completing the square)
$y=(x-2)^2+5$ (Graphing Form)
The equation of the axis of symmetry: $x=2$
The vertex is: $(2, 5)$
$f(x)=x^2-8x$ (Write the equation)
$f(x)=x(x-8)$ (Factor out $x$)
x-intercepts are: $x=0$ and $x=8$
x-intercepts average $=dfrac {x_{1}+z_{2}}{2}=dfrac {0+8}{2}=4$
The equation of the axis of symmetry: $x=4$
The vertex is: $(4, -16)$
$y=x^2+7x-2$ (Write the equation)
$x{1, 2}=dfrac {-b pm sqrt {b^2-4ac}}{2a}$ (Quadratic Formula)
$x{1, 2}=dfrac {-7 pm sqrt {49+8}}{2}$
$x_{1}=dfrac {-7}{2}-dfrac {sqrt {57}}{2}$ $x_{2}=dfrac {-7}{2}+dfrac {sqrt {57}}{2}$
x-intercepts average: $=dfrac {x_{1}+x_{2}}{2}$
$=left(dfrac {-7}{2}-cancel{dfrac {sqrt {57}}{2}}+dfrac {-7}{2}+cancel {dfrac {sqrt {57}}{2}} right)div 2$
$=dfrac {-7}{2}$
The equation of the symmetry line: $x=dfrac {-7}{2}$
y-intercept of the vertex is: $=dfrac {49}{4}-dfrac {49}{2}-2$
$=-dfrac {49}{4}-dfrac {8}{4}=dfrac {-57}{4}$
The vertex is: $(-dfrac {7}{2},qquad -dfrac {57}{4})$
b- Axis of symmetry: $x=2$ Vertex: $(2, 5)$
c- Axis of symmetry: $x=4$ Vertex: $(4, -16)$
d- Axis of symmetry: $x=dfrac {-7}{2}$ Vertex: $(-dfrac {7}{2},qquad -dfrac {57}{4})$
The $”x”$ point lies on the $y$-axis which is why the parabola has $y$-axis of symmetry.
Parent function
$$
begin{align*}
y&=f(-x)\
end{align*}
$$
Equations obtained in $3-15$,
$$
begin{align*}
a. f(x)&=-2(x+4)^{2}+2\
b. f(x)&=dfrac{1}{x-2}\
c. f(x)&=-x^{3}+3\
end{align*}
$$
Now we reflect $f(x)$ across the $y$-axis to get $f(-x)$
Now we reflect $f(x)$ across the $y$-axis to get $f(-x)$
Now we reflect $f(x)$ across the $y$-axis to get $f(-x)$.
$$
begin{align*}
&a.dfrac{3(x^{2}-dfrac{4}{5})}{8}+dfrac{(x^{2}-dfrac{4}{5})}{8}=2 \
&b.(dfrac{1}{n+1})^{2}+6(dfrac{1}{n+1})=27 \
&c.6(dfrac{x+1}{6})^{2}+7(dfrac{x+2}{6})-3=0\
end{align*}
$$
Now, we rewrite and solve the given equation,
$$
begin{align*}
dfrac{3y}{8}+dfrac{y}{4}&=2\
dfrac{3y+2y}{8}&=2
3y+2y&=2times8\
5y&=16\
y&=dfrac{16}{5}\
end{align*}
$$
Now we equate the value of $y$ to $x^{2}-dfrac{4}{5}$ to get the value of $x$,
$$
begin{align*}
x^{2}-dfrac{4}{5}&=dfrac{16}{5}\\
x^{2}&=dfrac{16}{5}+dfrac{4}{5}\\
x^{2}&=dfrac{16+4}{5}\\
x^{2}&=dfrac{20}{5}\\
x^{2}&=4\\
x&=pm2\\
end{align*}
$$
Therefore the value of $x$ is $pm2$
Now, we rewrite and solve the given equation,
$$
begin{align*}
y^{2}+6y&=27\
y^{2}+6y-27&=0\
y^{2}+9y-3y-27&=0\
y(y+9)-3(y-9)&=0\
y(y+9)-3(y+9)&=0\
(y-3)(y+9)&=0\
y&=3,-9\
end{align*}
$$
So, when we take $y$ as $3$,
$$
begin{align*}
dfrac{1}{n+1}&=3\
1&=3(n+1)\
1&=3n+3\
1-3&=3n\
-2&=3n\
n&=-dfrac{2}{3}\
end{align*}
$$
So, when we take $y$ as $9$,
$$
begin{align*}
dfrac{1}{n+1}&=9 \
1&=9(n+1)\
1&=9n+9\
1-9&=9n\
-8&=9n\
n&=-dfrac{8}{9}\
end{align*}
$$
Therefore the value of $n$ is $-dfrac{2}{3}$ and $-dfrac{8}{9}$.
Now, we rewrite and solve the given equation,
$$
begin{align*}
6y^{2}+7y-3&=\
6y^{2}+9y-2y-3&=0\
3y(2y+3)-1(2y+3)&=0\
(3y-1)(2y+3)&=0\
y&=dfrac{1}{3},-dfrac{3}{2}\
end{align*}
$$
So, when we take $y$ as $dfrac{1}{3}$,
$$
begin{align*}
dfrac{x+2}{6}&=dfrac{1}{3}\
3(x+2)&=6(1)\
3x+6&=6\
3x&=6-6\
3x&=0\
x&=0\
end{align*}
$$
So, when we take $y$ as $-dfrac{3}{2}$,
$$
begin{align*}
dfrac{x+2}{6}&=-dfrac{3}{2}\
2(x+2)&=6(-3)\
2x+4&=-18\
2x&=-22\
2x&=dfrac{-22}{2}\
x&=-11\
end{align*}
$$
Therefore the value of $x$ is $0$ and $-11$.
$$
begin{align*}
&a.(y-7)^{2}=25-(x-3)^{2}\
&b. x^{2}+y^{2}+10y=-9\
&c. x^{2}+y^{2}+18x-8y+47=0 \
&d. y^{2}+(x-3)^{2}=1\
end{align*}
$$
$$
begin{align*}
(y-7)^{2}&=25-(x-3)^{2}\
(x-3)^{2}+(y-7)^{2}&=25\
end{align*}
$$
Now, we find the radius.
$$
begin{align*}
(x-3)^{2}+(y-7)^{2}&=25\
C(3,7)\
r&=sqrt{25}\
r&=5\
end{align*}
$$
Therefore the radius of the circle is $5$ and the center is $(3,7)$
$$
begin{align*}
x^{2}+y^{2}+10y&=-9\
x^{2}+(y^{2}+10y+25)&=-9+25\
x^{2}+(y+5)^{2}&=16\
end{align*}
$$
Now, we find the radius.
$$
begin{align*}
x^{2}+(y+5)^{2}&=16\
C(0,-5)\
r&=sqrt{16}\
r&=4\
end{align*}
$$
Therefore the radius of the circle is $4$ and the center is $(0,-5)$
$$
begin{align*}
x^{2}+y^{2}+18x-8y+47&=0\
(x^{2}++18x+81)+(y^{2}-8y+16)&=-47+81+16\
(x+9)^{2}+(y-4)^{2}&=50\
end{align*}
$$
Now, we find the radius.
$$
begin{align*}
(x+9)^{2}+(y-4)^{2}&=50\
C(-9,4)\
r&=sqrt{50}\
r&=5sqrt{2}\
end{align*}
$$
Therefore the radius of the circle is $5sqrt{2}$ and the center is $(-9,4)$
Now, we find the radius and the centre.
$$
begin{align*}
y^{2}+(x-3)^{2}&=1\
C(0,3)\
r&=sqrt{1}\
r&=1\
end{align*}
$$
Therefore the radius of the circle is $1$ and the center is $(0,3)$
$$
begin{bmatrix}2x+6y=10\x+3y=8end{bmatrix}
$$
then subtracting $2times Eq2$ from $Eq1$ we obtain an inconsistency $0=-6$ so the system has no valid solutions
$$
begin{align*}
y&=(x+2)^{3}+4 \
end{align*}
$$
In order to describe and sketch the graph of the given function, we will first sketch the graph of the given function.
The function has one $x$-intercept and an $y$-intercept, this means the function has one real zero and two imaginary zeroes.
The domain and range of the function are the set of all real numbers.
The functions are increasing in all its domain.
There is no asymptote.
$y=3^{x}$
$a.$ Down $4$ units.
$b.$ Right $7$ units.
$$
begin{align*}
y&=3^{x}\
y&=3^{x}-4\
end{align*}
$$
Therefore when we shift the function down by $4$ units we get $y=3^{x}-4$.
$$
begin{align*}
y&=3^{x}\
y&=3^{x-7}\
end{align*}
$$
Therefore when we shift the function right by $7$ units we get $y=3^{x-7}$.
$b) y=3^{x-7}$




Graphical representation of the data represented in the “difference” column.

Standard Deviation, s: $1.2613124477738$
Mean, x̄: $3.0909090909091$
Variance: $1.5909090909091$
x=sqrt{2x+3}
$$
$x^2=2x+3$
$x^2-2x-3=0$
$(x^2-2x+1)-4=0$
$(x-1)^2-4=0$
$(x-1-2)(x-1+2)=0$
$(x-3)(x+1)=0$
$x-3=0Rightarrow x_1=3$
$x+1=0Rightarrow x_2=-1$

$sqrt{2(-1)+3}stackrel{?}{=}-1$
$$
1not=-1
$$
x=3
$$
x=sqrt{2x+3}
$$
$x_2=-1$
$sqrt{2(3)+3}stackrel{?}{=}3$
$sqrt 9stackrel{?}{=}3$
$3=3checkmark$
$x_2=-1$
$sqrt{2(-1)+3}stackrel{?}{=}-1$
$$
1not=-1
$$
x=3
$$
2x^2+5x-3=x^2+4x+3
$$
$x^2+x-6=0$
$x^2+3x-2x-6=0$
$x(x+3)-2(x+3)=0$
$$
(x+3)(x-2)=0
$$
$$
x-2=0Rightarrow x_2=2
$$
begin{cases}
y=2x^2+5x-3\
y=x^2+4x+3
end{cases}
$$
$$
x_2=2
$$
20x+1=3^x
$$

$$
x_2=4
$$
begin{cases}
y=20x\
y=3^x-1
end{cases}
$$

-x^{2}+6x-5-dfrac{12}{x}=0
$$
-x^{3}+6x^{2}-5x-12=0
$$
1. Prepare your Learning Log.
2. Open a new page with title “One-Variable Equations and Their Solutions”.
3. Identify a one-variable equation and determine its solutions.
4. Illustrate multiple methods for solving one-variable equations .

The graph below is the graph of the functions:
$f(x)=-3sqrt {2x-5}+7$ and $g(x)=-8$
From the graph, the solution of the system $-3sqrt {2x-5}+7=-8$ is the point $(15, -8)$
Checking the solution:
$-3sqrt {2(15)-5}+7=-3sqrt {25}+7=-3 cdot 5+7=-8$ $checkmark$
The graph below is the graph of the functions:
$f(x)=2|3x+4|-10$ and $g(x)=12$
From the graph, the solution of the system $2|3x+4|-10=12$
is the points $(-5, 12)$ and $(dfrac {7}{3}, 12)$
Checking the solution:
For $x=-5$
$2|3(-5)+4|-10=2|-15+4|-10=2(11)-10=12$ $checkmark$
For $x=dfrac {7}{3}$
$2|3 cdot dfrac {7}{3}+4|-10=2|11|-10=22-10=12$ $checkmark$
b- The solution of the system $2|3x+4|-10=12$
is the points $(-5, 12)$ and $(dfrac {7}{3}, 12)$
$$
begin{align*}
&g(x)=x^{2}-5\\
&a. gleft(dfrac{1}{2}right) \\
&b. g(h+1)\\
end{align*}
$$
In order to determine $a$ and $b$, we will put $x$ as $left(dfrac{1}{2}right)$ and $(h+1)$ in $g(x)$.
$$
begin{align*}
gleft(dfrac{1}{2}right)&=left(dfrac{1}{2}right)^{2}-5 \\
&=dfrac{1}{4}-5\\
&=dfrac{1-20}{4}\\
&=dfrac{-19}{4}\\
end{align*}
$$
Therefore when we put $x$ as $left(dfrac{1}{2}right)$ in g$(x)$ we get $left(dfrac{-19}{4}right)$.
$$
begin{align*}
text{g}(h+1)&=(h+1)^{2}-5 \
text{g}(h+1)&=h^{2}+2h+1-5 \
text{g}(h+1)&=h^{2}+2h-4\
end{align*}
$$
Therefore when we put $x$ as $(h^{2}+1)$ in g$(x)$ we get $(h^{2}+2h-4)$.
$b. h^{2}+2h-4$
Q(x)=begin{bmatrix}3for xtextless60\lceildfrac{x}{60}-1for xgeq 60end{bmatrix}
$$
Q(118)=Q(119)=Q(120)=$4
$$
Q(121)=$5
$$

$(3 sqrt {2})^2$ (Write the equation)
$3^2 (sqrt {2})^2$ (Power of product property)
$$
9 cdot 2=18
$$
$sqrt {dfrac {9}{4}}$ (Write the equation)
$dfrac {sqrt {9}}{sqrt {4}}$ (Power of quotient property)
$$
=dfrac {3}{2}
$$
$sqrt {dfrac {1}{3}}$ (Write the equation)
$=dfrac {sqrt {1}}{sqrt {3}}$ (Power of quotient property)
$=dfrac {sqrt {1}}{sqrt {3}} times dfrac {sqrt {3}}{sqrt {3}}$ (Multiply by the form of 1)
$$
=dfrac {sqrt {3}}{3}
$$
$(3+sqrt 2)^2$ (Write the equation)
$=3^2+2 cdot 3 cdot sqrt 2+(sqrt {2})^2$
$=9+6 cdot sqrt {2}+2$
$=11+6 cdot sqrt {2}$
b- $sqrt {dfrac {9}{4}}=dfrac {3}{2}$
c- $sqrt {dfrac {1}{3}}=dfrac {sqrt {3}}{3}$
d- $(3+sqrt 2)^2=11+6 cdot sqrt {2}$

$g(x)=2x^2-6x-3$
$dfrac{1}{2}(x-2)^3+1=2x^2-6x-3$
$x^3-6x^2+12x-8+2-4x^2+12x+6=0$
$x^3-10x^2+24x=0$
$x(x^2-10x+24)=0$
$x[(x^2-10x+25)-1]=0$
$x[(x-5)^2-1]=0$
$x(x-5-1)(x-5+1)=0$
$x(x-6)(x-4)=0$
$x_1=0$
$x-6=0Rightarrow x_2=6$
$x-4=0Rightarrow x_3=4$
$dfrac{1}{2}(0-2)^3+1stackrel{?}{=}2(0)^2-6(0)-3$
$-4+1stackrel{?}{=}-3$
$-3=-3checkmark$
$x_2=6$
$dfrac{1}{2}(6-2)^3+1stackrel{?}{=}2(6)^2-6(6)-3$
$32+1stackrel{?}{=}36-3$
$33=33checkmark$
$x_3=4$
$dfrac{1}{2}(4-2)^3+1stackrel{?}{=}2(4)^2-6(4)-3$
$4+1stackrel{?}{=}72-36-3$
$33=33checkmark$
$dfrac{1}{2}(x-2)^3+1=0$
$(x-2)^3+2=0$
$x-2=-sqrt[3] 2$
$x=2-sqrt[3] 2$
$$
xapprox 0.74
$$

$dfrac{1}{2}cdot(-2)+1stackrel{?}{=}0$
$$
0=0checkmark
$$
$sqrt {2x-1}-x=-8$ (Given)
$2x-1=(x-8)^2$ (Square of each side)
$2x-1=x^2-16x+64$
$x^2-18x+65=0$
$(x-13)(x-5)$
$x=13$ or $x=5$
Checking for $x=13$
$sqrt {2(13)-1}-13=sqrt {25}-13=5-13=-8$ $checkmark$
Checking for $x=5$
$sqrt {2(5)-1}-13=sqrt {9}-13=3-13=-10 neq -8$ ($x=5$ is an extraneous solution)
$sqrt {2x-1}-x=0$ (Given)
$2x-1=x^2$ (Square of each side)
$x^2-2x+1=0$
$(x-1)(x-1)$
$x=1$
Checking for $x=1$
$sqrt {2(1)-1}-1=sqrt {1}-1=-1=0$ $checkmark$
$sqrt {2x-1}-x=-8 qquad rightarrow qquad x=13$ or $x=5$
$sqrt {2(5)-1}-13=sqrt {9}-13=3-13=-10 neq -8$ ($x=5$ is an extraneous solution)
b- $sqrt {2x-1}-x=0 qquad qquad x=1$
Checking for $x=1$
$sqrt {2(1)-1}-1=sqrt {1}-1=-1=0$ $checkmark$
$$
textbf{Equation : }(x-1)^2+(y-0)^2=30
$$
$$
textbf{Centre of circle is }(1,0)
$$
$$
textbf{Graph of the given equation is shown below : }
$$
text{Centre of circle is }(1,0)
$$
$$
begin{align*}
p(x)&=x^{2}+5x-6 \
end{align*}
$$
$$
begin{align*}
y&=p(x)\
y&=p(0) tag{1} \
end{align*}
$$
So, form $(1)$ we get,
$$
begin{align*}
p(0)&=x^{2}+5x-6\
p(0)&=(0)^{2}+5(0)-6\
p(0)&=-6\
end{align*}
$$
Therefore the graph of $y= p(x)$ intersect $y$-axis at $(0,-6)$.
$$
begin{align*}
y&=p(x)\
0&=p(x) tag{1}\
end{align*}
$$
So, form $(1)$ we get,
$$
begin{align*}
x^{2}+5x-6&=0 \
x^{2}+6x-x-6&=0\
x(x+6)-1(x-6)&=0\
x(x+6)-1(x+6)&=0\
(x-1)(x+6)&=0\
x&=1,-6\
end{align*}
$$
Therefore the graph of $y= p(x)$ intersect $x$-axis at $(-6,0)$ and $(1,0)$.
$x$-intercept, when $x$ is $0$
$$
begin{align*}
q(x)&=x^{2}+5x\
q(0)&=(0)^{2}+5(0)\
q(0)&=0\
end{align*}
$$
Thus $x$-intercept of q$(x)$ is $0$.
$y$-intercept, when $y$ is $0$
$$
begin{align*}
q(x)&=y\
q(x)&=0\
end{align*}
$$
So,
$$
begin{align*}
x^{2}+5x&=0\
x(x+5)&=0\
x&=0,-5\
end{align*}
$$
Thus $y$-intercept of q$(x)$ is $0$ and $-5$.
The graph of q$(x)$ is the graph of p$(x)$ shifted six units up.
$$
begin{align*}
p(x)-q(x)&=x^{2}+5x-6-(x^{2}+5x)\
p(x)-q(x)&=x^{2}+5x-6-x^{2}-5x\
p(x)-q(x)&=-6\
end{align*}
$$
Therefore the value of p$(x)$-q$(x)$ is $-6$.


$$
begin{align*}
3y-4x&=-1 \
9y+2x&=4\
end{align*}
$$
Now, we will multiply the second given equation by two in order to get opposite coefficients of $x$.
$$
begin{align*}
(9y+2x&=4)times2\
18y+4x&=8tag{1} \
end{align*}
$$
Now we add the first given equation and $(1)$ to get the value of $y$,
$$
begin{align*}
&3y – 4x = -1 \
&18y + 4x = 8 \
&rule{75pt}{0.5pt} \
& 21y = 7\
& y = dfrac{7}{21}\
& y = dfrac{1}{3}\
end{align*}
$$
$$
begin{align*}
18left(dfrac{1}{3}right) + 4x &= 8 \\
6+4x &= 8 \\
4x & = 8-6\\
x&= dfrac{2}{4}\\
x&= dfrac{1}{2}\\
end{align*}
$$
Therefore the intersecting points are $left(dfrac{1}{2},dfrac{1}{3}right)$.
$$
begin{bmatrix}2y=4x-10\y=2x-5end{bmatrix}
$$
then noting $Eq1-2Eq2rightarrow0=0$ so we have a linearly dependent system and therefore the graph will have infinite points of intersection.
begin{cases}
x^2+y^2=25\
y=x^2-13
end{cases}
$$

$x_2=-3$
$x_3=3$
$$
x_4=4
$$
$x^2+x^4-26x^2+169-25=0$
$$
x^4-25x^2+144=0
$$
$y^2+y+13-25=0$
$$
y^2+y-12=0
$$
$y(y-3)+4(y-3)=0$
$(y-3)(y+4)=0$
$y-3=0Rightarrow y_1=3$
$y+4=0Rightarrow y_2=-4$
$y_1=3$
$x^2=13+3=16$
$x=pmsqrt{16}$
$x_1=-4$
$x_2=4$
$y_2=-4$
$x^2=13-4=9$
$x=pmsqrt{9}$
$x_3=-3$
$x_4=3$
begin{cases}
x^2+y^2=25\
y=x^2-13
end{cases}
$$
begin{cases}
x^2+y^2=25\
y=x^2+6
end{cases}
$$
$y>6Rightarrow y^2>36$
$$
x^2+y^2=25Rightarrow y^2leq 25
$$
begin{cases}
x^2+y^2=25\
y=x^2+5
end{cases}
$$
$y^2+y-30=0$
$y^2-5y+6y-30=0$
$y(y-5)+6(y-5)=0$
$(y-5)(y+6)=0$
$y-5=0Rightarrow y_1=5$
$y+6=0Rightarrow y_2=-6$
$$
x=0
$$
$$
y=5
$$
begin{cases}
x^2+y^2=25\
y=x^2
end{cases}
$$
$y^2+y-25=0$
$y=dfrac{-1pmsqrt{1^2-4(1)(-25)}}{2(1)}$
$=dfrac{-1pmsqrt{101}}{2}$
$y_1=dfrac{-1-sqrt{101}}{2}approx -5.52$
$y_2=dfrac{-1+sqrt{101}}{2}approx 4.52$
$x=pmsqrt{4.52}$
$x_1=2.13$
$$
x_2=-2.13
$$
$x_2=-2.13; y=4.52$
begin{cases}
x^2+y^2=25\
y=x^2-5
end{cases}
$$
$y^2+y-20=0$
$y^2+5y-4y-20=0$
$y(y+5)-4(y+5)=0$
$(y+5)(y-4)=0$
$y+5=0Rightarrow y_1=-5$
$y-4=0Rightarrow y_2=4$
$x^2=-5+5=0$
$x_1=0$
$y_2=4$
$x^2=4+5=9$
$x=pm 3$
$x_1=-3$
$$
x_2=3
$$
$x_2=-3; y_2=4$
$x_3=3; y_2=4$
There are 3 methods to solve a system of equations:
Graphing: By graphing both equations and finding the intersection (common solutions)
Substitution method: Solving one equations for one of the variables and substituting for it in the other one.
Elimination method: Multiply one of the equations by a factor that makes the coefficients of one variable are equal in both equations and subtracting an equation from the other to eliminate this variable.
Graphing method.
Substitution method.
Elimination method.
begin{cases}
y=3x-5\
y=-2x-15
end{cases}
$$
$3x-5+2x=-2x-15+2x$
$5x-5=-15$
$5x-5+5=-15+5$
$5x=-10$
$x=dfrac{-10}{5}$
$$
x=-2
$$
$$
y=-11
$$
$$
y=-11
$$

begin{cases}
y-7=-2x\
4x+2y=14
end{cases}
$$
$4x+2(7-2x)=14$
$4x+14-4x=14$
$$
14=14
$$

begin{cases}
y=2(x+3)^2-5\
y=14x+17
end{cases}
$$
$2x^2+12x+18-5=14x+17$
$2x^2+12x+13-14x-17=0$
$2x^2-2x-4=0$
$2(x^2-x-2)=0$
$x^2-x-2=0$
$x^2+x-2x-2=0$
$x(x+1)-2(x+1)=0$
$(x+1)(x-2)=0$
$x+1=0Rightarrow x_1=-1$
$x-2=0Rightarrow x_2=2$
$y_1=3$
$y_2=14(2)+17$
$y_2=45$
$$
x=2; y=45
$$

begin{cases}
y=3(x-2)^2+3\
y=6x-12
end{cases}
$$
$3(x^2-4x+4)+3=6x-12$
$3(x^2-4x+4+1)=3(2x-4)$
$x^2-4x+5=2x-4$
$x^2-4x+5-2x+4=0$
$x^2-6x+9=0$
$(x-3)^2=0$
$$
x=3
$$
$$
y=6
$$
$$
y=6
$$

b) $(k,7-2k), k$ real
c) $(-1,3),(2,45)$
d) $(3,6)$
$$
begin{align*}
y&=4left(dfrac{1}{x+5}right)+7\\
end{align*}
$$
In order to graph and completely dec=scribe the given function, we will sketch the graph of the given function first.
Thus the graph is mentioned below.
The function’s range is $(-infty,7)$ and $(7,infty)$.
The function has a vertical asymptote which is $x = -5$ and a horizontal asymptote which is $y = 7$.
The function is decreasing on $(-infty,-5)$ and on $(-5,infty)$.
The function is discontinous in $x = -5$.
$$
begin{align*}
y&=0\
0&=4(dfrac{1}{x+5})+7\
0&=dfrac{4}{x+5}+7\
-7&=dfrac{4}{x+5}\
-7(x+5)&=4\
-7x-35&=4\
-7x&=39\
x&=-dfrac{39}{7}\
end{align*}
$$
Therefore $x$-intercept is $-dfrac{39}{7}$.
$$
begin{align*}
x&=0\
y&=4(dfrac{1}{x+5})+7\
y&=dfrac{4}{0+5}+7\
y&=dfrac{4}{5}+7\
y&=dfrac{4+35}{5} \
y&=dfrac{39}{5} \
end{align*}
$$
Therefore $y$-intercept is $dfrac{39}{5}$.
From the given figure, $(h, k)$ is the point $(-3, 4)$ and one of the lines passes the point $(-1, 0)$
Substituting in the general form equation,
$0=a|-1+3|+4$
$2a=-4$
$a=-2$
The equation is:
$$
f(x)=-2|x+3|+4
$$

f(x)=-2|x+3|+4
$$
$$
begin{align*}
a. y&=sqrt[3]{x}\
b. y&=9x^{5}-x-9 \
c. y&=4x^{3}+8x^{7}\
end{align*}
$$
$$
begin{align*}
y&=sqrt[3]{x}\
y&=x^{tfrac{1}{3}}\
f(x)&=x^{tfrac{1}{3}}\
f(-x)&=-x^{tfrac{1}{3}}ne f(x) \
-f(x)&=-x^{tfrac{1}{3}}ne f(-x) \
end{align*}
$$
Thus the given function is neither odd nor even.
$$
begin{align*}
y&=9x^{5}-x-9\
f(x)&=9x^{5}-x-9\
f(-x)&=9(-x)^{5}-(-x)-9\
f(-x)&=-9x^{5}+x-9\
f(-x)&=-(9x^{5}-x+9)ne f(x)\
-f(x)&=9(-x)^{5}+x-9ne f(-x) \
end{align*}
$$
Thus the given function is neither odd nor even.
$$
begin{align*}
y&=4x^{3}+8x^{7}\
f(x)&=4x^{3}+8x^{7}\
f(-x)&=4(-x)^{3}+8(-x)^{7}\
f(-x)&=-4x^{5}-8x^{7}\
f(-x)&=-(4x^{5}+8x^{7})ne -f(x) \
end{align*}
$$
Thus the given function is odd .
$b.$ Nor odd neither even
$c.$ odd
$$
begin{align*}
&a. y=sqrt[9]{m} \\
&b. dfrac{2}{g^{7}}\\
&c. dfrac{-3}{b^{-5}}\\
end{align*}
$$
In order to rewrite each expression in an equivalent form first, we will simplify them.
$$
begin{align*}
y&=sqrt[9]{m}\
y&=m^{tfrac{1}{9}} \
end{align*}
$$
Thus the equivalent form is $y = m^{tfrac{1}{9}}$.
$$
begin{align*}
&=dfrac{2}{g^{7}}\\
&=2g^{-7}\
end{align*}
$$
Thus the equivalent form is $2g^{-7}$.
$$
begin{align*}
&=dfrac{-3}{b^{-5}}\
&=-3b^{5}\
end{align*}
$$
Thus the equivalent form is $-3b^{5}$.
The path of Jamal’s cupcake can be represented with a quadratic equation, where the vertex of the parabola is the point $(10,9)$
$j(x)=-a(x-10)^2+9$
Substituting for the point $(0,0)$
$0=-a(0-10)^2+9$
$0=-100a+9$
$a=dfrac {9}{100}$
$$
j(x)=-dfrac {9}{100}(x-10)^2+9
$$
The path of Jamal’s cupcake can be represented with a quadratic equation, where the vertex of the parabola is the point $(12,6)$
$d(x)=-a(x-12)^2+6$
Substituting for the point $(0,0)$
$0=-a(0-12)^2+6$
$0=-144a+6$
$a=dfrac {1}{24}$
$$
d(x)=-dfrac {1}{24}(x-12)^2+6
$$
$j(x)=d(x)$
$-dfrac {9}{100}(x-10)^2+9=-dfrac {1}{24}(x-12)^2+6$
$-dfrac {9}{100}(x-10)^2+9=-dfrac {1}{24}(x-12)^2+6$
$-dfrac {9}{100}(x-10)^2+3-dfrac {1}{24}(x-12)^2$ (Subtracting 6 from each side)
$-9 cdot 6(x-10)^2+3 cdot 600=-25(x-12)^2$ (Multiply each side by 600)
$-9 cdot 6(x-10)^2+3 cdot 600=-25(x-12)^2$ (Multiply each side by 600)
$-54(x^2-20x+100)+1800=-25(x^2-24x+144)$
$-54x^2+1080x-5400+1800=-25x^2+600x-3600$
$29x^2-480x=0$
$x=0$ or $x=dfrac {480}{29} approx 16.55$
$j(16.55)=-dfrac {9}{100}(16.55-10)^2+9$
$j(16.55)=5.14$
Harold is 5.14 feet.
$d=3,000$
$b_1=36,000$
$$
q=1+0.11
$$
$a_n=52,000+(n-1)(3,000)$
$a_n=52,000+3,000n-3,000$
$$
a_n=3,000n+49,000
$$
$b_n=36,000(1+0.11)^{n-1}$
$$
b_n=36,000(1.11)^{n-1}
$$


$$
begin{bmatrix}5x+2y=4.25\2x+8y=3.5end{bmatrix}
$$
then solving by elimination and substitution; $4times Eq1-Eq2rightarrow(20-2)x+(8-8)y=17-3.5$. Then solving for x; $18x=13.5$ so $x=$0.75$ and $5(0.75)+2y=4.25$ so $y=$0.25$
(x,y)=($0.75,$0.25)
$$
We can find this solution with more than one way. We can solve it algebraically by solving the equation together, or graphically by graphing both equations and find the intersection point of both graphs.
begin{align*}
4x+5y&=32 & textrm{Equation (1)}\
x+8y&=35 & textrm{Equation (2)}\\
intertext{Subtracting $4 times$ Equation (2) from Equation (1): }
4x+5y-4(x+8y)&=32-4(35)\
4x+5y-4x-32y&=32-140\
-27y&=-108\
y&=4
intertext{Putting $y=4$ in Equation (1):}
4x+5(4)&=32\
4x+20&=32\
4x&=12\
x&=3
end{align*}
Hence, weight of a cylinder is 3 ounces and weight of a prism be $4$ ounces
(a)
$$
$$
5-3(dfrac{1}{2}x + 2)=-7
$$
$$
12=3(dfrac{1}{2}x + 2)
$$
$$
4=dfrac{1}{2}x + 2
$$
$$
x=4
$$
(b)
$$
$$
5(sqrt{x-2} + 1)=15
$$
$$
sqrt{x-2} + 1=3
$$
$$
sqrt{x-2}=3-1
$$
$sqrt{x-2}=2$ Let’s raise both sides on 2nd power:
$$
(sqrt{x-2})^2=2^2
$$
$$
x-2=4
$$
$$
x=6
$$
(c)
$$
$$
12-(dfrac{2x}{3} + x)=2
$$
$dfrac{2x}{3} + x=10$ Now let’s multiply with 3
$$
2x + 3x=30
$$
$5x=30$, so $x=dfrac{30}{5}$
Finally: $x=6$
(d)
$$
$$
-3(2x+1)^3=-192
$$
$$
(2x+1)^3=64
$$
$$
(2x+1)^3=4^3
$$
$$
2x+1=4
$$
$$
2x=3
$$
$$
x=dfrac{3}{2}
$$
2x^2 + 5x -3leq x^2 + 4x + 3
$$
Let’s check if it works for $x=-1$ and $x=5$
$$
2(-1)^2 + 5(-1) -3 leq (-1)^2 + 4(-1) + 3
$$
$$
2 -5 – 3 leq 1 -4 + 3
$$
$-6leq 0$ – CORRECT
$$
2(5)^2 + 5cdot5 -3 leq 5^2 + 4cdot5 + 3
$$
$$
50 + 25 -3 leq 25 + 20 + 3
$$
$72 leq 48$ NOT CORRECT
f(-x)=3(-x)^{3}+2=-f(x)+4
$$
f(x)=f(-x)
$$
$$begin{aligned}
text{Water required by the family}&= 1000 text{cubic feet}\
text{ Monthly service fee}&= $ 12.70 \
end{aligned}$$
|Water used$(ft^3)$ |Charge per 100 cubic feet |
|–|–|
|300 |$ 3.90|
|300 |$ 5.90 |
$$begin{aligned}
f(x)&= 12 + 3.90 cdot dfrac{x}{100} , 0 leq x leq 300rightarrow(1)\
f(x)&= 12 + 3.90 cdot dfrac{x}{100} , 0 leq x leq 300 + 5.20 cdot dfrac{x – 300}{100}, x > 300rightarrow(2)\
end{aligned}$$

The above – sketched graph is a function because every value of $x$ there is a value of $y$.
Domain $rightarrow [0, infty)$.
Range $rightarrow [12.70, infty).$
If the monthly service fee is decreased to 10.20, the graph would be shifted down by $12.70 – 10.20 = 2.50$ units.
$0=x^2+2x-80$
$(x+10)(x-8)=0$
$x+10=0$ or $x-8=0$
$x=-10$ or $x=8$
x-intercepts are : $(-10, 0)$ and $(8, 0)$
For y-intercept $x=0$
$y=(0)^2+2(0)-80=-80$
y-intercept is : $(0, -80)$
x-coordinate for the vertex $=dfrac {-b}{2a}=dfrac {-2}{2}=-1$
y-coordinate for the vertex $=1-2-80=-81$
The vertex is: $(-1, -81)$
The graphing form of the equation is:
$$
y=(x+1)^2-81
$$

y-intercept is : $(0, -80)$
The graphing form of the equation is: $y=(x+1)^2-81$
2x^2+5x-3=x^2+4x+3
$$

$$
x_2=2
$$

xin[-3,2]
$$

xin(-infty,-3)cup(2,infty)
$$

2x^2+5x-3<x^2+4x+3
$$
$$
f(x)=x^2+x-6
$$
$f(x)<0$.

xin(-3,2)
$$
$x^2+3x-2x-6=0$
$x(x+3)-2(x+3)=0$
$(x+3)(x-2)=0$
$x+3=0Rightarrow x_1=-3$
$x-2=0Rightarrow x_2=2$
(-infty,-3),(-3,2),(2,infty)
$$
$x=0Rightarrow f(0)=(0+3)(0-2)=-60$
(-3,2)
$$
x^2-3x-10geq 0
$$

xin(-infty,-2]cup[5,infty)
$$
$$
begin{bmatrix}y=4mid x+1mid-2\y=6end{bmatrix}
$$
is plotted we can obtain the solutions by looking at the region where $Eq1>Eq2$
begin{cases}
ygeq 2x^2+5x-3\
y<x^2+4x+3
end{cases}
$$
$(-3)^2+4(-3)+3=0not>0$
$2(-1)^2+5(-1)-3=-6leq 1checkmark$
$(-1)^2+4(-1)+3=0not>1$
$2(1)^2+5(1)-3=4leq 5checkmark$
$$
(1)^2+4(1)+3=8>5checkmark
$$
{(x,y)|xin [-3,2],2x^2+5x-3leq y<x^2+4x+3}
$$

{(x,y)|xin [-3,2],2x^2+5x-3leq y<x^2+4x+3}
$$
dfrac{1}{3}(x+3)(x-4)<dfrac{4-x}{2}
$$
begin{cases}
yleq dfrac{1}{3}(x+3)(x-4)\
y>dfrac{4-x}{2}
end{cases}
$$
begin{cases}
y>dfrac{1}{3}(x+3)(x-4)\
y<dfrac{4-x}{2}
end{cases}
$$
begin{cases}
yleqdfrac{1}{3}(x+3)(x-4)\
y>dfrac{4-x}{2}\
xgeq 0
end{cases}
$$
1. Prepare your Learning Log.
2. Open a new page with title “Inequalities and Their Solutions”.
3. Write about the solution(s) to an inequality or a system of inequalities look like in different representations.
4. Describe how the solution(s) to an inequality or a system of inequalities look like in different representations
3x+2geq x-6
$$
$$
2x+8geq 0
$$
$2x=-8$
$$
x=-4
$$
[-4,infty)
$$
2x^2-5x<12
$$
2x^2-5x-12<0
$$
$2x^2-8x+3x-12=0$
$2x(x-4)+3(x-4)=0$
$(x-4)(2x+3)=0$
$x-4=0Rightarrow x_1=4$
$2x+3=0Rightarrow x_2=-dfrac{3}{2}=-1.5$
(-1.5,4)
$$
b) $(-1.5,4)$
|2x+3|<5
$$
-5<2x+3<5
$$
$$
-8<2x<2
$$
-4<x<1
$$
|2x+3|geq 5
$$
$2xleq-5-3$ or $2xgeq 5-3$
$2xleq-8$ or $2xgeq 2$
$xleq-4$ or $xgeq 1$
|2x-3|<5
$$
$-5+3<2x-3+3<5+3$
$-2<2x<8$
$$
-1<x<4
$$
|2x-3|geq 5
$$
$2xleq-5+3$ or $2xgeq 5+3$
$2xleq-2$ or $2xgeq 8$
$xleq-1$ or $xgeq 4$
|3-2x|<5
$$
$-5-3<3-2x-3<5-3$
$-8<-2xx>-1
$$
|3-2x|geq 5
$$
$-2xleq-5-3$ or $-2xgeq 5-3$
$-2xleq-8$ or $-2xgeq 2$
$xgeq 4$ or $xleq -1$
The inequalities containing $|ax+b|$ or $|-ax-b|$ have the same solution.
The solution for $|ax-b|<c$ is the solution of $|ax+b|<c$ shifted $dfrac{2b}{a}$ units to the right.
b) $(-infty,-4]cup[1,infty)$
c) $(-1,4)$
d) $(-infty,-1]cup[4,infty)$
e) $(-1,4)$
f) $(-infty,-1]cup[4,infty)$
g) see explanation
$x^2=6^2+5^2$ (Pythagorean theorem)
$x^2=36+25=61$
$$
x=sqrt {61}
$$
$sin C=dfrac {3}{6}=0.5$
$m angle C=30text{textdegree}$
$tan B=dfrac {4}{5}=0.8$
$m angle B approx 39text{textdegree}$
$m angle a=180-(90+30)=60text{textdegree}$ (Triangles sum)
$dfrac {sin 60}{a}=dfrac {sin 90}{10}$ (The law of sins)
$dfrac {0.866}{a}=dfrac {1}{10}$
$$
a=8.66
$$
b- $m angle C=30text{textdegree}$
c- $m angle B approx 39text{textdegree}$
d- $a=8.66$
$$
begin{align*}
f(x)&=x^{3}+1\
g(x)&=(x+1)^{2} \
end{align*}
$$
$$
begin{align*}
x^{3}+1&=9\
x^{3}&=9-1\
x^{3}&=8\
x^{3}-8&=0\
(x+2)[(x^{2}+2x+4)+3]&=0\
(x+2)[(x+1)^{2}+3]&=0 \
(x+2)(x+1+sqrt3i)(x+1-sqrt3i)&=0\
x&=-2,-1-sqrt3i,-1+sqrt3i\
end{align*}
$$
Thus the value of f$(x) = 9$ is $x = -2, -1-sqrt3i , -1+sqrt3i$ .
$$
begin{align*}
(x+1)^{2}&=0\
x+1&=0\
x&=-1\
end{align*}
$$
Thus the value of g$(x) = 0$ is $x = -1$.
$$
begin{align*}
x^{3}+1&=-7\
x^{3}&=-7-1\
x^{3}&=-8\
x^{3}+8&=0\
(x+2)[(x^{2}-2x+4)+3]&=0 \
(x+2)[(x-1)^{2}+3]&=0\
(x+2)(x-1+sqrt3i)(x+1-sqrt3i)&=0\
x&=-2,1-sqrt3i,1+sqrt3i\
end{align*}
$$
Thus the value of f$(x) = -7$ is $x = -2, 1-sqrt3i , 1+sqrt3i$ .
$$
begin{align*}
(x+1)^{2}&=12\
(x+1)&=pmsqrt12\
x&=-1pmsqrt12\
end{align*}
$$
Thus the value of g$(x) = 12$ is $x = -1pmsqrt12$ .
$$
begin{align*}
f(x)&=g(x)\
x^{3}+1&=(x+1)^{2}\
x^{3}+1&=x^{2}+2x+1\
x^{3}+1-x^{2}-2x-1&=0\
x^{3}-x^{2}-2x&=0\
x(x^{2}-x-2)&=0\
x(x^{2}+x-2x-2)&=0\
x[x(x+1)-2(x+1)]&=0\
x(x+1)(x-2)&=0\
x&=0,-1,2\
end{align*}
$$
Therefore 3 values of $x$ is f$(x)$ equal g$(x)$.
We check if f$(x)$ is even or odd,
$$
begin{align*}
f(x)&=x^{3}+1\
f(-x)&=-x^{3}+1ne f(x)ne -f(x)\
end{align*}
$$
Therefore f$(x)$ is neither odd nor even.
We check if g$(x)$ is even or odd,
$$
begin{align*}
g(x)&=(x+1)^{2}\
g(-x)&=(x-1)^{2} ne g(x) ne -g(x)\
end{align*}
$$
Therefore g$(x)$ is neither odd nor even.
$$begin{aligned}
y &= x^3 + 3 , xleq 0 \
y &= |x| + 3 , x > 0
end{aligned}$$

The graph is shown as follows :

New set of piece-wise functions are stated as follows:
$$begin{aligned}
y&= (x+2)^3 + 3-2 , x leq -2\
y&= (x+2)^3 +1\
end{aligned}$$
And,
$$begin{aligned}
y&= |x+2| + 1 , x > -2\
end{aligned}$$
$3d+3p=22.5$ (The first trip equation)
$3t=3 cdot 8=24$ (The tickets cost in the second trip)
$3d+p=37.5-24$
$3d+p=13.5$ (The second trip equation)
$p=13.5-3d$ (Solve the second equation for $p$)
$3d+3(13.5-3d)=22.5$ (Substitute for $p$ in the first equarion)
$3d+40.5-9d=22.5$
$-6d=22.5-40.5$
$6d=18$
$$
d=3
$$
Substituting in the first equation:
$3(3)+3p=22.5$
]
$3p=22.5-9$
$3p=13.5$
$$
p=4.5
$$
The price of a large soft drink $d=$3$
The price of a large bucket of popcorn $p=$4.5$
The price of a large bucket of popcorn $p=$4.5$
$$
begin{align*}
&a. (p^{-4}w^{-8})^{-9} \
&b. r^{-7}(r^{dfrac{-3}{2}})^{8}\
&c. 6(sqrt[7]{6})^{5}\
end{align*}
$$
$$
begin{align*}
&(p^{-4}w^{-8})^{-9}\
&=(p^{-4})^{-9}(w^{-8})^{-9} \
&=p^{(-4)(-9)}w^{(-8)(-9)}\
&=p^{36}w^{72}\
end{align*}
$$
Therefore the rewritten expression without parentheses and negative exponents is $p^{36}w^{72}$.
$$
begin{align*}
&r^{-7}(r^{tfrac{-3}{2}})^{8}\
&=r^{-7}r^{(tfrac{-3}{2})8} \
&=r^{-7}r^{-12}\
&=r^{(-7)+(-12)} (text{As, we know that with same base powers are added})\
&=r^{-19}\
&=r^{tfrac{1}{19}} \
end{align*}
$$
Therefore the rewritten expression without parentheses and negative exponents is $r^{tfrac{1}{19}}$.
$$
begin{align*}
&6(sqrt[7]{6})^{5}\
&=6(6^{tfrac{1}{7}})^{5}\
&=6times6^{(tfrac{1}{7})(5)} \
&=6times6^{tfrac{5}{7}}\
&=6^{(1)+(tfrac{5}{7})} (text{As, we know that with same base powers are added})\
&=6^{tfrac{12}{7}}\
end{align*}
$$
Therefore the rewritten expression without parentheses and negative exponents is $r^{tfrac{12}{7}}$.
ii. $x-2y geq -7$ (Given)
iii. $y leq -2x+6$ (Given)
iv. $-9 leq 2x+y$ (Given)
The below is the graph of the given 4-equations system.
The polygon formed by the equation is $EFGH$ with the coordinate:
$E(1, 4)$, $F(-5, 1)$, $G(-3, -3)$, and $H(3, 0)$
The slope of $overline {EH}=-2$
The slope of $overline {EF}=0.5$
$-2 cdot 0.5=-1$
So,
$overline {EH} bot overline {EF}$
The slope of $overline {FG}=-2$
$overline {EH} parallel overline {FG}$
The slope of $overline {GH}=0.5$
$$
overline {EF} parallel overline {GH}
$$
So, All the angles of the polygon are right angles.
The length of $overline {EH}=sqrt {(0-4)^2+(3-1)^2}=sqrt {16+4}=sqrt {20}=2 sqrt {5}$
The length of $overline {EF}=sqrt {(1-4)^2+(-5-1)^2}=sqrt {9+36}=sqrt {45}=3 sqrt {5}$
Since the sides of the polygon are not equal, then the polygon is a rectangle.
The vertices of the polygon are:
$E(1, 4)$, $F(-5, 1)$, $G(-3, -3)$, and $H(3, 0)$
b- The polygon vertices: $E(1, 4)$, $F(-5, 1)$, $G(-3, -3)$, and $H(3, 0)$
$$
|x| < 5
$$
Into
$$
x < 5
$$
And
$$
-x<5
$$
$|x-4|{centeringarraybackslash}m{1in} >{centeringarraybackslash}m{1in} }
$x-4<9$ & $-x+4<9$ \
$x-4+4<9+4$ & $-x+4-4<9-4$ \
$x-5$
end{tabular}$$
From this we get that our $x$ can be between $-5$ and $13$ in order for this inequality to be true.
$$-5 < x < 13$$
$$x = $$
$|frac{1}{2}x – 45|geq80$\
$$begin{tabular}{ >{centeringarraybackslash}m{2in} >{centeringarraybackslash}m{2in} }
$frac{1}{2}x – 45geq80$ & $-frac{1}{2}x + 45geq80$ \
$frac{1}{2}x – 45 + 45geq80 + 45$ & $-frac{1}{2}x + 45 – 45geq80 – 45$ \
$frac{1}{2}x div frac{1}{2}geq125div frac{1}{2}$ & $-frac{1}{2}xdiv -frac{1}{2}geq35div -frac{1}{2}$ \
$x geq250$ & $xleq-70$ \
end{tabular}$$
From this we get that our $x$ is in range of:
$$\
$|2x-5|leq2$\
$$begin{tabular}{ >{centeringarraybackslash}m{2in} >{centeringarraybackslash}m{2in} }
$2x-5 leq 2$ & $-2x+5 leq 2$ \
$2x-5+5 leq 2+5$ & $-2x+5 – 5 leq 2-5$\
$2x div2leq 7div2$ & $-2xdiv-2 leq -3div-2$\
$x leq frac{7}{2}$ & $xgeqfrac{3}{2}$ \
end{tabular}$$
From this we get that our $x$ can be between $frac{3}{2}$ and $frac{7}{2}$ in order for this inequality to be true.
$$frac{3}{2} < x < frac{7}{2}$$
$$x = left[frac{3}{2},frac{7}{2}right]$$
begin{cases}
x+2y=17\
x-y=2
end{cases}
$$
$3y=15$
$y=dfrac{15}{3}$
$$
y=5
$$
$x=5+2$
$$
x=7
$$
(7,5)
$$
begin{cases}
4x+5y=11\
2x+6y=16
end{cases}
$$
$$
begin{cases}
4x+5y=11\
x+3y=8
end{cases}
$$
$-7y=-21$
$y=dfrac{-21}{-7}$
$$
y=3
$$
$x=8-9$
$$
x=-1
$$
(-1,3)
$$
begin{cases}
4x-3y=-10\
x=dfrac{1}{4}y-1
end{cases}
$$
$y-4-3y=-10$
$-2y=-10+4$
$-2y=-6$
$y=dfrac{-6}{-2}$
$$
y=3
$$
$$
x=-dfrac{1}{4}
$$
left(-dfrac{1}{4},3right)
$$
begin{cases}
2x+y=-2x+5\
3x+2y=2x+3y
end{cases}
$$
$$
begin{cases}
2x+y+2x=5\
3x+2y-2x-2y=2x+3y-2x-2y
end{cases}
$$
$$
begin{cases}
4x+y=5\
x=y
end{cases}
$$
$5y=5$
$$
y=1
$$
x=1
$$
(1,1)
$$
b) $(-1,3)$
c) $left(-dfrac{1}{4},3right)$
d) $(1,1)$
$$
begin{align*}
(4times10^{3})x-(8times10^{3})&=(16times10^{3}) \
end{align*}
$$
$$
begin{align*}
x-2&=4\
x&=4+2\
x&=6\
end{align*}
$$
Now, we solve the given equation,
$$
begin{align*}
(4times10^{3})x-(8times10^{3})&=(16times10^{3})\
(4times10^{3})x&=(16times10^{3})+(8times10^{3})\
(4times10^{3})x&=10^{3}(8+16)\
(4times10^{3})x&=24times10^{3}\
x&=dfrac{24times10^{3}}{4times10^{3}} \
x&=6\
end{align*}
$$
Thus they have the same solution.
Distance between 2 points:
= $sqrt{(- 6 – 2)^{2} + (9 – (-4))^{2}} = sqrt{233} = 15.26$
Distance between 2 points:
= $sqrt{(x – 5)^{2} + (y – 2)^{2}}$
b) $sqrt{(x – 5)^{2} + (y – 2)^{2}}$
$$
sqrt{(x_2-x_1)^2+(y_2-y_1)^2}
$$
a.
$$
sqrt{(2+6)^2+(-4-9)^2}=sqrt{64+169}=sqrt{233}
$$
b.
$$
sqrt{(5-x)^2+(2-y)^2}
$$
b. $sqrt{(5-x)^2+(2-y)^2}$
$$
begin{align*}
f(x)&=2^{x-1}-4\
end{align*}
$$
Thus the graph is mentioned below,
When, $y = 0$
$$
begin{align*}
0&=2^{x-1}-4\
0&=dfrac{1}{2^{x}}-4 \
2^{x}&=-4\
x&=-2\
end{align*}
$$
Therefore the $x$-intercept is $-2$.
When, $x = 0$
$$
begin{align*}
y&=2^{x-1}-4\
y&=2^{0-1}-4 \
y&=-3\
end{align*}
$$
Therefore the $y$-intercept is $-3$.
Center: $45-50^{circ}F$
Outliers: $420-60^{circ}F$
This information is useful to firefighters who plant ceanothus seeds to prevent erosion after a fire because it are commonly used to help stabilize the soil on bare hillsides.
begin {center}
begin{tabular}{|| m{1cm} | m{1cm} | m{1cm} | m{1cm} || m{1cm} | m{1cm} | m{1cm} || m{1cm} | m{1cm} | m{1cm} | m{1cm} || m{1cm} | m{1cm} | m{1cm} ||}
hline
hline
cars # & multicolumn{ 3}{|c||}{Cars Materials} & multicolumn{ 3}{ c||}{Materials for Truck} & Trucks # & multicolumn{ 3}{ c||}{Used for Truck} & multicolumn{ 3}{ c||}{ Remaining stock} \
hline
& w (4/car) & s (2/car) & t (1/car) & w & s & t & & w 6/truck & s 1/truck & t 3/truck & w & s & t \
hline
hline
7 & 28 & 14 & 7 & 8 & 0 & 8 & 0 & 0 & 0 & 0 & 8 & 0 & 8 \
hline
6 & 24 & 12 & 6 & 12 & 2 & 9 & 2 & 12 & 2 & 6 & 0 & 0 & 3 \
hline
5 & 20 & 10 & 5 & 16 & 4 & 10 & 2 & 12 & 2 & 6 & 4 & 2 & 4 \
hline
4 & 16 & 8 & 4 & 20 & 6 & 11 & 3 & 18 & 3 & 9 & 2 & 3 & 2 \
hline
3 & 12 & 6 & 3 & 24 & 8 & 12 & 4 & 24 & 4 & 12 & 0 & 4 & 0 \
hline
2 & 8 & 4 & 2 & 28 & 10 & 13 & 4 & 24 & 4 & 12 & 4 & 6 & 1 \
hline
1 & 4 & 2 & 1 & 32 & 12 & 14 & 4 & 24 & 4 & 12 & 8 & 8 & 2 \
hline
0 & 0 & 0 & 0 & 36 & 14 & 15 & 5 & 30 & 5 & 15 & 6 & 9 & 0 \
hline
hline
end{tabular}
end {center}

The table below represents the profit of each choice if the price is $1 for each car or truck.\
The greatest profit is $8 when selling 6 cars and 2 trucks.\
begin {center}
begin{tabular}{|r|r|r|r|r|}
hline
cars # & Cars Profit $1/car & Trucks # & Truck Profit $1/truck & Total Profit \
hline
7 & 7 & 0 & 0 & 7 \
hline
6 & 6 & 2 & 2 & $color {red}{8}$ \
hline
5 & 5 & 2 & 2 & 7 \
hline
4 & 4 & 3 & 3 & 7 \
hline
3 & 3 & 4 & 4 & 7 \
hline
2 & 2 & 4 & 4 & 6 \
hline
1 & 1 & 4 & 4 & 5 \
hline
0 & 0 & 5 & 5 & 5 \
hline
end{tabular}
end {center}
The table below represents the profit of each choice if the price is $1 for each car and $2 for each truck.\
The greatest profit is $11 when selling 3 cars and 4 trucks.\
begin {center}
begin{tabular}{|r|r|r|r|r|}
hline
cars # & Cars Profit 1/car & Trucks # & Truck Profit 1/truck & Total Profit \
hline
7 & 7 & 0 & 0 & 7 \
hline
6 & 6 & 2 & 4 & 10 \
hline
5 & 5 & 2 & 4 & 9 \
hline
4 & 4 & 3 & 6 & 10 \
hline
3 & 3 & 4 & 8 & color {red}{11} \
hline
2 & 2 & 4 & 8 & 10 \
hline
1 & 1 & 4 & 8 & 9 \
hline
0 & 0 & 5 & 10 & 10 \
hline
end{tabular}
end {center}
b- If the price is $1 for a car and $2 for a truck. Then the greatest profit is $11 when selling 3 cars and 4 trucks.
i. The car uses 4 wheels and the truck uses 6 wheels and the total number of wheels is 36.
$4x+6y leq 36$
ii.The car uses 2 seats and the truck uses 1 seat and the total number of seats is 14.
$2x+y leq 14$
iii.The car uses 1 tank and the truck uses 3 tanks and the total number of tanks is 15.
$x+3y leq 15$
The below is the graph of the system.
It is okay to assume that $x geq 0$ and $y geq 0$ because the number of cars or trucks can’t be less than 0.
The coordinates of the point that outlines the graph are:
$A(7, 0)$, $B(6, 2)$, $E(3, 4)$, and $H(0,5)$
The point in the solution region that seem more likely to give the maximum profit are:
$B(6, 2)$ and $E(3, 4)$
If Otto makes $1 for each car and $2 for each truck, then the equation of the profit is:\$P=1x+2y$\
By graphing the line of the profit function$1x+2y=8$ that is represented by the red line on the graph, we conclude that the part of the line that is in the solution are gives all the possible choices that make the profit $8.
It is not necessary to check all points, We need to check the points that lay on the boundary lines of the inequalities because they represent the maximum quantities of production:
Points $A(7, 0)$, $B(6, 2)$, $E(3, 4)$, and $H(0,5)$ are enough for checking.
By graphing the line $x+2y=14$ (The black line on the graph), we find that there is no any part of the line lays in the solution are of the inequalities.
So, It is not possible to get $14 profit with based on the current prices.
b- $x geq 0$ and $y geq 0$ because the number of vehicles can’t be less than 0.
c- The outlines points are: $A(7, 0)$, $B(6, 2)$, $E(3, 4)$, and $H(0,5)$
d- The more likely maximum profit is at points: $B(6, 2)$ and $E(3, 4)$
e- $P=1x+2y$
f- Points $A(7, 0)$, $B(6, 2)$, $E(3, 4)$, and $H(0,5)$ are enough for checking.
g- It is not possible to get $14 profit with based on the current prices.
$P=3x+2y$\
The table below represents the profit for the all the possible choices.\
The greatest profit is $22 for 6 cars and 4 trucks.
\
begin {center}
begin{tabular}{|r|r|r|r|r|}
hline
cars # & Cars Profit 3/car & Trucks # & Truck Profit 2/truck & Total Profit \
hline
7 & 21 & 0 & 0 & 21 \
hline
6 & 18 & 2 & 4 & color{red}{22} \
hline
5 & 15 & 2 & 4 & 19 \
hline
4 & 12 & 3 & 6 & 18 \
hline
3 & 9 & 4 & 8 & 17 \
hline
2 & 6 & 4 & 8 & 14 \
hline
1 & 3 & 4 & 8 & 11 \
hline
0 & 0 & 5 & 10 & 10 \
hline
end{tabular}
end {center}
$3x-5 leq 7$ (Given)
$3x leq 12$ (Adding 5 to each side)
$x leq 4$ (Divide each side by 3)
$x^2+6>42$ (Given)
$x^2>36$ (Subtract 6 from each side)
$x>6$ or $x<-6$
b- $x>6$ or $x<-6$
$3r-2b=2 qquad rightarrow qquad r=dfrac {2+2b}{3}$ (1)
$3b-4r=2$ (2)
$3b-4 cdot dfrac {2+2b}{3}=2$ (Substituting for $r$ from equation (1))
$9b-4 (2+2b)=6$ (Multiply each side by 3)
$9b-8-8b=6$
$$
b=14
$$
Substituting for $b$ in the first equation.
$r=dfrac {2+2(14)}{3}$
$r=dfrac {30}{3}$
$$
r=10
$$
The length of the blue rod is 14 cm.
(a)
$$
$$
3(y+1)^2-5=43
$$
$$
3(y+1)^2=48
$$
$$
(y+1)^2=16
$$
$$
(y+1)^2 -4^2=0
$$
$$
(y+1-4)(y+1+4)=0
$$
$$
(y-3)(y+5)=0
$$
$y_{1}=3$, $y_{2}=-5$
(b)
$$
$$
sqrt{1-4x}=10
$$
Let’s raise both sides on second power:
$$
(sqrt{1-4x})^2=10^2
$$
$$
1-4x=100
$$
$$
4x=-99
$$
$$
x=-dfrac{99}{4}
$$
$$
begin{align*}
dfrac{6y-1}{y}-3&=2\
dfrac{6y-1}{y}&=5\
6y-1&=5y\
6y-5y&=1\
y&=1
end{align*}
$$
(d)
$$
$$
sqrt[3]{1-2x}=3
$$
Let’s raise both sides on 3rd power:
$$
(sqrt[3]{1-2x})^3=3^3
$$
$$
1-2x=27
$$
$$
-2x=26
$$
Finally:
$$
x=-13
$$
3x-3<y
$$

3>y
$$

$3x-2y+2yleq 6+2y$
$3xleq 6+2y$
$3x-6leq 2y$
$$
dfrac{3}{2} x-3leq y
$$

$x^2-y+yleq 9+y$
$$
x^2-9leq y
$$

$y=left( x^2-2 cdot dfrac {5}{2}x +left(dfrac {5}{2} right)^2right) -left(dfrac {5}{2} right)^2+7$
$y=left(x-dfrac {5}{2}right)^2-dfrac {25}{4}+dfrac {28}{4}$
$y=left(x-dfrac {5}{2}right)^2+dfrac {3}{4}$ (Graphing form of the equation)
The vertex is $left(dfrac {5}{2}, qquad dfrac {3}{4} right)$
The vertex is $left(dfrac {5}{2}, qquad dfrac {3}{4} right)$
C=800+60m
$$
C=1200+40m
$$
$800+60m-40m=1200+40m-40m$
$800+20m=1200$
$800+20m-800=1200-800$
$20m=400$
$m=dfrac{400}{20}$
$$
m=20
$$
1. Compare between this case and “The Toy Factory” from the previous lesson.
2. Describe the “optimal number” of each type of MiniMonster at the event.
3. Justify that we have the optimal number of each type of MiniMonster and describe each type.
$$y geq 0.05x^2-3x + 55$$

$-9x+3y=11 qquad rightarrow qquad y=3x+dfrac {11}{3}$ (2)
$3x+2=3x+dfrac {11}{3}$ (Equating both equations)
$2 neq dfrac {11}{3}$ (Subtract $3x$ from each side)
There is no solution for the system. This means that the lines are parallel.
$x-2y=31$ (Given) (2)
$x=16-3y$ (Rewrite equation (1)
$x=31+2y$ (Rewrite equation (2)
$16-3y=31+2y$ (Equating both equations)
$3y+2y=16-31$ (Grouping similar terms)
$5y=-15$ (Simplify)
$y=-3$ (Solve for $y$)
$x+3(-3)=16$ (Substituting (-3) for $y$ in equation (1))
$x=16+9$
$x=25$ (Solve for $x$)
The solution is: $(25, -3)$
$x^2+3y=16$ (Rewriting the equation with replacing $x$ with $x^2$)
$x^2-2y=31$ (Rewriting the equation with replacing $x$ with $x^2$)
The effect of replacing $x$ with $x^2$ on the solution is making $x^2=25 rightarrow x=pm 5$
$x^2-2y=31$ (Given) (2)
$x^2=16-3y$ (Rewrite equation (1)
$x^2=31+2y$ (Rewrite equation (2)
$16-3y=31+2y$ (Equating both equations)
$3y+2y=16-31$ (Grouping similar terms)
$5y=-15$ (Simplify)
$y=-3$ (Solve for $y$)
$x^2+3(-3)=16$ (Substituting (-3) for $y$ in equation (1))
$x^2=16+9$
$x^2=25$
$x= pm 5$ (Solve for $x$)
The solutions are : $(5, -3)$ and $(-5, -3)$
a- $x^2+3y=16$ (1) $x^2-2y=31$ (2) (Replacing $x$ with $x^2$)
b- The solutions are : $(5, -3)$ and $(-5, -3)$
$$
begin{bmatrix}16=-4m+c\4=2m+cend{bmatrix}
$$
It is given that,
$$begin{aligned}
text{ Throwing distance},h&= 22 text{ yards}\
&= dfrac{22}{2}\
&= 11\
text{ Height reached by the football}, k&= 5 text{ yards}\
end{aligned}$$
Since, it can be conclude from the given statement that the typical path of the practice ball will represents a parabola.
$$begin{aligned}
y &= a (x-h)^{2} + k \
end{aligned}$$
$$begin{aligned}
y &= a (x-11)^2+5\
end{aligned}$$
According to the question, the throw by the quarterback will be from the origin i.e. (x, y) $rightarrow$ (0, 0).
$$begin{aligned}
0 &= a(0-11)^2+5\
0&= a(-11)^2 + 5\
0-5&= a(121)\
&boxed{-dfrac{5}{121}= a}\
end{aligned}$$
$$begin{aligned}
&boxed{y=-dfrac{5}{121}(x-11)^2 +5}\
end{aligned}$$
According to the new conditions it is given that,
$$begin{aligned}
text{ Throwing distance},h&= 26 text{ yards}\
&= dfrac{26}{2}\
&= 13\
text{ Height reached by the football}, k&= 6.2 text{ yards}\
end{aligned}$$
$$begin{aligned}
y &= a (x-13)^2+6.2\
end{aligned}$$
According to the question, the throw by the quarterback will be from the origin i.e. (x, y) $rightarrow$ (0, 0).
$$begin{aligned}
0 &= a(0-13)^2+6.2\
0&= a(-13)^2 + 6.2\
0-6.2&= a(169)\
-dfrac{6.2}{169}&= a\
-dfrac{31}{845}&= a\
end{aligned}$$
$$begin{aligned}
&boxed{y=-dfrac{31}{169}(x-13)^2 +6}
end{aligned}$$
$$
begin{align*}
g(x)&=2(x+3)^{2} \
end{align*}
$$
When, $y = 0$
$$
begin{align*}
0&=2(x+3)^{2}\
dfrac{0}{2}&=(x+3)^{2}\
sqrt{0}&=x+3\
0&=x+3\
x&=-3,0\
end{align*}
$$
Therefore the $x$-intercepts have two values which are $-3,0$.
When, $x = 0$
$$
begin{align*}
y&=2(x+3)^{2}\
y&=2(0+3)^{2}\
y&=18\
end{align*}
$$
Therefore the $y$-intercept is $18$.
$$
begin{align*}
g(x)&=2(x+3)^{2}\
g(-5)&=2(-5+3)^{2}\
g(-5)&=2(-2)^{2}\
g(-5)&=2times4\
g(-5)&=8\
end{align*}
$$
Therefore the value of $g(-5)$ is $8$.
$$
begin{align*}
g(x)&=2(x+3)^{2}\
g(a+1)&=2(a+1+3)^{2}\
g(a+1)&=2(a+4)^{2}\
g(a+1)&=2(a^{2}+16+8a)\
g(a+1)&=2a^{2}+16a+32\
end{align*}
$$
Therefore the value of $g(a+1)$ is $2a^{2}+16a+32$.
$$
begin{align*}
32&=2(x+3)^{2}\
dfrac{32}{2}&=(x+3)^{2}\
sqrt{16}&=x+3\
pm4&=x+3\
x&=-7,1\
end{align*}
$$
Therefore the value of $g(x)=32$ is $x=-7,1$.
$$
begin{align*}
0&=2(x+3)^{2}\
dfrac{0}{2}&=(x+3)^{2}\
sqrt{0}&=x+3\
0&=x+3\
x&=-3,0\
end{align*}
$$
Therefore the value of $g(x)=0$ is $x=-3,0$.
We can use the graph to predict the equations as follows:
The quadratic equation has a vertex $(0, -1)$ and passes the point $(2, 0)$
By substituting in the vertex form of the quadratic equation.
$y=a(x-h)^2+k$
$0=a(2-0)^2-1$
$4a=1$
$a=dfrac {1}{4}$
The quadratic equation is:
$$
y=dfrac {1}{4}(x)^2-1
$$
The absolute value equation passes the points $(2, 6)$ and $(6, 0)$
The slope $m$:
$m=dfrac {0-6}{6-2}=-dfrac {3}{2}$
The vertex of the function is the point $(2, 6)$
The equation is:
$$
y=-dfrac {3}{2}|x-2|+6
$$

The quadratic equation is: $y=dfrac {1}{4}(x)^2-1$
The absolute value equation is: $y=-dfrac {3}{2}|x-2|+6$
We know general equation of parabola is :
$$y=a(x-h)^2+k$$
Where $(h,k)$ is vertex of parabola.\\
Therefore, equation of given parabola is:
$$y=a(x-(-3))^2+(-2)=a(x+3)^2-2$$
Evaluating $a$ by putting $(-5,0)$ in above equation:
begin{align*}
0&=a(-5+3)^2-2\
0&=a(-2)^2-2\
-4a&=-2\
a&=dfrac{1}{2}
end{align*}
Hence, the equation of parabola is:
$$y=dfrac{1}{2}(x+3)^2-2$$
textbf{(b)} Evaluating slope of line:
begin{align*}
m&=dfrac{5-0}{0-(-5)}\
&=dfrac{5}{5}\
&=1
intertext{Evaluating equation of line: }
y-0&=1 (x-(-5))+c\
y&=x+5
end{align*}
textbf{(c)} In the given graph it can be observed that $y=x+5$ and $y=dfrac{1}{2}(x+3)^2-2$ intersects at $(-5,0)$ and $(1,6)$\\
Hence, solutions for given equation are $(-5,0)$ and $(1,6)$.\
As discussed in previous part, solutions for given system are $(-5,0)$ and $(1,6)$.
$textbf{(e)}$ In the given graph it can be observed that $y=x+5$ is less than $y=dfrac{1}{2}(x+3)^2-2$ for $x1$
Hence, solutions for given inequality is $(-infty,-5) cup(1,infty)$.
$textbf{(f)}$ In the given graph it can be observed that $y=dfrac{1}{2}(x+3)^2-2$ intersects $x-$axis at $x=-5$ and $x=-1$
Hence, solutions to given equation are $x=-5$ and $x=-1$
$textbf{(g)}$ In the given graph draw a line $y=4$.
It can be observed that $y=x+5$ intersects $y=4$ at $x=-1$
Hence, solution to given equation is $x=-1$
$textbf{(h)}$ We know slope of parabola is steeper and parabola have a finite minimum value.
Therefore we should move parabola to left so that it moves aways from line and never intersects it as for all the $x$ parabola will have larger $y$.
After moving parabola to left by more than 4.5 units will have no intersection with given line.
Example of a modification is:
$$
y=dfrac{1}{2}(x+3+4.6)^2-2=dfrac{1}{2}(x+7.6)^2-2
$$
(d) $(-5,0)$ and $(1,6)$ (e) $(-infty, -5) cup(1,infty)$ (f) $x=-5, -1$ (g) $x= -1$
(h) Move parabola to left by more than 4.5 units
$$
begin{bmatrix}ygeqdfrac{1}{2}x-2\yleq-dfrac{3}{4}x+3\yleq3x+3end{bmatrix}
$$
begin{bmatrix}ygeqdfrac{1}{2}x-2\yleq-dfrac{3}{4}x+3\yleq3x+3end{bmatrix}
$$
$$
begin{align*}
a. y&=(x-2)^{2}-5\
a. y&leq(x+3)^{3} \
a. y&=4+dfrac{1}{x-3}\
end{align*}
$$
$(y-3)^2=2y-10$ (Given)
$y^2-6y+9=2y-10$
$y^2-8y+19=0$
Using quadratic formula to solve the equation,
$x_{1, 2}=dfrac {-b pm sqrt {b^2-4ac}}{2a}$
$x_{1, 2}=dfrac {8 pm sqrt {(-8)^2-4(1)(19)}}{2}$
$x_{1, 2}=dfrac {8 pm sqrt {64-76}}{2}$
$x_{1, 2}=dfrac {8 pm sqrt {-12}}{2}$
The discriminant $=-12<0$. So, The equation has no real solutions.
$|y-3|=2y-10$ (Given)
There are two cases:
The first case: $y-3=2y-10$
$2y-y=10-3$
$y=7$
Substituting in the equation:
$|7-3|=2 cdot 7-10$
$4=4$ (7 is a valid solution)
The second case: $y-3=-(2y-10)$
$y-3=-2y+10$
$2y+y=10+3$
$3y=13$
$y=dfrac {13}{3}$
Substituting in the equation:
$left|dfrac {13}{3}-dfrac {9}{3} right|=2 cdot dfrac {13}{3}-dfrac {30}{3}$
$dfrac {4}{3} neq -dfrac {4}{3}$
$y=dfrac {13}{3}$ is an extraneous solution.
b- $y=7$ is a valid solution. $y=dfrac {13}{3}$ is an extraneous solution.
The general form of this part is: $y=a(x-h)^2+k$
$-4=a(0-2)^2+0$
$$
-4=a(1)+0
$$
$a=-4$
The first equation is: $y=-4(x-2)^2$ for $(x<2)$
The second equation is a line that starts at the point $(2, 4)$ but its y-inytercept could pass the point $(0, 2)$
The slope $m=dfrac {4-2}{2-0}=dfrac {2}{2}=1$
The equation is: $y=x+2$ for $(x geq 2)$
The piecewise defined function is:
$$
f(x) = begin{cases}
-4(x-2)^2 & x<2\
\
x+2 & x geq 2\
end{cases}
$$
f(x) = begin{cases}
-4(x-2)^2 & x<2\
\
x+2 & x geq 2\
end{cases}
$$
$$
begin{align*}
x^{2}+8x+y^{2}-12y&=12\
end{align*}
$$
$$
begin{align*}
x^{2}+8x+y^{2}-12y&=12\
(x^{2}+8x+16)+(y^{2}-12y+36)&=12+16+36 \
(x+4)^{2}+(y-6)^{2}&=64tag{1}\
& text{Center}:(-4,6)\
& text{Radius} = sqrt{64}\
& text{Radius} = 8\
end{align*}
$$
Therefore the given equation represents a circle with centre $(-4,6)$ and radius $8$.