Core Connections Integrated 3
Core Connections Integrated 3
1st Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283939
Textbook solutions

All Solutions

Page 611: Questions

Exercise 1
Solution 1
Solution 2
Step 1
1 of 5
a)

5(x – 7) = 5x – 35

Check by giving x any value; 5 for example

5(5 – 7) = 5 $times$ 5 – 35

5 $times$ -2 = 25 – 35

-10 = -10

So, it is always true

Step 2
2 of 5
b)

2x$^{2}$ = 50

This is sometimes true

Find possible values for x:

x$^{2} = dfrac{50}{2} = 25$

X = $sqrt{25} = pm$ 5

So, it is true only when x = 5 or – 5

Step 3
3 of 5
c)

4x – (3x + 2) = x – 7

4x – 3x – 2 = x- 7

x – 2 = x – 7

Same coefficient for x on both sides

So, this is never true

Step 4
4 of 5
d)

$dfrac{2}{3}$(x – 9) = $dfrac{3}{4}$(2x + 5)

This is sometimes true

Find possible values for x

8x – 72 = 18x + 45

x = – 11.7

So, it is true only when x = – 11.7

Result
5 of 5
a) always true

b) sometimes true

c) never true

d) sometimes true

Step 1
1 of 5
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
5x-35&=5x-35&&boxed{text{Distributive property}}\
5x-35+35&=5x-35+35&&boxed{text{Add }35 text{ to both sides}}\
5x&=5x&&boxed{text{Simplify}}\
5x-5x&=5x-5x&&boxed{text{Subtract } 5x text{ from both sides}}\
0&=0&&boxed{text{Simplify}}\
end{align*}
$$

Both sides are equal. The equation is always true.

$$
begin{align*}
&boxed{{color{#c34632}text{True for all } x} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 2
2 of 5
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
frac{2x^2}{2}&=frac{50}{2}&&boxed{text{Divide both sides by }2}\
x^2&=25&&boxed{text{Simplify}}\
x=sqrt{25},:x&=-sqrt{25}&&boxed{text{Simplify}}\
end{align*}
$$

First we solve $sqrt{25}$

$$
begin{align*}
&sqrt{5^2}&&boxed{text{Factor the number: } 25=5^2}\
&5&&boxed{text{Apply radical rule}}\
end{align*}
$$

Second we solve $-sqrt{25}$

$$
begin{align*}
&-sqrt{5^2}&&boxed{text{Factor the number: } 25=5^2}\
&-5&&boxed{text{Apply radical rule}}\
end{align*}
$$

So, it is true only when $boldsymbol{x=5}, text { or } boldsymbol{x=-5}$

$$
begin{align*}
&boxed{{color{#c34632}text{Sometimes true}} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{For:}x^2=fleft(aright)mathrm{:the:solutions:are:}x=sqrt{fleft(aright)},::-sqrt{fleft(aright)}}
$$

$$
boxed{ color{#c34632} text{ } mathrm{Apply:radical:rule}:quad sqrt[n]{a^n}=a}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:radical:rule}:quad sqrt[n]{a^n}=a }
$$

Step 3
3 of 5
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

$$
begin{align*}
4x-3x-2&=x-7&&boxed{text{Distributive property}}\
x-2&=x-7&&boxed{text{Combine like terms: }4x-3x=x}\
x-2+2&=x-7+2&&boxed{text{Add 2 to both sides}}\
x&=x-5&&boxed{text{Simplify}}\
x-x&=x-5-x&&boxed{text{Subtract } 5x text{ from both sides}}\
0&=-5&&boxed{text{Simplify}}\
end{align*}
$$

Both sides are not equal.
Same coefficient for $x$ on both sides
The equation is never true.

$$
begin{align*}
&boxed{{color{#c34632}text{Never True } } }&&boxed{text{Final solution}}\
end{align*}
$$

Step 4
4 of 5
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

$$
begin{align*}
frac{2}{3}x-6&=frac{3}{2}x+frac{15}{4}&&boxed{text{Distributive property}}\
frac{2}{3}x-6+6&=frac{3}{2}x+frac{15}{4}+6&&boxed{text{Add }6 text{ to both sides}}\
frac{2}{3}x&=frac{39}{4}+frac{3x}{2}&&boxed{text{Simplify}}\
frac{2}{3}x-frac{3x}{2}&=frac{39}{4}+frac{3x}{2}-frac{3x}{2}&&boxed{text{Subtract } frac{3x}{2} text{ from both sides}}\
-frac{5x}{6}&=frac{39}{4}&&boxed{text{Simplify}}\
6left(-frac{5x}{6}right)&=frac{39cdot :6}{4}&&boxed{text{Multiply both sides by 6}}\
-5x&=frac{117}{2}&&boxed{text{Simplify}}\
frac{-5x}{-5}&=frac{frac{117}{2}}{-5}&&boxed{text{Divide both sides by } -5}\
x&=-frac{117}{10}&&boxed{text{Simplify}}\
x&=-11.7&&boxed{text{Convert to a decimal form}}\
end{align*}
$$

So, it is true only when $boldsymbol{x=-11.7}$

$$
begin{align*}
&boxed{{color{#c34632}text{Sometimes true}} }&&boxed{text{Final solution}}\
end{align*}
$$

Result
5 of 5
$$
color{#4257b2} text{ a) True for all }x
$$

$$
color{#4257b2} text{ b) Sometimes true}
$$

$$
color{#4257b2} text{ c) Never true}
$$

$$
color{#4257b2} text{ d) Sometimes true }
$$

Exercise 2
Step 1
1 of 25
$$
sin x=dfrac{1}{2}
$$
a) We are given the equation:
Step 2
2 of 25
$x=dfrac{pi}{6}+2kpi$ or $x=dfrac{5pi}{6}+2kpi,k$ integer
As $dfrac{1}{2}in[-1,1]$ the equation is SOMETIMES true. The values of $x$ which are solutions of the equation are:
Step 3
3 of 25
$$
sin x=4
$$
We change the equation so that it is never true by placing a value outside the sine function’s range on the right side of the equation:
Step 4
4 of 25
$$
cos x=2
$$
b) We are given the equation:
Step 5
5 of 25
As $2notin[-1,1]$ the equation is NEVER true.
Step 6
6 of 25
$$
cos x=-dfrac{1}{2}
$$
We change the equation so that it is sometimes true by placing a value inside the cosine function’s range on the right side of the equation:
Step 7
7 of 25
$$
sin x=cosleft(dfrac{pi}{2}-xright)
$$
c) We are given the equation:
Step 8
8 of 25
The equation is ALWAYS true as it is the cofunction identity.
Step 9
9 of 25
$$
sin x=cosleft(dfrac{pi}{2}-xright)+3
$$
We change the equation so that it is never true by placing a value outside the sine function’s range on the right side of the equation:
Step 10
10 of 25
$$
sin x=sinleft(dfrac{pi}{2}-xright)
$$
d) We are given the equation:
Step 11
11 of 25
$sin x-sinleft(dfrac{pi}{2}-xright)=0$

$2sin dfrac{x-dfrac{pi}{2}+x}{2}cosdfrac{x+dfrac{pi}{2}-x}{2}=0$

$2sinleft(x-dfrac{pi}{4}right)cos dfrac{pi}{4}=0$

$sinleft(x-dfrac{pi}{4}right)=0$

$x=dfrac{pi}{4}+kpi, k$ integer

The equation is SOMETIMES true. The values of $x$ which are solutions of the equation are:
Step 12
12 of 25
$$
sin x=sinleft(dfrac{pi}{2}-xright)+6
$$
We change the equation so that it is never true by placing by placing a value outside the sine function’s range on the right side of the equation:
Step 13
13 of 25
$$
tan x=0
$$
e) We are given the equation:
Step 14
14 of 25
$x=kpi, k$ integer
As $0inmathbb{R}-left{dfrac{2k+1)pi}{2}right}$ the equation is SOMETIMES true. The values of $x$ which are solutions of the equation are:
Step 15
15 of 25
$$
tandfrac{7pi}{2}+x=0
$$
We change the equation so that it is never true by placing on the left side of the equation a value for which the tangent is undefined:
Step 16
16 of 25
$2sin x=sqrt 3$

$$
sin x=dfrac{sqrt 3}{2}
$$

f) We are given the equation:
Step 17
17 of 25
$x=dfrac{pi}{6}+2kpi$ or $x=dfrac{5pi}{6}+2kpi,k$ integer
As $dfrac{sqrt 3}{2}in[-1,1]$ the equation is SOMETIMES true. The values of $x$ which are solutions of the equation are:
Step 18
18 of 25
$$
2sin x=-7
$$
We change the equation so that it is never true by placing on the right side of the equation a value for which $2sin x$ is outside the sine function’s range :
Step 19
19 of 25
$$
sin x=dfrac{3}{2}
$$
g) We are given the equation:
Step 20
20 of 25
As $dfrac{3}{2}notin[-1,1]$ the equation is NEVER true.
Step 21
21 of 25
$$
sin x=dfrac{2}{3}
$$
We change the equation so that it is sometimes true by placing a value inside the sine function’s range on the right side of the equation:
Step 22
22 of 25
$$
cos x=sinleft(dfrac{pi}{2}-xright)
$$
h) We are given the equation:
Step 23
23 of 25
The equation is ALWAYS true as it is the cofunction identity.
Step 24
24 of 25
$$
cos x=sinleft(dfrac{pi}{2}-xright)-5
$$
We change the equation so that it is never true by placing a value outside the sine function’s range on the right side of the equation:
Result
25 of 25
a) sometimes; b) never; c) always; d) sometimes; e) sometimes; f) sometimes; g) never; h) always;
Exercise 3
Step 1
1 of 1
Student’s work.
Exercise 4
Step 1
1 of 2
$textbf{a.}$ Always true.

It means that irrespective of the value of $x$, the output or the solution will not change. In other words we can say that the solution of the given equation does not depend on the value of $x$.

$textbf{b.}$ Sometimes true.

It means that the value of $x$ affect the solution of the given equation,

for example., $sin x = dfrac{1}{2}$

the solution for the above equation will be of $4n+1$, where $n=0,1,2,…$

$textbf{c.}$ Never true.

Irrespective of the value of $x$, the solution would never be true.

For example, $sin x= 2$

For any value of $x$ we will not get the solution.

Result
2 of 2
$textbf{a.}$ It means that irrespective of the value of $x$, the output or the solution will not change. In other words we can say that the solution of the given equation does not depend on the value of $x$.

$textbf{b.}$ It means that the value of $x$ affect the solution of the given equation,

$textbf{c.}$ Irrespective of the value of $x$, the solution would never be true.

Exercise 5
Step 1
1 of 5
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
3x-2-4x-4&=-x-6&&boxed{text{Distributive property}}\
-x-2-4&=-x-6&&boxed{text{Combine like terms: }3x-4x=-x}\
-x-6&=-x-6&&boxed{text{Subtract the numbers: }-2-4=-6}\
-x-6+6&=-x-6+6&&boxed{text{Add } 6 text{ to both sides}}\
-x&=-x&&boxed{text{Simplify}}\
-x+x&=-x+x&&boxed{text{Add } xtext{ to both sides}}\
0&=0&&boxed{text{Simplify}}\
end{align*}
$$

Both sides are equal. The equation is always true

$$
begin{align*}
&boxed{{color{#c34632}text{True for all }x } }&&boxed{text{Final solution}}\
end{align*}
$$

Step 2
2 of 5
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
3x-5&=2x+2+x&&boxed{text{Distributive property}}\
3x-5&=3x+2&&boxed{text{Combine like terms: }2x+x=3x}\
3x-5+5&=3x+2+5&&boxed{text{Add 5 to both sides}}\
3x&=3x+7&&boxed{text{Simplify}}\
3x-3x&=3x+7-3x&&boxed{text{Subtract } 3xtext{ from both sides}}\
0&=7&&boxed{text{Simplify}}\
end{align*}
$$

Both sides are not equal. The equation is never true.

$$
begin{align*}
&boxed{{color{#c34632}text{No solution} } }&&boxed{text{Final solution}}\
end{align*}
$$

Step 3
3 of 5
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below
Manipulating right side

$$
begin{align*}
&cos left(frac{pi }{2}-xright)&&boxed{text{Simplify}}\
&cos left(frac{pi }{2}right)cos left(xright)+sin left(frac{pi }{2}right)sin left(xright)&&boxed{text{Use the following identity}}\
&0+sin left(xright)&&boxed{text{Simplify}}\
&sin(x)&&boxed{text{Simplify}}\
end{align*}
$$

Both sides are equal. The equation is always true.We showed that the
two sides could take the same form.

$$
begin{align*}
&boxed{{color{#c34632}text{True} } }&&boxed{text{Final solution}}\
end{align*}
$$

Step 4
4 of 5
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

Let’s put $x=180^{circ}$

$$
begin{align*}
&tanpi=0&&boxed{text{Not True}}\\
end{align*}
$$

Then put $x=45^{circ}$

$$
begin{align*}
&tanpi=1&&boxed{text{True}}\
end{align*}
$$

So, It is sometimes true, or sometimes not

Result
5 of 5
$$
color{#4257b2} text{ a) True for all }x
$$

$$
color{#4257b2} text{ b) No solution }
$$

$$
color{#4257b2} text{ c) True }
$$

Exercise 6
Step 1
1 of 5
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
&x^2-2^2&&boxed{text{Rewrite 4 as }2^2}\
&left(x+2right)left(x-2right)&&boxed{text{Squares formula}}\\
&boxed{{color{#c34632}left(x+2right)left(x-2right)} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:Difference:of:Two:Squares:Formula::}x^2-y^2=left(x+yright)left(x-yright) }
$$

Step 2
2 of 5
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
&y^2-9^2&&boxed{text{Rewrite 81 as }9^2}\
&left(y+9right)left(y-9right)&&boxed{text{Squares formula}}\\
&boxed{{color{#c34632}left(y+9right)left(y-9right)} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:Difference:of:Two:Squares:Formula::}x^2-y^2=left(x+yright)left(x-yright) }
$$

Step 3
3 of 5
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

$$
begin{align*}
&-left(x^2-1right)&&boxed{text{Factor out common term } -1}\
&-x^2-1^2&&boxed{text{Rewrite 1 as }1^2}\
&-left(x+1right)left(x-1right)&&boxed{text{Squares formula}}\\
&boxed{{color{#c34632}-left(x+1right)left(x-1right)} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:Difference:of:Two:Squares:Formula::}x^2-y^2=left(x+yright)left(x-yright) }
$$

Step 4
4 of 5
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

$$
begin{align*}
&1^2-sin^2(x)&&boxed{text{Rewrite 1 as }1^2}\
&left(1+sin xright)left(1-sin xright)&&boxed{text{Squares formula}}\\
&boxed{{color{#c34632}left(1+sin x right)left(1-sin x right)} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:Difference:of:Two:Squares:Formula::}x^2-y^2=left(x+yright)left(x-yright) }
$$

Result
5 of 5
$$
color{#4257b2} text{ a) } (x+2)(x-2)
$$

$$
color{#4257b2} text{ b) }(y+9)(y-9)
$$

$$
color{#4257b2} text{ c) }-(x+1)(x-1)
$$

$$
color{#4257b2} text{ d) }(1+sin x)(1-sin x)
$$

Exercise 7
Solution 1
Solution 2
Step 1
1 of 2
Let $x= k pi$ for any integer $k$.

According to the formula

$$
color{#c34632}{ sin (2k) = 2 sin x cos x}
$$

we have

$$
sin (2x) = sin ( 2 k pi)=2 sin (k pi) cos (k pi)
$$

When $k$ is a even number, we get

$$
cos ( k pi) = 1
$$

then

$$
begin{align*}
sin ( 2k pi) &= 2 sin (k pi)\
sin (2x) &= 2 sin x
end{align*}
$$

When $k$ is $a$ odd number, we get

$$
cos (k pi) = -1
$$

then

$$
sin (2 k pi) = – 2 sin (k pi)
$$

Since

$$
sin (k pi) = 0
$$

and

$$
sin (2k pi) = 0
$$

we obtain

$$
begin{align*}
sin (2k pi) &= 2 sin (k pi) cos (k pi)\
0 &= 2 cdot 0 cdot ( – 1)\
0 &= 0
end{align*}
$$

Therefore

$$
sin (2x) = 2 sin x
$$

Result
2 of 2
$$
sin (2x) = 2 sin x
$$
Step 1
1 of 5
$sin (2x)=2sin x$

$x=kpi, k$ integer

We are given the equation:
Step 2
2 of 5
$$
sin (2x)=sin (2kpi)=2sin (kpi)cos (kpi)
$$
We start from the left side and use the double angle formula:

$sin (2x)=2sin xcos x$.

Step 3
3 of 5
$$
sin (2x)=2sin (kpi)cos (kpi)=2cdot 0cos cos (kpi)=textcolor{#4257b2}{0}
$$
As $k$ in integer, $sin (kpi)=0$.
Step 4
4 of 5
$$
2sin x=2sin (kpi)=2cdot 0=textcolor{#4257b2}{0}
$$
We work on the right side:
Step 5
5 of 5
Since we got the same result on both sides, the identity is fully proved.
Exercise 8
Step 1
1 of 9
$$
f(x)=sin x
$$
We are given the function:
Step 2
2 of 9
Exercise scan
a)We graph the function on the interval $[-2pi,2pi]$:
Step 3
3 of 9
The function $f$ has the period $2pi$. Its domain is the set of all real numbers.

Its range is $[-1,1]$.

Step 4
4 of 9
$x=kpi, k$ integer
The function has $x$-intercepts:
Step 5
5 of 9
$$
y=sin 0=0
$$
The function has the $y$-intercept:
Step 6
6 of 9
The function is continuous.

It has no asymptotes.

It is decreasing on the intervals $left[dfrac{(4k+1)pi}{2},dfrac{(4k+3)pi}{2}right]$ and increasing on the intervals $left[dfrac{(4k-1)pi}{2},dfrac{(4k+1)pi}{2}right]$.

Step 7
7 of 9
$g(x)=cosleft(dfrac{pi}{2}-xright)$

$$
h(x)=cos left(x+dfrac{3pi}{2}right)
$$

b) The graph can be an example of other functions. For example:
Step 8
8 of 9
$x=kpi, k$ integer
c) The function $f(x)=sin x$ has an infinity of zeros:
Step 9
9 of 9
No polynomial function has an infinity of zeros, thus $f(x)$ cannot be a polynomial function.
Exercise 9
Step 1
1 of 5
a-

$dfrac{3}{left(x-4right)left(x+1right)}+dfrac{6}{x+1}$          (Given)

$=dfrac{3}{left(x-4right)left(x+1right)}+dfrac{6left(x-4right)}{left(x+1right)left(x-4right)}$          (Multiply by the form of 1 unifying denominators.)

$=dfrac{3+6left(x-4right)}{left(x-4right)left(x+1right)}$          (Adding fractions with similar denominators)

$$
=dfrac{6x-21}{left(x-4right)left(x+1right)}
$$

Step 2
2 of 5
b-

$dfrac{5}{2left(x-5right)}+dfrac{3x}{x-5}$          (Given)

$=dfrac {5}{2(x-5)}+dfrac {3x}{x-5} cdot dfrac {2}{2}$          (Multiply by the form of 1 unifying denominators.)

$=dfrac {6x+5}{2(x-5)}$

Step 3
3 of 5
c-

$dfrac{x}{x^2-x-2}-dfrac{2}{x^2-x-2}$          (Given)

$=dfrac{x-2}{x^2-x-2}$          (Subtracting fractions with similar denominators)

$=dfrac{x-2}{left(x+1right)left(x-2right)}$          (Factoring polynomial)

$=dfrac{1}{x+1}$          (Simplify)

Step 4
4 of 5
d-

$dfrac{x+2}{x^2-9}-dfrac{1}{x+3}$          (Given)

$=dfrac{x+2}{left(x+3right)left(x-3right)}-dfrac{1}{x+3}$          (Factoring polynomial)

$=dfrac{x+2}{left(x+3right)left(x-3right)}-dfrac{x-3}{left(x+3right)left(x-3right)}$          (Multiply by the form of 1 unifying denominators.)

$=dfrac{x+2-left(x-3right)}{left(x+3right)left(x-3right)}$          (Subtracting fractions with similar denominators)

$=dfrac{5}{left(x+3right)left(x-3right)}$          (Simplify)

Result
5 of 5
a-          $dfrac{3}{left(x-4right)left(x+1right)}+dfrac{6}{x+1}=dfrac{6x-21}{left(x-4right)left(x+1right)}$

b-          $dfrac{5}{2left(x-5right)}+dfrac{3x}{x-5}=dfrac {6x+5}{2(x-5)}$

c-          $dfrac{x}{x^2-x-2}-dfrac{2}{x^2-x-2}=dfrac{1}{x+1}$

d-          $dfrac{x+2}{x^2-9}-dfrac{1}{x+3}=dfrac{5}{left(x+3right)left(x-3right)}$

Exercise 10
Step 1
1 of 7
$$
begin{cases}
2x+y-3z=-12\
5x-y+z=11\
x+3y-2z=-13
end{cases}
$$
We are given the system of equations:
Step 2
2 of 7
$$
begin{cases}
2x+y-3z+5x-y+z=-12+11\
x+3y-2z+15x-3y+3z=-13+3(11)
end{cases}
$$

$$
begin{cases}
7x-2z=-1\
16x+z=20
end{cases}
$$

We add Equation 2 to Equation 1. We multiply Equation 2 by 3 and add it to Equation 3:
Step 3
3 of 7
$2(16x+z)+7x-2z=-1+2(20)$

$32x+2z+7x-2z=39$

$39x=39$

$$
textcolor{#4257b2}{x=1}
$$

We multiply the second equation by 2 and add it to the first to determine $x$:
Step 4
4 of 7
$16x+z=20$

$z=20-16(1)$

$$
textcolor{#4257b2}{z=4}
$$

We determine $z$:
Step 5
5 of 7
$5x-y+z=11$

$5(1)-y+4=11$

$9-y=11$

$y=9-11$

$$
textcolor{#4257b2}{y=-2}
$$

We determine $y$:
Step 6
6 of 7
$2x+y-3z=-12$

$2(1)+(-2)-3(4)stackrel{?}{=}-12$

$2-2-12stackrel{?}{=}-12$

$-12=-12textcolor{#c34632}{checkmark}$

$5x-y+z=11$

$5(1)-(-2)+4stackrel{?}{=}11$

$5+2+4stackrel{?}{=}11$

$11=11textcolor{#c34632}{checkmark}$

$x+3y-2z=-13$

$1+3(-2)-2(4)stackrel{?}{=}-13$

$1-6-8stackrel{?}{=}-13$

$-13=-13textcolor{#c34632}{checkmark}$

We check the solution:
Result
7 of 7
$x=1$

$y=-2$

$$
z=4
$$

Exercise 11
Solution 1
Solution 2
Step 1
1 of 2
We will solve the system of equation

$$
begin{align*}
y &= – sqrt {x + 2} + 5\
y &= sqrt {x-3}
end{align*}
$$

Then we have

$$
sqrt {x-3} = – sqrt {x + 2} + 5
$$

We will squares both sides of the equation

$$
begin{align*}
left( sqrt {x-3} right)^2 &= left( – sqrt {x+2} + 5 right)^2\
x-3 &= x+2 – 10 sqrt{x+2} + 25\
10 sqrt{x+2} &= 30\
sqrt{x+2} &= 3
end{align*}
$$

Again, we will squares both sides of the equation

$$
begin{align*}
left( sqrt {x+2} right)^2 &= 3^2\
x+2 &= 9\
x &= 7
end{align*}
$$

Now we can substitute $x=7$

$$
begin{align*}
y &= sqrt {7-3}\
y &= sqrt 4\
y &= 2
end{align*}
$$

The point is

$$
(x,y) = (7,2)
$$

Result
2 of 2
$$
(x,y) = (7,2)
$$
Step 1
1 of 9
$$
begin{cases}
y=-sqrt{x+2}+5\
y=sqrt{x-3}
end{cases}
$$
We are given the system of equations:
Step 2
2 of 9
$$
-sqrt{x+2}+5=sqrt{x-3}
$$
We use substitution. We substitute the expression of $y$ from Equation 1 in Equation 2:
Step 3
3 of 9
$(-sqrt{x+2}+5)^2=(sqrt{x-3})^2$

$x+2+25-10sqrt{x+2}=x-3$

$x+27-10sqrt{x+2}=x-3$

We square both sides:
Step 4
4 of 9
$x+27-10sqrt{x+2}-x-27=x-3-x-27$

$$
-10sqrt{x+2}=-30
$$

We subtract $(x+27)$ from both sides:
Step 5
5 of 9
$sqrt{x+2}=3$
We divide by $-10$:
Step 6
6 of 9
$(sqrt{x+2})^2=3^2$

$x+2=9$

$x=9-2$

$$
textcolor{#4257b2}{x=7}
$$

We square both sides and determine $x$:
Step 7
7 of 9
$y=sqrt{7-3}=sqrt 4=2$

$$
textcolor{#4257b2}{y=2}
$$

We determine $y$:
Step 8
8 of 9
$y=-sqrt{x+2}+5$

$2stackrel{?}{=}-sqrt{7+2}+5$

$2stackrel{?}{=}-sqrt 9+5$

$2stackrel{?}{=}-3+5$

$2=2textcolor{#c34632}{checkmark}$

$y=sqrt{x-3}$

$2stackrel{?}{=}sqrt{7-3}$

$2stackrel{?}{=}sqrt 4$

$2stackrel{?}{=}-3+5$

$2=2textcolor{#c34632}{checkmark}$

$2=2textcolor{#c34632}{checkmark}$

We check the solutions:
Result
9 of 9
$x=7$

$y=2$

Exercise 12
Step 1
1 of 2
$textbf{Given}$ Find value of h so that $cos(x-h) = sin(x)$

We know that

$$
cos(x-dfrac{pi}{2}) = sin x
$$

Since both function are having period $2pi$. So we can just add $2pi$ get possible values of $h$.

Hence, $h = dfrac{pi}{2}, dfrac{5pi}{2}, dfrac{9pi}{2}$.

Result
2 of 2
$h = dfrac{pi}{2}, dfrac{5pi}{2}, dfrac{9pi}{2}$.
Exercise 13
Solution 1
Solution 2
Step 1
1 of 5
a) Sine takes value with $y-text{axis}$. Since $pi leq theta leq frac {3 pi}{2}$ we are watching third quadrant. Values for $y$ in third quadrant are negative. Then we get

$$
sin theta < 0
$$

Exercise scan

Step 2
2 of 5
b) Cosine takes value with $x-text{axis}$. Values for $x$ in third quadrant are negative. Then we get

$$
cos theta < 0
$$

Exercise scan

Step 3
3 of 5
c) The formula for tangent

$$
color{#c34632}{ tan theta = frac {sin theta}{cos theta}}
$$

Since $sin theta < 0$ and $cos theta <0$ we obtain

$$
tan theta = frac {<0}{ 0
$$

Step 4
4 of 5
d) Since $cos theta < 0$ we get

$$
frac {1}{cos theta} < 0
$$

Result
5 of 5
a) $sin theta <0$

b) $cos theta 0$

d) $frac 1{cos theta} <0$

Step 1
1 of 7
$$
f(theta)=sintheta,thetainleft[pi,dfrac{3pi}{2}right]
$$
a) We are given the function:
Step 2
2 of 7
$$
sinthetaleq 0
$$
The function is negative when the angle is in Quadrant III.
Step 3
3 of 7
$$
f(theta)=costheta,thetainleft[pi,dfrac{3pi}{2}right]
$$
b) We are given the function:
Step 4
4 of 7
$$
costhetaleq 0
$$
The function is negative when the angle is in Quadrant III.
Step 5
5 of 7
$$
f(theta)=tantheta,thetainleft[pi,dfrac{3pi}{2}right)
$$
c) We are given the function:
Step 6
6 of 7
$$
tanthetageq 0
$$
The function is positive when the angle is in Quadrant III.
Result
7 of 7
a) negative; b) negative; c) positive
Exercise 14
Solution 1
Solution 2
Step 1
1 of 3
a) After $pi$, values for $tan x$ are repeated.

The period of function $y= tan x$ is $pi$
.

Exercise scan

Step 2
2 of 3
b) The period of function $y= tan (x- pi)$ is $pi$

Exercise scan

Result
3 of 3
The period of functions $y=tan x$ and $y=tan(x-pi)$ is the same.
Step 1
1 of 8
$$
y=tan x
$$
a) We are given the function:
Step 2
2 of 8
begin{center}
begin{tabular}{|| c| c||}
hline
$x$ & $y=tan x$ \ [0.5ex]
hline$-dfrac{pi}{3}$ & -1.73 \
hline
$-dfrac{pi}{4}$ & -1 \
hline
0 & 0 \
hline
$dfrac{pi}{4}$ & 1 \
hline
$dfrac{pi}{3}$ & 1.73 \
hline
$dfrac{2pi}{3}$ &-1.73 \
hline
$dfrac{3pi}{4}$ & -1 \
hline
$pi$ & 0 \
hline
$dfrac{5pi}{4}$ & 1 \
hline
$dfrac{4pi}{3}$ & 1.73 \[1ex]
hline
end{tabular}
end{center}
The function has the period $pi$. We will graph the function on the interval $left(-dfrac{pi}{2},dfrac{pi}{2}right)cupleft(dfrac{pi}{2},dfrac{3pi}{2}right)$.

We build a table of values:

Step 3
3 of 8
$x=-dfrac{pi}{2}$

$x=dfrac{pi}{2}$

$x=-dfrac{3pi}{2}$

The graph has the vertical asymptotes:
Step 4
4 of 8
Exercise scan
We graph the function:
Step 5
5 of 8
$$
y=tan(x-pi)
$$
b) We are given the function:
Step 6
6 of 8
begin{center}
begin{tabular}{|| c| c||}
hline
$x$ & $y=tan (x-pi)$ \ [0.5ex]
hline$-dfrac{pi}{3}$ & -1.73 \
hline
$-dfrac{pi}{4}$ & -1 \
hline
0 & 0 \
hline
$dfrac{pi}{4}$ & 1 \
hline
$dfrac{pi}{3}$ & 1.73 \
hline
$dfrac{2pi}{3}$ &-1.73 \
hline
$dfrac{3pi}{4}$ & -1 \
hline
$pi$ & 0 \
hline
$dfrac{5pi}{4}$ & 1 \
hline
$dfrac{4pi}{3}$ & 1.73 \[1ex]
hline
end{tabular}
end{center}
The function has the period $pi$. We will graph the function on the interval $left(-dfrac{pi}{2},dfrac{pi}{2}right)cupleft(dfrac{pi}{2},dfrac{3pi}{2}right)$.

We build a table of values:

Step 7
7 of 8
$x=-dfrac{pi}{2}$

$x=dfrac{pi}{2}$

$x=-dfrac{3pi}{2}$

The graph has the vertical asymptotes:
Step 8
8 of 8
Exercise scan
We graph the function:
Exercise 15
Solution 1
Solution 2
Step 1
1 of 3
a) On the graph is shown the point $A(2, -1, -3)$

Exercise scan

Step 2
2 of 3
b) On the graph is shown the plane

$$
6x-3y+9z = 18
$$

Exercise scan

Result
3 of 3
a) On the graph is shown the point $A(2, -1, -3)$

b) On the graph is shown the plane $6x-3y+9z = 18$

Step 1
1 of 6
$$
P(2,-1,-3)
$$
a) We are given:
Step 2
2 of 6
Exercise scan
We graph the point in three dimensions:
Step 3
3 of 6
$$
6x-3y+9z=18
$$
b) We are given the equation:
Step 4
4 of 6
$y=0;z=0Rightarrow 6x=18Rightarrow x=3$

$x=0;z=0Rightarrow -3y=18Rightarrow y=-6$

$x=0;y=0Rightarrow 9z=18Rightarrow z=2$

The equation describes a plane. We determine the intersection of this plane with each of the axis:
Step 5
5 of 6
Exercise scan
We graph the intercepts $(A(3,0,0), B(0,-6,0), C(0,0,2)$ and the plane:
Result
6 of 6
See graphs
Exercise 16
Step 1
1 of 2
Cancel terms on the numerator and the denominator where possible, for (a) $=y+dfrac{x}{2}$ ; (b) $=2b+4a^{2}$ (c) $=6x-1$. In (d) we need to multiply by $xy$ to give the desired result
Result
2 of 2
see solutions
Exercise 17
Step 1
1 of 5
a) We will simplify the following expression

$$
begin{align*}
frac {x}{1- frac 1x} &= frac {x}{frac {x-1}{x}} && text{$left(1- frac 1x=frac xx-frac 1x=frac {x-1}{x} right)$}\
&= frac {x cdot x}{x-1} && text{$left(frac a{frac bc}=frac {a cdot c}b right)$}\
&= frac {x^2}{x-1}
end{align*}
$$

Step 2
2 of 5
Therefore

$$
frac {x}{1- frac 1x} = frac {x^2}{x-1}
$$

Step 3
3 of 5
b) We will simplify the following expression

$$
begin{align*}
frac {frac 1a + frac 1b}{frac 1b – a} &= frac {frac {b+a}{ab}}{frac {1-ab}{b}} && text{$left( frac 1b – a=frac 1b – frac {ab}b=frac {1-ab}{b} right)$}\
&text{} && text{$left( frac 1a + frac 1b=frac b{ab} + frac a{ab}=frac {b+a}{ab} right)$}\
&= frac {b (b+a)}{ab (1-ab)} && text{$left(frac {frac ab}{frac cd}=frac {a cdot d}{b cdot c} right)$}\
&= frac {b+a}{a (1-ab)}
end{align*}
$$

Step 4
4 of 5
Therefore

$$
frac {frac 1a + frac 1b}{frac 1b – a} = frac {b+a}{a (1-ab)}
$$

Result
5 of 5
a) $frac {x}{1- frac 1x} = frac {x^2}{x-1}$

b) $frac {frac 1a + frac 1b}{frac 1b – a} = frac {b+a}{a (1-ab)}$

Exercise 18
Solution 1
Solution 2
Step 1
1 of 4
$textbf{(a)}$ If $x-$axis represent time and $y-$axis represent height of the rocket then three data points are:

* $bullet$ (0,-5)
* $bullet$ (4,3)
* $bullet$ (8,3)

$textbf{(b)}$ Below is rough sketch of the height of the rocket over time:

Exercise scan

Step 2
2 of 4
textbf{(c)} Equation of parabola is given by:
$$y=ax^2+bx+c$$
Using data points we have below three equations:
begin{itemize}
item $bullet$ $c=-5$
item $bullet$ $16a+4b+c=3$
item $bullet$ $64a+8b+c=3$
end{itemize}
Solving for $a$ and $b$:
begin{align*}
16a+4b+c&=64a+8b+c\
-48a&=4b\
b&=-12a
intertext{Putting $b=-12a$ and $c=-5$ in $16a+4b+c=3$:}
16a+4(-12a)-5&=3\
16a-48a&=8\
-32a&=8\
textcolor{blue}{a}&textcolor{blue}{=-dfrac{1}{4}}\
b&=-12a\
&=-12times left(-dfrac{1}{4} right)\
&=textcolor{blue}{3}
end{align*}
Hence equation of parabola is: $y=-frac{1}{4}x^{2}+3x-5$
Step 3
3 of 4
$textbf{(d)}$ It can be observed in the graph that at $x=10$, $y=0$.

Hence, rocket will hit the ground at $text{textcolor{#4257b2}{$t=10$ sec}}$

$textbf{(e)}$ Domain of the function is $color{#4257b2}{0le x le 10}$ as at $x=10$ rocket hits the ground and stops

$textbf{(f)}$ For $color{#4257b2}{0le x le 2}$, rocket is below ground

Result
4 of 4
(c) $-dfrac{1}{4}x^2+3x-5$ (d) After 10 seconds (e) $0le x le 10$ (f) $0le x le 2$
Step 1
1 of 4
a. Three points are $(0,-5)$, $(4,3)$, $(8,3)$

b.

Exercise scan

Step 2
2 of 4
c. A parabola has an equation of the form $f(x)=ax^2+bx+c$. Evalaute the function at the given points:

$$
-5=c
$$

$$
3=16a+4b+c
$$

$$
3=64a+8b+c
$$

Exercise scan

Step 3
3 of 4
d. On the graph we note that the rocket will hit the ground at $x=10$.

e. The domain from the function contains all possible $x$-values that make sense and thus is ${x|0leq xleq 10}$.

f. The function is negative on the domain at ${x|0leq xleq 2}$.

Result
4 of 4
a. $(0,-5)$, $(4,3)$, $(8,3)$

b. See graph

c. $f(x)=-dfrac{1}{4}x^2+3x-5$

d. 10 s

e. ${x|0leq xleq 10}$

f. ${x|0leq xleq 2}$

Exercise 19
Step 1
1 of 8
$$
cos x=dfrac{1}{2}
$$
We are given the equation:
Step 2
2 of 8
$x_1=dfrac{pi}{3}$

$x_2=dfrac{5pi}{3}$

The general solution is:

$x_1=dfrac{pi}{3}+2npi$

$x_2=dfrac{5pi}{3}+2npi, n$ integer

a) The cosine function has the period $2pi$. The cosine takes the value $dfrac{1}{2}$ twice:
Step 3
3 of 8
Exercise scan
b) We solve the problem geometrically. We draw the function $f(x)=cos x$ and the line $y=dfrac{1}{2}$:
Step 4
4 of 8
$x_1=dfrac{pi}{3}+2npi$

$x_2=dfrac{5pi}{3}+2npi, n$ integer

The solutions are:
Step 5
5 of 8
The equation has an infinity of solutions.
Step 6
6 of 8
$x_1=dfrac{pi}{3}$

$x_2=dfrac{5pi}{3}, n$ integer

Exercise scan

c) We draw a unit circle showing the solutions to $cos x=dfrac{1}{2}$.
Step 7
7 of 8
$x_1=dfrac{pi}{3}+2npi$

$x_2=dfrac{5pi}{3}+2npi, n$ integer

We can see only two solutions on the unit circle, but also solutions are: the angles obtained by adding $2npi, n$ integer, to the two angles.
Result
8 of 8
There are two solutions.
Exercise 20
Step 1
1 of 5
$$
cos x=dfrac{1}{2}
$$
We are given the equation:
Step 2
2 of 5
$x_1=dfrac{pi}{3}$

$x_2=dfrac{5pi}{3}$

Using a calculator, we get:
Step 3
3 of 5
$x_1=dfrac{pi}{3}+2npi$

$x_2=dfrac{5pi}{3}+2npi, n$ integer

The solutions are:
Step 4
4 of 5
Exercise scan
We show where the value given by the calculator can be seen on the graph:
Step 5
5 of 5
Exercise scan
We show where the value given by the calculator can be seen on the unit circle (an infinity of solutions):
Exercise 21
Step 1
1 of 5
We are given $cos x = dfrac{1}{2}$

Now if we put cosine inverse on both sides of the equation, we get,

$$
begin{align*}
cos ^{-1} (cos x) &= cos ^{-1} dfrac{1}{2} \\
x &= 60 text{textdegree} tag{$cos ^{-1} dfrac{1}{2}=60 text{textdegree}$} \
end{align*}
$$

Thus, x= $60 text{textdegree}$

In order to convert into radians, we can multiply the degree by $dfrac{pi}{180}$

Therefore in terms of radians x=$dfrac{pi}{180} times 60 text{textdegree}$ or $dfrac{pi}{3}$

Step 2
2 of 5
Now, in a 2-D graph, there are 4 quadrants and in the 1st and 4th quadrant, cosine is positive.

This implies $cos(360-theta) = costheta$

Therefore,

$$
begin{align*}
cos 60 text{textdegree} &= cos(360-60 text{textdegree}) \
& = cos 300 text{textdegree} \
end{align*}
$$

This implies x = 300 $text{textdegree}$ as well.

In order to convert into radians, we can multiply the degree by $dfrac{pi}{180}$

Therefore in terms of radians x=$dfrac{pi}{180} times 300 text{textdegree}$ or $dfrac{5pi}{3}$

Step 3
3 of 5
We have x = $dfrac{pi}{3}$, $dfrac{5pi}{3}$ for $cos x = dfrac{1}{2}$

As we can observe that the value of $cos$ x for $cos x = dfrac{1}{2}$ repeats when we subtract $dfrac{pi}{3}$ and $dfrac{5pi}{3}$ from 2$pi$ or add 2$pi$ ‘n’ number of times to both of them respectively i.e the period of cosine is $2pi$

That is to say, $cos(2 pi(n) – theta) = cos theta$ and $cos(2 pi(n) + theta) = cos theta$

For example,

when n = 2

$cos (2pi(2) + dfrac{pi}{3} ) = cos (4 pi + dfrac{pi}{3}) = cos dfrac{13 pi}{3}$

and we know $cos(2 pi(n) + theta) = cos theta$

So, $cos dfrac{13 pi}{3} = cos dfrac{pi}{3} = dfrac{1}{2}$

Now we also have x=$dfrac{13pi}{3}$

Step 4
4 of 5
We can also see the repetitions in the graph.Exercise scan
Step 5
5 of 5
We can find all the values of x for $cos x = dfrac{1}{2}$ by stating that,

x = $2pi(n) pm dfrac{pi}{3}$ and $2pi(n) pm dfrac{5pi}{3}$

Thus, if you put any value of n you will get $cos(x)= dfrac{1}{2}$

Exercise 22
Step 1
1 of 2
$$
text{Given function in problem : }cos (x)=frac{1}{2}
$$

We know that the value of $cos (x)$ is $frac{1}{2}$ for two value of $x$ which are $frac{pi}{3}$ and $frac{5pi}{3}$ in interval $[0,pi]$ and period of the $cos$ function is $2pi$. So all the values of $x$ will be :

$$
x=frac{pi}{3}pm 2npi & x=frac{5pi}{3}pm 2npi
$$

{$text{color{#4257b2}Now by using above expression the value of $cos^{-1}(frac{1}{2})$ will be $frac{pi}{3}$ and $frac{5pi}{3}$. But we know that range of $cos^{-1}(x)$ function is $left[frac{-pi}{2},frac{pi}{2}right]$. So the there will be only one value for $cos^{-1}(frac{1}{2})$ and it is $frac{pi}{3}$}$

Result
2 of 2
$$
cos^{-1}(frac{1}{2})=frac{pi}{3}
$$
Exercise 23
Solution 1
Solution 2
Step 1
1 of 5
We can calculate the following equation

a)

$$
begin{align*}
2 cos x +1 &= 0\
2 cos x &= -1\
cos x &= – frac 12
end{align*}
$$

We use the inverse function

$$
begin{align*}
x &= arccos left( – frac 12 right)\
x &= frac {2 pi}{3} qquad x= frac {4 pi}{3}
end{align*}
$$

The period of the $cos x$ function is $2 pi$

$$
x = frac {2 pi}{3} + 2k pi qquad x= frac {4 pi}{3} + 2k pi
$$

for any integer $k$.

Exercise scan

Step 2
2 of 5
Exercise scan
Step 3
3 of 5
b)

$$
begin{align*}
tan x &= 1
end{align*}
$$

We use the inverse function

$$
begin{align*}
x &= arctan 1\
x &= frac {pi}{4} qquad x = frac {5pi}{4}
end{align*}
$$

The period of the $tan x$ function is $pi$

$$
x = frac {pi}{4} + k pi qquad x = frac {5pi}{4} + k pi
$$

for any integer $k$.

Exercise scan

Step 4
4 of 5
Exercise scan
Result
5 of 5
a) $x = frac {2 pi}{3} + 2k pi qquad x= frac {4 pi}{3} + 2k pi$

b) $x = frac {pi}{4} + k pi qquad x = frac {5pi}{4} + k pi$

Step 1
1 of 10
$$
2cos x+1=0
$$
a) We are given the equation:
Step 2
2 of 10
$2cos x=-1$

$$
cos x=-dfrac{1}{2}
$$

$x_1=dfrac{2pi}{3}$

$x_2=dfrac{4pi}{3}$

We subtract 1 from both sides, then we divide by 2 and find the solutions in $[0,2pi]$:
Step 3
3 of 10
$x_1=dfrac{2pi}{3}+2npi$

$x_2=dfrac{4pi}{3}+2npi, n$ integer

The solutions are:
Step 4
4 of 10
Exercise scan
We represent the solutions on the graph:
Step 5
5 of 10
Exercise scan
We represent the solutions on the unit circle:
Step 6
6 of 10
$$
tan x=1
$$
b) We are given the equation:
Step 7
7 of 10
$$
x_1=dfrac{pi}{4}
$$
The function has the period $pi$. We determine the solutions in $left(-dfrac{pi}{2},dfrac{pi}{2}right)$:
Step 8
8 of 10
$x=dfrac{pi}{4}+npi, n$ integer
The general form of the solutions is:
Step 9
9 of 10
Exercise scan
We represent the solutions on the graph:
Step 10
10 of 10
Exercise scan
We represent the solutions on the unit circle:
Exercise 24
Step 1
1 of 5
$$
sin^{-1} x=37text{textdegree}
$$
We are given the equation:
Step 2
2 of 5
The function $sin^{-1}$ is defined on the interval $[-1,1]$ and has values in the set $left[-dfrac{pi}{2},dfrac{pi}{2}right]$.
Step 3
3 of 5
Exercise scan
The function $sin x$ is one-to-one on the interval $left[-dfrac{pi}{2},dfrac{pi}{2}right]$, so there is only one angle in $left[-dfrac{pi}{2},dfrac{pi}{2}right]$ for which $sin 37text{textdegree}=x$.

We graph the solution $theta_1=37text{textdegree}$.

In order to determine another solution we draw a parallel to the $x$-axis, which intersects the circle in $B$:

Step 4
4 of 5
$$
theta_2=180text{textdegree}-angle BOY=180text{textdegree}-37text{textdegree}=143text{textdegree}
$$
The angle having been a solution also is:
Step 5
5 of 5
$theta=37text{textdegree}+2npi$ or

$theta=143text{textdegree}+2npi, n$ integer

The general solutions are:
Exercise 25
Step 1
1 of 5
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
2sin left(xright)-1+1&=0+1&&boxed{text{Add }1 text{ to both sides}}\
2sin left(xright)&=1&&boxed{text{Simplify}}\
frac{2sin left(xright)}{2}&=frac{1}{2}&&boxed{text{Divide both sides by } 2}\
sin left(xright)&=frac{1}{2}&&boxed{text{Simplify}}\
x=frac{pi }{6}+2pi n,:x&=frac{5pi }{6}+2pi n&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=frac{pi }{6}+2pi n,:x=frac{5pi }{6}+2pi n} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 2
2 of 5
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
frac{2cos left(xright)}{2}&=frac{-sqrt{3}}{2}&&boxed{text{Divide both sides by } 2}\
cos left(xright)&=-frac{sqrt{3}}{2}&&boxed{text{Simplify}}\
x&=frac{5pi }{6}+2pi n,:x=frac{7pi }{6}+2pi n&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=frac{5pi }{6}+2pi n,:x=frac{7pi }{6}+2pi n} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 3
3 of 5
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

$$
begin{align*}
frac{2sin left(xright)}{2}&=frac{sqrt{2}}{2}&&boxed{text{Divide both sides by } 2}\
sin left(xright)&=frac{sqrt{2}}{2}&&boxed{text{Simplify}}\
x=frac{pi }{4}+2pi n,:x&=frac{3pi }{4}+2pi n&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=frac{pi }{4}+2pi n,:x=frac{3pi }{4}+2pi n} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 4
4 of 5
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

$$
begin{align*}
x&=0+2pi n&&boxed{text{Simplify}}\
x&=2pi n&&boxed{text{Add}}\\
&boxed{{color{#c34632}x=2pi n} }&&boxed{text{Final solution}}\
end{align*}
$$

Result
5 of 5
$$
color{#4257b2} text{ a) }x=frac{pi }{6}+2pi n,:x=frac{5pi }{6}+2pi n
$$

$$
color{#4257b2} text{ b) } x=frac{5pi }{6}+2pi n,:x=frac{7pi }{6}+2pi n
$$

$$
color{#4257b2} text{ c) }x=frac{pi }{4}+2pi n,:x=frac{3pi }{4}+2pi n
$$

$$
color{#4257b2} text{ d) }x=2pi n
$$

Exercise 26
Step 1
1 of 7
$theta_1=52text{textdegree}$

$theta_2=128text{textdegree}$

$$
theta_3=308text{textdegree}
$$

We are given:
Step 2
2 of 7
$$
costheta_1=costheta_2=cos theta_3
$$
We have to check if we have:
Step 3
3 of 7
$$
cos x=y
$$
We have the equation:
Step 4
4 of 7
$cos 52text{textdegree}=y_1$

$cos 128text{textdegree}=y_2$

$cos 308text{textdegree}=y_3$

The function $cos^{-1}$ is defined on $[-1,1]$ and has values in $[0,pi]$.

The three problems they have to work are:

Step 5
5 of 7
As $cos 52text{textdegree}=cos (360text{textdegree}-52text{textdegree})=cos 308text{textdegree}=y_3$
Step 6
6 of 7
This means the problems Salina and Uma solved are the same.

As $cos 52text{textdegree}>0$ and $cos 128text{textdegree}<0$, the problem Tamara solves is different.

Result
7 of 7
Problem solved by Salina and Uma are same.
Exercise 27
Solution 1
Solution 2
Step 1
1 of 6
The graph of the function

$$
y = sin x
$$

Step 2
2 of 6
Exercise scan
Step 3
3 of 6
The graph of the function

$$
y = |sin x|
$$

Step 4
4 of 6
Exercise scan
Step 5
5 of 6
The graph of the function

$$
y = sin x
$$

$$
y = |sin x|
$$

Step 6
6 of 6
Exercise scan
Step 1
1 of 4
$f(x)=sin x$

$$
g(x)=|sin x|
$$

We are given the functions:
Step 2
2 of 4
Exercise scan
We graph the function $f(x)$, using the period $2pi$:
Step 3
3 of 4
$$
g(x)=begin{cases}
-f(x), f(x)<0\
f(x), f(x)geq 0
end{cases}
$$
In order to graph $g(x)$, we notice that we can write:
Step 4
4 of 4
Exercise scan
So we copy the graph of $f(x)$ for the intervals in which $f(x)$ is positive and reflect $f(x)$ across the $x$-axis for the intervals in which $f(x)$ is negative:
Exercise 28
Step 1
1 of 2
The system of equations:

$$
begin{align*}
x + 2y &= 4\
2x – y &= -7\
x + y + z &= -4
end{align*}
$$

First equation

$$
begin{align*}
x + 2y &= 4\
x = 4 &- 2y
end{align*}
$$

Substitution in the second equation

$$
begin{align*}
2x – y &= -7\
2 ( 4-2y) -y &= -7\
8 – 4y – y &= -7\
8 – 5y &= -7\
– 5y &= -15
end{align*}
$$

Multiply this equation by $(-1)$

$$
begin{align*}
5y &= 15\
y &= frac {15}{5}\
y &= 3
end{align*}
$$

Now, we can substitute $y=3$ in the first equation

$$
begin{align*}
x &= 4 – 2 cdot 3\
x &= 4-6\
x &= -2
end{align*}
$$

And, we can substitute $x=-2$ and $y=3$ in the third equation

$$
begin{align*}
-2 + 3 + z &= -4\
1 + z &= -4\
z &= -5
end{align*}
$$

The solution of the system of equations is

$$
begin{align*}
x &= -2\
y &= 3\
z &= -5
end{align*}
$$

Result
2 of 2
$$
begin{align*}
x &= -2\
y &= 3\
z &= -5
end{align*}
$$
Exercise 29
Solution 1
Solution 2
Step 1
1 of 3
a) According to the formulas

$$
begin{align*}
color{#c34632}{a cdot ln b = ln b^a} tag {$*$}\
color{#c34632}{ln (a cdot b) = ln a + ln b} tag {$**$}\
color{#c34632}{ln frac ab = ln a – ln b} tag{$***$}
end{align*}
$$

we obtain

$$
begin{align*}
3 ln x + 4 ln 2 – 2 ln y &overset{(*)}= ln x^3 + ln 2^4 – ln y^2\
&= ln x^3 + ln 16 – ln y^2\
&overset{(**)}= ln (x^3 16) – ln y^2\
&overset{(***)}= ln frac {16x^3}{y^2}
end{align*}
$$

Step 2
2 of 3
b) In this exercise we use the following formulas

$$
begin{align*}
color{#c34632}{a cdot ln b = ln b^a} tag {$*$}\
color{#c34632}{ln (a cdot b) = ln a + ln b} tag {$**$}
end{align*}
$$

Then

$$
begin{align*}
ln [(x-3)(3x+2)]^3 &overset{(*)}= 3 cdot ln [(x-3)(3x+2)]\
&overset{(**)}= 3 cdot [ ln (x-3)+ ln (3x+2)]\
&= 3 ln (x-3) + 3 ln (3x+2)
end{align*}
$$

Result
3 of 3
a) $3 ln x + 4 ln 2 – 2 ln y = ln frac {16x^3}{y^2}$

b) $ln [(x-3)(3x+2)]^3=3 ln (x-3) + 3 ln (3x+2)$

Step 1
1 of 8
$$
3ln x+4ln 2-2ln y
$$
a) We are given the expression:
Step 2
2 of 8
$3ln x+4ln 2-2ln y=ln x^3+ln 2^4-ln y^2$

$$
=ln x^3+ln 16-ln y^2
$$

We use the Power Property of Logarithms:

$log_a x^m=mlog_a x$.

Step 3
3 of 8
$$
ln x^3+ln 16-ln y^2=ln(16x^3)-ln y^2
$$
We use the Product Property of Logarithms:

$log_a (xy)=log_a x+log_a y$.

Step 4
4 of 8
$$
ln(16x^3)-ln y^2=lndfrac{16x^3}{y^2}
$$
We use the Quotient Property of Logarithms:

$log_a dfrac{x}{y}=log_a x-log_a y$.

Step 5
5 of 8
$$
ln[(x-3)(3x+2)]^3
$$
b) We are given the expression:
Step 6
6 of 8
$$
ln[(x-3)(3x+2)]^3=3ln [(x-3)(3x+2)]
$$
We use the Power Property of Logarithms:

$log_a x^m=mlog_a x$.

Step 7
7 of 8
$$
3ln [(x-3)(3x+2)]=3ln (x-3)+3ln (3x+2)
$$
We use the Product Property of Logarithms:

$log_a (xy)=log_a x+log_a y$.

Result
8 of 8
a) $lndfrac{16x^3}{y^2}$

b) $3ln (x-3)+3ln (3x+2)$

Exercise 30
Solution 1
Solution 2
Step 1
1 of 3
a) This is a geometric series

$$
color{#c34632}{a+ar+ar^2+ cdot cdot cdot }
$$

Therefore

$$
6+3 + frac 32+ cdot cdot cdot=6+frac 62+frac 6{2^2}+ cdot cdot cdot
$$

where

$$
a=6 qquad text{and} qquad r= frac 12
$$

According to the formula

$$
color{#c34632}{ S= frac {a}{1-r}}
$$

we obtain

$$
begin{align*}
S &= frac {6}{1 – frac 12}\
S &= frac {6}{frac 12}\
S &= 2 cdot 6\
S &= 12
end{align*}
$$

Step 2
2 of 3
b) This is the geometric series

$$
sum_{k=1}^{infty} left( frac 13 right)^k = frac 13 + frac 19 + frac {1}{27} + cdot cdot cdot = frac 13 + frac 13 cdot frac 13 + frac 13 cdot frac 1{3^2} + cdot cdot cdot
$$

where

$$
a= frac 13 qquad text{and} qquad r= frac 13
$$

According to the formula

$$
color{#c34632}{ S= frac {a}{1-r}}
$$

we obtain

$$
begin{align*}
S &= frac {frac 13}{1 – frac 13}\
S &= frac {frac 13}{frac 23}\
S &= frac 12
end{align*}
$$

Result
3 of 3
a) $S=12$

b) $S=frac 12$

Step 1
1 of 7
$$
6+3+dfrac{3}{2}+….
$$
a) We are given the infinite series:
Step 2
2 of 7
$a_1=6$

$a_n=dfrac{1}{2}a_{n-1}$

$$
q=dfrac{1}{2}
$$

We can write the geometric series:
Step 3
3 of 7
$$
S=dfrac{a_1}{1-q}=dfrac{6}{1-dfrac{1}{2}}=dfrac{6}{dfrac{1}{2}}=12
$$
As $|q|=dfrac{1}{2}<1$ we can compute the sum of the series:
Step 4
4 of 7
$$
sum_{k=1}^{infty}left(dfrac{1}{3}right)^k
$$
b) We are given the infinite series:
Step 5
5 of 7
$a_1=dfrac{1}{3}$

$a_n=dfrac{1}{3}a_{n-1}$

$$
q=dfrac{1}{3}
$$

We can write the geometric series:
Step 6
6 of 7
$$
S=dfrac{a_1}{1-q}=dfrac{dfrac{1}{3}}{1-dfrac{1}{3}}=dfrac{dfrac{1}{3}}{dfrac{2}{3}}=dfrac{1}{2}
$$
As $|q|=dfrac{1}{3}<1$ we can compute the sum of the series:
Result
7 of 7
a) $12$

b) $dfrac{1}{2}$

Exercise 31
Step 1
1 of 9
$y=sin x$
a) We are given the function:
Step 2
2 of 9
begin{center}
begin{tabular}{|| c| c||}
hline
$x$ & $y=sin x$ \ [0.5ex]
hline
0 & 0 \
hline
$dfrac{pi}{4}$ & $dfrac{sqrt 2}{2}$ \
hline
$dfrac{pi}{2}$ & 1 \
hline
$dfrac{3pi}{4}$ & $dfrac{sqrt 2}{2}$ \
hline
$pi$ & 0 \
hline
$dfrac{5pi}{4}$ & $-dfrac{sqrt 2}{2}$ \
hline
$dfrac{3pi}{2}$ & -1 \
hline
$dfrac{7pi}{4}$ & $-dfrac{sqrt 2}{2}$ \
hline
$2pi$ & 0 \[1ex]
hline
end{tabular}
end{center}
We build a table of values for a period $2pi$:
Step 3
3 of 9
Exercise scan
We graph the function:
Step 4
4 of 9
Domain: $mathbb{R}$

Range: $[-1,1]$

This is a function because it passes the Vertical Text.

We determine the domain and range:

Step 5
5 of 9
Exercise scan
b) We add the line $y=x$ to the graph:
Step 6
6 of 9
Exercise scan
c) We reflect $y=sin x$ across the line $y=x$:
Step 7
7 of 9
Domain: $left[-dfrac{pi}{2},dfrac{pi}{2}right]$

Range: $[-1,1]$

The domain and range of the function $y=sin (x)$ which has the inverse as a function are:
Step 8
8 of 9
Domain: $[-1,1]$

Range:$left[-dfrac{pi}{2},dfrac{pi}{2}right]$

The domain and range of the inverse function are:
Step 9
9 of 9
d) The domain of the original function $y=sin (x)$ must be restricted so that the function is one-to-one in order to have an inverse which is a function.
Exercise 32
Step 1
1 of 3
Exercise scan
We graph the function $y=sin^{-1}(x)$ using a graphing calculator:
Step 2
2 of 3
Exercise scan
The graph is similar to the one we draw in problem 12-31. The domain and range are the ones we determined in pat $(d)$ of problem 12-31.
Step 3
3 of 3
Exercise scan
We highlight (in green color) the portion of the unit circle that shows the restriction on the domain of $y=sin(x)$:
Exercise 33
Step 1
1 of 4
$$
sin x=-dfrac{sqrt 3}{2}
$$
We are given the equation:
Step 2
2 of 4
a) Because the function $y=sin x$ is periodical and it has 2 solutions in $[0,2pi)$, it means it has an infinity of solutions.
Step 3
3 of 4
$x_1=dfrac{4pi}{3}$

$x_2=dfrac{5pi}{3}$

Exercise scan

b) We list the solutions:
Step 4
4 of 4
$x_1=4.1887902=dfrac{4pi}{3}$

$x_2=5.2359878=dfrac{5pi}{3}$

c) The calculator will give us the result:
Exercise 34
Step 1
1 of 11
Domain: $mathbb{R}$

Range: $[-1,1]$

Exercise scan

a) We sketch the function $y=cos(x)$:
Step 2
2 of 11
Domain: $mathbb{R}-left{dfrac{(2k+1)pi}{2}, k text{ integer}right}$

Range: $mathbb{R}$

Exercise scan

We sketch the function $y=tan(x)$:
Step 3
3 of 11
Exercise scan
b) We reflect $y=cos(x)$ across the line $y=x$ to graph the inverse of the function $y=cos(x)$:
Step 4
4 of 11
Exercise scan
We reflect $y=tan(x)$ across the line $y=x$ to graph the inverse of the function $y=tan(x)$:
Step 5
5 of 11
Domain: $[-1,1]$

Range: $[0,pi]$

c) The domain and range of the inverse function of $y=cos(x)$ are:
Step 6
6 of 11
Domain: $mathbb{R}$

Range: $left(-dfrac{pi}{2},dfrac{pi}{2}right)$

The domain and range of the inverse function of $y=tan(x)$ are:
Step 7
7 of 11
Exercise scan
d) We graph $y=cos^{-1} x$ using a graphing calculator:
Step 8
8 of 11
Exercise scan
We graph $y=tan^{-1} x$ using a graphing calculator:
Step 9
9 of 11
The domain and the range of the inverses are the ones we determined in part $(c)$.
Step 10
10 of 11
Exercise scan
We highlight (in green color) the portion on the unit circle that shows the domain restriction for the inverse of $y=cos x$:
Step 11
11 of 11
Exercise scan
We highlight (in green color) the portion on the unit circle that shows the domain restriction for the inverse of $y=tan x$:
Exercise 35
Step 1
1 of 5
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
2cos left(xright)-1+1&=0+1&&boxed{text{Add }1 text{ to both sides}}\
2cos left(xright)&=1&&boxed{text{Simplify}}\
frac{2cos left(xright)}{2}&=frac{1}{2}&&boxed{text{Divide both sides by } 2}\
cos left(xright)&=frac{1}{2}&&boxed{text{Simplify}}\
x=frac{pi }{3}+2pi n,:x&=frac{5pi }{3}+2pi n&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=frac{pi }{3}+2pi n,:x=frac{5pi }{3}+2pi n} }&&boxed{text{Final solution}}\\
end{align*}
$$

Graph of $boldsymbol{2 cos(x)-1=0}$

Exercise scan

Step 2
2 of 5
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
x&=frac{pi }{3}+pi n&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=frac{pi }{3}+pi n} }&&boxed{text{Final solution}}\\
end{align*}
$$

Graph of $boldsymbol{tan(x)=sqrt3}$

Exercise scan

Step 3
3 of 5
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

$$
begin{align*}
frac{2sin left(xright)}{2}&=frac{sqrt{3}}{2}&&boxed{text{Divide both sides by } 2}\
sin left(xright)&=frac{sqrt{3}}{2}&&boxed{text{Simplify}}\
x=frac{pi }{3}+2pi n,:x&=frac{2pi }{3}+2pi n&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=frac{pi }{3}+2pi n,:x=frac{2pi }{3}+2pi n} }&&boxed{text{Final solution}}\\
end{align*}
$$

Graph of $boldsymbol{2 sin(x)=sqrt3}$

Exercise scan

Step 4
4 of 5
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

$$
begin{align*}
4u^2-3&=0&&boxed{text{Let: }sin(x)=u }\
4u^2-3+3&=0+3&&boxed{text{Add 3 to both sides}}\
4u^2&=3&&boxed{text{Simplify}}\
frac{4u^2}{4}&=frac{3}{4}&&boxed{text{Divide both sides by } 4}\
u^2&=frac{3}{4}&&boxed{text{Simplify}}\
u=sqrt{frac{3}{4}},:u&=-sqrt{frac{3}{4}}&&boxed{text{Simplify}}\
u=frac{sqrt{3}}{2},:u&=-frac{sqrt{3}}{2}&&boxed{text{Simplify}}\
sin left(xright)&=frac{sqrt{3}}{2},:sin left(xright)=-frac{sqrt{3}}{2}&&boxed{text{Substitute back: } u=sin(x)}\
x=frac{pi }{3}+2pi n,:x=frac{2pi }{3}+2pi n,:x&=frac{4pi }{3}+2pi n,:x=frac{5pi }{3}+2pi n&&boxed{text{Combine the solutions}}\\
&boxed{{color{#c34632}x=frac{pi }{3}+2pi n,:x=frac{2pi }{3}+2pi n,:} }&&boxed{text{Final solution}}\
&boxed{{color{#c34632}x=frac{4pi }{3}+2pi n,:x=frac{5pi }{3}+2pi n} }&&boxed{text{Final solution}}\\
end{align*}
$$

Graph of $boldsymbol{4sin^2(x)-3=0}$

Exercise scan

Result
5 of 5
$$
color{#4257b2} text{ a) } x=frac{pi }{3}+2pi n,:x=frac{5pi }{3}+2pi n
$$

$$
color{#4257b2} text{ b) } x=frac{pi }{3}+pi n
$$

$$
color{#4257b2} text{ c) } x=frac{pi }{3}+2pi n,:x=frac{2pi }{3}+2pi n
$$

$$
color{#4257b2} text{ d) }x=frac{pi }{3}+2pi n,:x=frac{2pi }{3}+2pi n,:
$$

$$
color{#4257b2} text{ d) } x=frac{4pi }{3}+2pi n,:x=frac{5pi }{3}+2pi n
$$

Exercise 36
Step 1
1 of 9
Inverse trigonometric functions or arcus functions are the inverse functions of trigonometric functions such as $sin$, $cos$, and $tan$.
Step 2
2 of 9
Since trigonometric functions are all periodic functions, their graphs do not pass the Horizontal Line Test and are not $1−$to$−1$. This means none of them have an inverse unless the domain of each is restricted to make each of them $1−$to$−1$.
Step 3
3 of 9
Therefore, we need to restrict the domain of $sin$ function to $left[-dfrac{pi}{2},dfrac{pi}{2}right]$. Its range is then $left[-1,1right]$.
Step 4
4 of 9
The inverse trigonometric function, $sin^{-1}$, will have $left[-1,1right]$ as its domain and $left[-dfrac{pi}{2},dfrac{pi}{2}right]$ as its range.
Step 5
5 of 9
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/fdca81bb-b9b4-4859-b8fb-39289943ab37-1632906954290781.png)
Step 6
6 of 9
We need to do a similar thing to $cos$ and $tan$. The domain of $cos^{-1}$ will be $left[-1,1right]$ and its range will be $left[0,piright]$.
Step 7
7 of 9
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/a8a396f1-9a7c-4301-af23-1032e5d0bfe5-1632907131252179.png)
Step 8
8 of 9
The domain of $tan^{-1}$ will be $(-infty,+infty)$ and its range will be $left[-dfrac{pi}{2},dfrac{pi}{2}right]$.
Step 9
9 of 9
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/2b1bed22-13e1-417c-93b6-5ed5f5852023-1632907171940561.png)
Exercise 37
Step 1
1 of 4
a) The solution of the given equation:

$$
sin theta = 0.5
$$

By applying the inverse function we get

$$
begin{align*}
theta &= arcsin 0.5\
theta &= frac {pi}{6} qquad theta = frac {5 pi}{6}
end{align*}
$$

The period of the $sin x$ function is $2pi$

$$
theta = frac {pi}{6} + 2k pi qquad theta = frac {5 pi}{6} + 2k pi
$$

for any integer $k$.

Step 2
2 of 4
b) The solution of the given equation:

$$
cos theta = – 0.5
$$

By applying the inverse function we get

$$
begin{align*}
theta &= arccos (-0.5)\
theta &= frac {2pi}{3} qquad theta = frac {4 pi}{3}
end{align*}
$$

The period of the $cos x$ function is $2pi$

$$
theta = frac {2pi}{3} + 2k pi qquad theta = frac {4 pi}{3} + 2k pi
$$

Step 3
3 of 4
c) The solution of the given equation:

$$
begin{align*}
4 tan theta – 4 &= 0\
4 tan theta &= 4\
tan theta &= 1
end{align*}
$$

By applying the inverse function we get

$$
begin{align*}
theta &= arctan 1\
theta &= frac {pi}{4} qquad theta = frac {5 pi}{4}
end{align*}
$$

The period of the $tan x$ function is $pi$

$$
theta = frac {pi}{4} + k pi qquad theta = frac {5 pi}{4} + k pi
$$

Result
4 of 4
a) $theta = frac {pi}{6} + 2k pi qquad theta = frac {5 pi}{6} + 2k pi$

b) $theta = frac {2pi}{3} + 2k pi qquad theta = frac {4 pi}{3} + 2k pi$

c) $theta = frac {pi}{4} + k pi qquad theta = frac {5 pi}{4} + k pi$

Exercise 38
Step 1
1 of 5
a) The graph of the function

$$
y=cos (3x)-1
$$

is the same as a graph under $ii$.

Exercise scan

Step 2
2 of 5
b) The graph of the function

$$
y=3cos (x)-1
$$

is the same as a graph under $iii$.

Exercise scan

Step 3
3 of 5
c) The graph of the function

$$
y=3cos (x-1)
$$

is the same as a graph under $iv$.

Exercise scan

Step 4
4 of 5
d) The graph of the function

$$
y=3cos (3x-1)
$$

is the same as a graph under $i$.

Exercise scan

Result
5 of 5
a) $ii$

b) $iii$

c) $iv$

d) $i$

Exercise 39
Step 1
1 of 3
a) We will simplify the following expression:

$$
begin{align*}
frac {3x}{x^2 + 2x +1} + frac {3}{x^2 + 2x +1} &= frac {3x + 3}{x^2 + 2x +1}\
&overset{(*)}= frac {3(x+1)}{(x+1)^2}\
&= frac {3}{x+1}
end{align*}
$$

Using the formula

$$
{(star)} x^2 + 2x + 1 = (x+1)^2
$$

Therefore

$$
frac {3x}{x^2 +2x+1} + frac {3}{x^2 + 2x+1} = frac {3}{x+1}
$$

Step 2
2 of 3
b) We will simplify the following expresion:

$$
begin{align*}
frac {3}{x-1} – frac {2}{x-2} &= frac {3(x-2)-2(x-1)}{(x-1)(x-2)}\
&= frac {3x-6-2x+2}{x^2 -2x-x+2}\
&= frac {x-4}{x^2 -3x +2}
end{align*}
$$

Therefore

$$
frac {3}{x-1} – frac {2}{x-2} = frac {x-4}{x^2 -3x +2}
$$

Result
3 of 3
a) $frac {3x}{x^2 +2x+1} + frac {3}{x^2 + 2x+1} = frac {3}{x+1}$

b) $frac {3}{x-1} – frac {2}{x-2} = frac {x-4}{x^2 -3x +2}$

Exercise 40
Step 1
1 of 8
begin{center}
begin{tabular}{|| c| c||}
hline
x & f(x) \ [0.5ex]
hline
-2 & 3 \
hline
-1 & 4\
hline
0 & 5\
hline
1 & undefined\
hline
2 & 7\
hline
3 & 8\[1ex]
hline
end{tabular}
end{center}
a) We build the table:
Step 2
2 of 8
Exercise scan
We graph the points in the table:
Step 3
3 of 8
It appears that the points are collinear and thus the function seems linear.

It is not correct to connect all the dots because the function is not defined for $x=1$.

Step 4
4 of 8
$f(0.9)=dfrac{0.9^2+4(0.9)-5}{0.9-1}=5.9$

$f(1.1)=dfrac{1.1^2+4(1.1)-5}{1.1-1}=6.1$

b) It looks like we’d have:

$f(x)=x+5$.

We compute $f(0.9)$ and $f(1.1)$:

Step 5
5 of 8
Exercise scan
We add the new points $(0.9,5.9)$ and $(1.1,6.1)$ to the graph:
Step 6
6 of 8
$f(0.99)=dfrac{0.99^2+4(0.99)-5}{0.99-1}=5.99$

$f(1.01)=dfrac{1.01^2+4(1.01)-5}{1.01-1}=6.01$

It does not seem that $x=1$ is an asymptote. To make sure we compute $f(0.99)$ and $f(1.01)$:
Step 7
7 of 8
$f(x)=dfrac{x^2+4x-5}{x-1}=dfrac{x^2-x+5x-5}{x-1}$

$=dfrac{x(x-1)+5(x-1)}{x-1}$

$=dfrac{(cancel{x-1})(x+5)}{cancel{x-1}}$

$$
=x+5
$$

c) We simplify the expression:
Step 8
8 of 8
Exercise scan
The complete graph looks like a line, with a hole in $x=1$.
Exercise 41
Step 1
1 of 4
Substituting the points $(-2, 24), (3, -1)$ and $(-1, 15)$ in the general form of the equation:

$y=ax^2+bx+c$

$24=a(-2)^2+b(-2)+c$          (Substituting with the point $(-2, 24)$)

$24=4a-2b+c$          (1)

$-1=a(3)^2+b(3)+c$          (Substituting with the point $(3, -1)$)

$-1=9a+3b+c$          (2)

$15=a(-1)^2+b(-1)+c$          (Substituting with the point $(-1, 15)$)

$15=a-b+c$          (3)

The system is:

$24=4a-2b+c$          (1)

$-1=9a+3b+c$          (2)

$15=a-b+c$          (3)

Subtracting (1) from (2)

$-1=9a+3b+c$          (2)

$24=4a-2b+c$          (1)

—————————-

$-25=5a+5b$

$-5=a+b$          (4)

Subtracting (2) from (3)

$15=a-b+c$          (3)

$-1=9a+3b+c$          (2)

—————————-

$16=-8a-4b$

$4=-2a-b$          (5)

Step 2
2 of 4
Solving (4) and (5)

$-5=a+b$          (4)

+

$4=-2a-b$          (5)

————————–

$-1=-a$

$$
a=1
$$

Substituting in (4)

$-5=1+b$

$b=-5-12$

$$
b=-6
$$

Substituting in (1)

$24=4a-2b+c$          (1)

$24=4(1)-2(-6)+c$

$24=4+12+c$

$c=24-16$

$$
c=8
$$

The solution is:          $a=1$          $b=-6$          $c=8$

The equation is:

$$
y=x^2-6x+8
$$

Step 3
3 of 4
Checking for solution:

$24=4a-2b+c$          (1)

$24=4+12+8$          checkmark

$-1=9a+3b+c$          (2)

$-1=9(1)+3(-6)+8$

$-1=9-18+8$

$-1=17-18$          checkmark

$15=a-b+c$          (3)

$15=1-(-6)+8$

$15=7+8$          checkmark

Result
4 of 4
The equation is:          $y=x^2-6x+8$
Exercise 42
Step 1
1 of 3
a) We will simplify the following expression:

$$
begin{align*}
frac {frac {x+1}{2x}}{frac {x^2 -1}{x}} &= frac {x(x+1)}{2x(x^2 -1)}\
&overset{(*)}= frac {x+1}{2(x-1)(x+1)}\
&= frac {1}{2(x-1)}
end{align*}
$$

Using the formula

$$
{(star)} x^2 -1=(x-1)(x+1)
$$

Therefore

$$
frac {frac {x+1}{2x}}{frac {x^2 -1}{x}} = frac {1}{2(x-1)}
$$

Step 2
2 of 3
b) We will simplify the following expression:

$$
begin{align*}
frac {frac {4}{x+3}}{frac 1x +3} = frac {frac {4}{x+3}}{frac {1+3x}{x}} &= frac {4x}{(x+3)(1+3x)}\
&= frac {4x}{x+3x^2 + 3 +9x}\
&= frac {4x}{3x^2 + 10x +3}
end{align*}
$$

Therefore

$$
frac {frac {4}{x+3}}{frac 1x +3} = frac {4x}{3x^2 + 10x +3}
$$

Result
3 of 3
a) $frac {frac {x+1}{2x}}{frac {x^2 -1}{x}} = frac {1}{2(x-1)}$

b) $frac {frac {4}{x+3}}{frac 1x +3} = frac {4x}{3x^2 + 10x +3}$

Exercise 43
Step 1
1 of 3
a) This is a geometric series

$$
sum_{n=1}^8 3^n= 3+3 cdot 3 + 3 cdot 3^2 + 3 cdot 3^3 + cdot cdot cdot + 3 cdot 3^7
$$

where

$$
a=3 qquad text{and} qquad r=3 qquad text{and} qquad k=7
$$

According to the formula

$$
color{#c34632}{ S = a left( frac {1- r^{k+1}}{1-r} right) }
$$

we obtain

$$
begin{align*}
S &= 3 left( frac {1- 3^{7+1}}{1-3} right)\
S &= 3 frac {1- 3^8}{-2}\
S &= 3 frac {1-6561}{-2}\
S &= 3 frac {-6560}{-2}\
S &= 3 cdot 3280\
S &= 9840
end{align*}
$$

The sum is

$$
sum_{n=1}^8 3^n=9840
$$

Step 2
2 of 3
b) We will simplify the following expression:

$$
begin{align*}
sum_{c=1}^{16} (3c + 5) &= (3 cdot 1 +5) + (3 cdot 2 + 5) +cdot cdot cdot+ (3 cdot 16 +5)\
&= (3+5) + (6+5) + cdot cdot cdot+ (48 +5)\
&= 8+ 11 +cdot cdot cdot+ 53
end{align*}
$$

where

$$
a=8 qquad text{and} qquad d=11-8=3 qquad text{and} qquad n=16
$$

According to the formula

$$
color{#c34632}{ S= frac n2 [ 2a + (n-1) d]}
$$

we obtain

$$
begin{align*}
S &= frac {16}{2} [ 2 cdot 8 + (16-1) cdot 3]\
S &= 8 [ 16 + 15 cdot 3]\
S &= 8 [ 16 + 45 ]\
S &= 8 cdot 61\
S &= 488
end{align*}
$$

Therefore

$$
sum_{c=1}^{16} (3c + 5) = 488
$$

Result
3 of 3
a) $sum_{n=1}^8 3^n=9840$

b) $sum_{c=1}^{16} (3c + 5) = 488$

Exercise 44
Step 1
1 of 11
Determine the domain and range for the function
$$y = sin x$$
and it’s inverse
$$y = sin^{-1} x$$
Step 2
2 of 11
So, the domain and range of

$rightarrow y = sin x$ is

$$text {Domain }: left[-dfrac{pi}{2}, dfrac{pi}{2} right]$$
$$text {Range }: [-1,1]$$

Step 3
3 of 11
$rightarrow y = sin^{-1} x$ is

$$text {Domain }: [-1,1]$$
$$text {Range }: left[-dfrac{pi}{2}, dfrac{pi}{2} right]$$

Step 4
4 of 11
Determine the domain and range for the function

$$y = cos x$$

and it’s inverse

$$y = cos^{-1} x$$

Step 5
5 of 11
So, the domain and range of

$rightarrow y = cos x$ is

$$text {Domain }: [0, pi]$$
$$text {Range }: [-1,1]$$

Step 6
6 of 11
$rightarrow y = cos^{-1} x$ is

$$text {Domain }: [0, pi]$$
$$text {Range }: [-1,1]$$

Step 7
7 of 11
Determine the domain and range for the function

$$y = tan x$$

and it’s inverse

$$y = tan^{-1} x$$

Step 8
8 of 11
So, the domain and range of

$rightarrow y = tan x$ is

$$text {Domain }: left(-dfrac{pi}{2}, dfrac{pi}{2} right)$$
$$text {Range }: Reals$$

Step 9
9 of 11
$rightarrow y = tan^{-1} x$ is

$$text {Domain }: Reals$$
$$text {Range }: left(-dfrac{pi}{2}, dfrac{pi}{2} right)$$

Step 10
10 of 11
The restrictions are needed because the functions must be one-to-one in order to have a function as an inverse.
Result
11 of 11
See the explanation
Exercise 45
Step 1
1 of 9
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
4sin left(xright)+2-2&=0-2&&boxed{text{Subtract }2 text{ from both sides}}\
4sin left(xright)&=-2&&boxed{text{Simplify}}\
frac{4sin left(xright)}{4}&=frac{-2}{4}&&boxed{text{Divide both sides by } 4}\
sin( x) &=-frac{2}{4}&&boxed{text{Simplify}}\
sin left(xright)&=-frac{1}{2}&&boxed{text{Cross cancel common factor: }2}\
x=frac{7pi }{6}+2pi n,:x&=frac{11pi }{6}+2pi n&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=frac{7pi }{6}+2pi n,:x=frac{11pi }{6}+2pi n} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 2
2 of 9
noindent
Graph of $boldsymbol{4 sin (x)+2=0}$

Exercise scan

Step 3
3 of 9
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
frac{2cos left(xright)}{2}&=frac{sqrt{3}}{2}&&boxed{text{Divide both sides by } 2}\
cos left(xright)&=frac{sqrt{3}}{2}&&boxed{text{Simplify}}\
x=frac{pi }{6}+2pi n,:x&=frac{11pi }{6}+2pi n&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=frac{pi }{6}+2pi n,:x=frac{11pi }{6}+2pi n} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 4
4 of 9
noindent
Graph of $boldsymbol{2 cos (x)=sqrt3}$

Exercise scan

Step 5
5 of 9
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

$$
begin{align*}
tan left(xright)+1-1&=0-1&&boxed{text{Subtract 1 from both sides}}\
tan left(xright)&=-1&&boxed{text{Simplify}}\
x&=frac{3pi }{4}+pi n&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=frac{3pi }{4}+pi n} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 6
6 of 9
noindent
Graph of $boldsymbol{tan(x)+1=0}$

Exercise scan

Step 7
7 of 9
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

$$
begin{align*}
4u^2-4&=0&&boxed{text{Let: }cos(x)=u }\
4u^2-4+4&=0+4&&boxed{text{Add 4 to both sides}}\
4u^2&=4&&boxed{text{Simplify}}\
frac{4u^2}{4}&=frac{4}{4}&&boxed{text{Divide both sides by 4}}\
u^2&=1&&boxed{text{Simplify}}\
u=sqrt{1},:u&=-sqrt{1}&&boxed{text{Simplify}}\
u=1,:u&=-1&&boxed{text{Simplify}}\
cos left(xright)&=1,:cos left(xright)=-1&&boxed{text{Substitute back: }u=cos(x)}\
end{align*}
$$

First we solve $cos(x)=1$

$$
begin{align*}
x&=0+2pi n&&boxed{text{Simplify}}\
x&=2pi n&&boxed{text{Add }}\
end{align*}
$$

Second we solve $cos(x)=-1$

$$
begin{align*}
x&=pi +2pi n&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=2pi n,:x=pi +2pi n} }&&boxed{text{Combine the solutions}}\
end{align*}
$$

Step 8
8 of 9
noindent
Graph of $boldsymbol{4 cos^2(x)-4=0}$

Exercise scan

Result
9 of 9
$$
color{#4257b2} text{ a) } x=frac{7pi }{6}+2pi n,:x=frac{11pi }{6}+2pi n
$$

$$
color{#4257b2} text{ b) } x=frac{pi }{6}+2pi n,:x=frac{11pi }{6}+2pi n
$$

$$
color{#4257b2} text{ c) }x=frac{3pi }{4}+pi n
$$

$$
color{#4257b2} text{ d) } x=2pi n,:x=pi +2pi n
$$

Exercise 46
Step 1
1 of 9
$$
f(theta)=tantheta
$$
We are given the parent function:
Step 2
2 of 9
$$
g(theta)=tantheta+1
$$
a) We are given the function:
Step 3
3 of 9
We graph the parent function $f(theta)$, then shift it up by 1 unit to get $g(theta)$.
Step 4
4 of 9
$$
h(theta)=tanleft(theta+dfrac{pi}{4}right)
$$
b) We are given the function:
Step 5
5 of 9
We graph the parent function $f(theta)$, then shift it horizontally by $dfrac{pi}{4}$ units to the left to the to get $h(theta)$.
Step 6
6 of 9
$$
j(theta)=-tantheta
$$
c) We are given the function:
Step 7
7 of 9
We graph the parent function $f(theta)$, then reflect it across the $theta$-axis to get $j(theta)$.
Step 8
8 of 9
$$
k(theta)=4tantheta
$$
d) We are given the function:
Step 9
9 of 9
We graph the parent function $f(theta)$, then vertically stretch it by a factor of 4 to get $k(theta)$.
Exercise 47
Step 1
1 of 5
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
&frac{1cdot3}{6}+frac{1cdot2}{6}&&boxed{text{Take LCM for 2 and 3}}\
&frac{3}{6}+frac{2}{6}&&boxed{text{Simplify}}\
&frac{3+2}{6}&&boxed{text{Combine the numerators}}\
&frac{5}{6}&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}frac{5}{6}} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{Since:the:denominators:are:equal,:combine:the:numerators}:quad frac{a}{c}pm frac{b}{c}=frac{apm :b}{c}}
$$

Step 2
2 of 5
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
&frac{3x}{2xx}+frac{4}{x^2}&&boxed{text{For } frac{3}{2x }text{ Multiply the numerator and denominator by }x}\
&frac{3x}{2x^2}+frac{4}{x^2}&&boxed{text{Simplify}}\
&frac{3x}{2x^2}+frac{4cdot :2}{x^2cdot :2}&&boxed{text{For } frac{4}{x^2}: text{ Multiply the numerator and denominator by 2}}\
&frac{3x}{2x^2}+frac{8}{2x^2}&&boxed{text{Simplify}}\
&frac{3x+8}{2x^2}&&boxed{text{Combine the numerators}}\\
&boxed{{color{#c34632}frac{3x+8}{2x^2}} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{Since:the:denominators:are:equal,:combine:the:numerators}:quad frac{a}{c}pm frac{b}{c}=frac{apm :b}{c}}
$$

Step 3
3 of 5
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

$$
begin{align*}
&frac{xleft(x-1right)}{left(x+1right)left(x-1right)}+frac{3}{x-1}
&&boxed{text{For } frac{x}{x+1 }text{ Multiply the numerator and denominator by }x-1}\
&frac{xleft(x-1right)}{left(x+1right)left(x-1right)}+frac{3left(x+1right)}{left(x-1right)left(x+1right)}&&boxed{text{For } frac{3}{x-1}: text{ Multiply the numerator and denominator by }x+1}\
&frac{xleft(x-1right)+3left(x+1right)}{left(x+1right)left(x-1right)}&&boxed{text{Combine the numerators}}\
&frac{x^2-x+3x+3}{left(x+1right)left(x-1right)}&&boxed{text{Distributive property}}\
&frac{x^2+2x+3}{left(x+1right)left(x-1right)}&&boxed{text{Combine like terms: } -x+3x=2x}\\
&boxed{{color{#c34632}frac{x^2+2x+3}{left(x+1right)left(x-1right)}} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{Since:the:denominators:are:equal,:combine:the:numerators}:quad frac{a}{c}pm frac{b}{c}=frac{apm :b}{c}}
$$

Step 4
4 of 5
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

$$
begin{align*}
&frac{sin ^2left(thetaright)}{cos left(thetaright)sin left(thetaright)}+frac{cos left(thetaright)}{cos left(thetaright)sin left(thetaright)}&&boxed{text{Adjust fraction based on the LCM}}\
&frac{sin ^2left(thetaright)+cos left(thetaright)}{cos left(thetaright)sin left(thetaright)}&&boxed{text{Add the fraction}}\
&frac{cos left(thetaright)+sin ^2left(thetaright)}{frac{sin left(2thetaright)}{2}}&&boxed{text{Use the following identity}}\
&frac{2left(sin ^2left(thetaright)+cos left(thetaright)right)}{sin left(2thetaright)}&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}frac{2left(sin ^2left(thetaright)+cos left(thetaright)right)}{sin left(2thetaright)}} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{Use:the:following:identity}:quad cos left(xright)sin left(xright)=frac{sin left(2xright)}{2}}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:the:fraction:rule}:quad frac{a}{frac{b}{c}}=frac{acdot :c}{b} }
$$

Result
5 of 5
$$
color{#4257b2} text{ a) } frac{5}{6}
$$

$$
color{#4257b2} text{ b) }frac{3x+8}{2x^2}
$$

$$
color{#4257b2} text{ c) } frac{x^2+2x+3}{left(x+1right)left(x-1right)}
$$

$$
color{#4257b2} text{ d) } frac{2left(sin ^2left(thetaright)+cos left(thetaright)right)}{sin left(2thetaright)}
$$

Exercise 48
Step 1
1 of 2
The equation of a circle is
$$
(x-a)^2+(y-b)^2=r^2
$$

with $(a,b)$ the center of the circle and $r$ the radius of the circle.

a. Replace $r$ with $2$ and $b$ with $3a$ (because the cetner has to lie on the line $y=3x$):

$$
(x-a)^2+(y-3a)^2=4
$$

The function has to be tangent to the $y$-axis and thus $a=2$:

$$
(x-2)^2+(y-6)^2=4
$$

b. Replace $r$ with $3$ and $b$ with $3a$ (because the cetner has to lie on the line $y=3x$):

$$
(x-a)^2+(y-3a)^2=9
$$

The function has to be tangent to the $y$-axis and thus $a=3$:

$$
(x-3)^2+(y-9)^2=9
$$

Result
2 of 2
a. $(x-2)^2+(y-6)^2=4$

b. $(x-3)^2+(y-9)^2=9$

Exercise 49
Step 1
1 of 5
$$
y=-3-x
$$
Solve the system of equations using substitution and elimination $;$
Step 2
2 of 5
$$
2x-(-3-x)=-6
$$
Step 3
3 of 5
$3x=-9$ ; $x=-3$ ; $y=0$
Step 4
4 of 5
$$
3(-3)-2(0)+5z=16
$$
Step 5
5 of 5
$$
z=5
$$
Exercise 50
Solution 1
Solution 2
Step 1
1 of 2
In order to calculate $c$, we use the following formula

$$
color{#c34632}{c^2 = a^2 + b^2 – 2ab cos theta}
$$

Then

$$
begin{align*}
c^2 &= 412^2 + 348^2 – 2 cdot 412 cdot 348 cdot cos 39^{text{textdegree}}\
c^2 &= 169 744 + 121 104 – 286752 cdot 0.77\
c^2 &= 290 848 – 220 799.04\
c^2 &= 70 048.96\
c &= 264.66
end{align*}
$$

Exercise scan

Result
2 of 2
$$
c = 264.66
$$
Step 1
1 of 3
Exercise scan
We are given:
Step 2
2 of 3
$BL^2=BS^2+LS^2-2cdot BScdot LScdotcos 39text{textdegree}$

$BL^2=412^2+348^2-2cdot 412cdot 348cdot 0.77714596$

$BL^2=67999.842$

$BL=sqrt{67999.842}$

$BLapprox 260.77$ feet

We have to determine $BL$.

We use the Law of Cosines to determine $angle B$:

Result
3 of 3
$260.77$ feet
Exercise 51
Step 1
1 of 7
$f(x)=sin x$

$$
g(x)=dfrac{1}{sin x}
$$

a) We are given the functions:
Step 2
2 of 7
begin{center}
begin{tabular}{|| c| c||}
hline
$x$ & $f(x)=sin x$ \ [0.5ex]
hline
0 & 0 \
hline
$dfrac{pi}{4}$ &0.70 \
hline
$dfrac{pi}{2}$ & 1 \
hline
$dfrac{3pi}{4}$ & 0.70 \
hline
$pi$ & 1 \
hline
$dfrac{5pi}{4}$ & -0.70 \
hline
$dfrac{3pi}{2}$ & -1 \
hline
$dfrac{7pi}{4}$ & -0.70 \
hline
$2pi$ & 0 \[1ex]
hline
end{tabular}
end{center}
We make a table of values for $f(x)$ on a period $2pi$:
Step 3
3 of 7
Exercise scan
We graph $f(x)$:
Step 4
4 of 7
begin{center}
begin{tabular}{|| c|c| c||}
hline
$x$ & $f(x)=sin x$ & $g(x)=dfrac{1}{sin x}$ \ [0.5ex]
hline
0 & 0 & undefined \
hline
$dfrac{pi}{4}$ &0.70 & 1.41\
hline
$dfrac{pi}{2}$ & 1 & 1 \
hline
$dfrac{3pi}{4}$ & 0.70& 1.41 \
hline
$pi$ & 0& undefined \
hline
$dfrac{5pi}{4}$ & -0.70& -1.41 \
hline
$dfrac{3pi}{2}$ & -1 &-1\
hline
$dfrac{7pi}{4}$ & -0.70& -1.41 \
hline
$2pi$ & 0 & undefined\[1ex]
hline
end{tabular}
end{center}
b) We compute the values $dfrac{1}{sin x}$:
Step 5
5 of 7
c) The values $sin 0,sin pi$ are located on the $x$-axis, while the value of $sin dfrac{pi}{2}$ is a maximum of the function.

The reciprocal values of $sin 0,sin pi$ do not make sense,so the graph of $g(x)$ will have vertical asymptotes in $x=0, x=pi$, while the reciprocal value of $sin dfrac{pi}{2}$ will be a local minimum of $g(x)$.

Step 6
6 of 7
Exercise scan
d) We graph $g(x)$:
Step 7
7 of 7
Exercise scan
e) We label $g(x)$ as cosecant of $x$:

$csc x=dfrac{1}{sin x}$.

Exercise 52
Step 1
1 of 6
$y=csc x$

Exercise scan

We are given the function:
Step 2
2 of 6
$$
(-infty,-1]cup[1,infty)
$$
a) Its domain is:
Step 3
3 of 6
$$
mathbb{R}-{kpi|ktext{ integer}}
$$
Its range is:
Step 4
4 of 6
b) There are no $x$ or $y$ intercepts.
Step 5
5 of 6
$x=kpi, k$ integer
c) There are vertical asymptotes for the values of $x$ where $sin x=0$:
Step 6
6 of 6
Domain of $y=sin x$: $left[-dfrac{pi}{2},dfrac{pi}{2}right]$

Range of $y=sin x$: $[-1,1]$

d) The functions $y=sin x$ and $y=csc x$ are inverse to each other BUT only if we consider restrictions of $y=sin x$ so that the function is one-to one. For example:
Exercise 53
Step 1
1 of 16
Exercise scan
We use the graph we drew in Exercise 51:
Step 2
2 of 16
$sin x=dfrac{1}{2},0leq x<2pi$

Exercise scan

a) We are given the equation:
Step 3
3 of 16
$x_1=dfrac{pi}{6}$

$x_2=dfrac{5pi}{6}$

The solutions are:
Step 4
4 of 16
$csc x=2$

Exercise scan

b) We are given the equation:
Step 5
5 of 16
$x_1=dfrac{pi}{6}$

$x_2=dfrac{5pi}{6}$

The solutions are:
Step 6
6 of 16
$sin x=1$

Exercise scan

c) We are given the equation:
Step 7
7 of 16
$$
x=dfrac{pi}{2}
$$
The solution is:
Step 8
8 of 16
$csc x=1$

Exercise scan

d) We are given the equation:
Step 9
9 of 16
$$
x=dfrac{pi}{2}
$$
The solutions are:
Step 10
10 of 16
$sin x=dfrac{sqrt 3}{2}$

Exercise scan

e) We are given the equation:
Step 11
11 of 16
$x_1=dfrac{pi}{3}$

$x_2=dfrac{2pi}{3}$

The solutions are:
Step 12
12 of 16
$csc x=dfrac{2}{sqrt 3}$

Exercise scan

f) We are given the equation:
Step 13
13 of 16
$x_1=dfrac{pi}{3}$

$x_2=dfrac{2pi}{3}$

The solutions are:
Step 14
14 of 16
$sin x=a$

$$
csc x=dfrac{1}{a}
$$

The equations $a$ and $b$, the equations $c$ and $d$ and the equations $e$ and $f$ have the same solutions because they were in the form:
Step 15
15 of 16
$$
csc x=dfrac{1}{sin x}
$$
and the functions sine and cosecant are reciprocals:
Step 16
16 of 16
which means we practically solved the same equation.
Exercise 54
Step 1
1 of 3
Most of the calculators do not have cosecant inverse button. They only have sine inverse and cosine inverse buttons. So we can find a cosecant inverse by converting it into sine inverse.

We have to find $csc (x)=3.5$

We know, $csc theta = dfrac{1}{sin theta}$

Step 2
2 of 3
Therefore,

$$
begin{align*}
csc (x)&=3.5 \
dfrac{1}{sin (x)} &=3.5 \\
sin(x)&=dfrac{1}{3.5} \\
sin ^{-1} [(sin (x) ]&=sin ^{-1} left(dfrac{10}{35}right) tag {Taking $sin ^{-1}$ on both sides }\\
x&=sin ^{-1} left(dfrac{2}{7}right) \
end{align*}
$$

Since $sin ^{-1}$ is given in the calculator we can find its value.

Thus, $x=sin ^{-1} left(dfrac{2}{7}right) = 0.29$

Therefore, for $csc (x)=3.5$, x = 0.29.

Result
3 of 3
x = 0.29.
Exercise 55
Step 1
1 of 11
$f(x)=cos x$

$$
g(x)=dfrac{1}{cos x}
$$

a) We are given the functions:
Step 2
2 of 11
begin{center}
begin{tabular}{|| c| c||}
hline
$x$ & $f(x)=cos x$ \ [0.5ex]
hline
0 & 1 \
hline
$dfrac{pi}{4}$ &0.70 \
hline
$dfrac{pi}{2}$ & 0 \
hline
$dfrac{3pi}{4}$ & -0.70 \
hline
$pi$ & 0 \
hline
$dfrac{5pi}{4}$ & -0.70 \
hline
$dfrac{3pi}{2}$ & 0 \
hline
$dfrac{7pi}{4}$ & 0.70 \
hline
$2pi$ & 1 \[1ex]
hline
end{tabular}
end{center}
We make a table of values for $f(x)$ on a period $2pi$:
Step 3
3 of 11
begin{center}
begin{tabular}{|| c|c| c||}
hline
$x$ & $f(x)=cos x$ & $g(x)=dfrac{1}{cos x}$ \ [0.5ex]
hline
0 & 1 & 1 \
hline
$dfrac{pi}{4}$ &0.70 & 1.41\
hline
$dfrac{pi}{2}$ & 0 & undefined \
hline
$dfrac{3pi}{4}$ & -0.70& -1.41 \
hline
$pi$ & -1& -1 \
hline
$dfrac{5pi}{4}$ & -0.70& -1.41 \
hline
$dfrac{3pi}{2}$ & 0 &undefined\
hline
$dfrac{7pi}{4}$ & 0.70& 1.41 \
hline
$2pi$ & 1 & 1\[1ex]
hline
end{tabular}
end{center}
We compute the values $dfrac{1}{cos x}$:
Step 4
4 of 11
$x=dfrac{(2k+1)pi}{2}, k$ integer
The function $g(x)$ have vertical asymptotes:
Step 5
5 of 11
Exercise scan
We graph $g(x)$ and label it as secant:

$$
sec x=dfrac{1}{cos x}
$$

Step 6
6 of 11
Domain of $y=sec x$: $mathbb{R}-left{dfrac{(2k+1)pi}{2}right},k$ integer

Range of $y=sec x$: $(-infty,-1]cup[1,infty)$

The domain and range of the function are:
Step 7
7 of 11
$f(x)=tan x$

$$
g(x)=dfrac{1}{tan x}
$$

b) We are given the functions:
Step 8
8 of 11
begin{center}
begin{tabular}{|| c|c| c||}
hline
$x$ & $f(x)=tan x$ & $g(x)=dfrac{1}{tan x}$ \ [0.5ex]
hline
0 & 0 & undefined \
hline
$dfrac{pi}{6}$ &0.58 & 1.731\
hline
$dfrac{pi}{3}$ & 1.73 & 0.58 \
hline
$dfrac{pi}{2}$ & undefined& 0 \
hline
$dfrac{2pi}{3}$ & -1.73& -0.58 \
hline
$dfrac{3pi}{4}$ & -1& -1 \
hline
$pi$ & 0 & undefined\[1ex]
hline
end{tabular}
end{center}
We compute the values $tan x, dfrac{1}{tan x}$ on a period $pi$:
Step 9
9 of 11
$x=kpi, k$ integer
The function $g(x)$ has vertical asymptotes:
Step 10
10 of 11
Exercise scan
We graph $g(x)$ and label it as cotangent:

$$
cot x=dfrac{1}{tan x}
$$

Step 11
11 of 11
Domain: $mathbb{R}-{kpi},k$ integer

Range: $mathbb{R}$

The domain and range of the function $y=cot x$ are:
Exercise 56
Step 1
1 of 6
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
sin ^2left(xright)csc left(xright)-frac{sqrt{3}}{2}&=0&&boxed{text{Subtract }frac{sqrt{3}}{2}text{ from both sides}}\
frac{sin ^2left(xright)csc left(xright)cdot :2}{2}-frac{sqrt{3}}{2}&=0&&boxed{text{Convert element to a fraction}}\
frac{sin ^2left(xright)csc left(xright)cdot :2-sqrt{3}}{2}&=0&&boxed{text{Combine the numerators}}\
frac{2sin ^2left(xright)csc left(xright)-sqrt{3}}{2}&=0&&boxed{text{Simplify}}\
2sin ^2left(xright)csc left(xright)-sqrt{3}&=0&&boxed{text{Apply rule}}\
-sqrt{3}+2cdot frac{1}{sin left(xright)}sin ^2left(xright)&=0&&boxed{text{Use the following identity}}\
-sqrt{3}+2sin left(xright)&=0&&boxed{text{Simplify}}\
-sqrt{3}+2sin left(xright)+sqrt{3}&=0+sqrt{3}&&boxed{text{Add } sqrt3 text{to both sides}}\
2sin left(xright)&=sqrt{3}&&boxed{text{Simplify}}\
frac{2sin left(xright)}{2}&=frac{sqrt{3}}{2}&&boxed{text{Divide both sides }3}\
sin left(xright)&=frac{sqrt{3}}{2}&&boxed{text{Simplify}}\
x=frac{pi }{3}+2pi n,&:x=frac{2pi }{3}+2pi n&&boxed{text{Simplify}}\
end{align*}
$$

The equation is $textbf{ Sometimes true}$

$$
begin{align*}
&boxed{{color{#c34632}x=frac{pi }{3}+2pi n,:x=frac{2pi }{3}+2pi n} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }frac{fleft(xright)}{gleft(xright)}=0quad Rightarrow quad fleft(xright)=0 }
$$

$$
boxed{ color{#c34632} text{ } mathrm{Since:the:denominators:are:equal,:combine:the:numerators}:quad frac{a}{c}pm frac{b}{c}=frac{apm :b}{c}}
$$

Step 2
2 of 6
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
sec ^2left(xright)-frac{2}{cos left(xright)}&=0&&boxed{text{Subtract }frac{2}{cos(x)}text{ from both sides}}\
frac{sec ^2left(xright)cos left(xright)}{cos left(xright)}-frac{2}{cos left(xright)}&=0&&boxed{text{Convert element to a fraction}}\
frac{sec ^2left(xright)cos left(xright)-2}{cos left(xright)}=0&=0&&boxed{text{Combine the numerators}}\
sec ^2left(xright)cos left(xright)-2&=0&&boxed{text{Apply rule}}\
-2+left(frac{1}{cos left(xright)}right)^2cos left(xright)&=0&&boxed{text{Use the following identity}}\
-2+frac{1}{cos left(xright)}&=0&&boxed{text{Simplify}}\
-2cos left(xright)+frac{1}{cos left(xright)}cos left(xright)&=0cdot cos left(xright)&&boxed{text{Multiply both sides by }cos(x)}\
-2cos left(xright)+1&=0&&boxed{text{Simplify}}\
-2cos left(xright)+1-1&=0-1&&boxed{text{Subtract 1 from both sides}}\
-2cos left(xright)&=-1&&boxed{text{Simplify}}\
frac{-2cos left(xright)}{-2}&=frac{-1}{-2}&&boxed{text{Divide both sides }-1}\
cos left(xright)&=frac{1}{2}&&boxed{text{Simplify}}\
x=frac{pi }{3}+2pi n,&:x=frac{5pi }{3}+2pi n&&boxed{text{Simplify}}\
end{align*}
$$

The equation is $textbf{ Sometimes true}$

$$
begin{align*}
&boxed{{color{#c34632}x=frac{pi }{3}+2pi n,:x=frac{5pi }{3}+2pi n} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }frac{fleft(xright)}{gleft(xright)}=0quad Rightarrow quad fleft(xright)=0 }
$$

$$
boxed{ color{#c34632} text{ } mathrm{Since:the:denominators:are:equal,:combine:the:numerators}:quad frac{a}{c}pm frac{b}{c}=frac{apm :b}{c}}
$$

Step 3
3 of 6
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

$$
begin{align*}
tan left(xright)=0quad mathrm{or}quad sec left(xright)&=0quad mathrm{or}quad sin left(xright)=0&&boxed{text{Solving each part separately}}\
end{align*}
$$

First we solve $tan left(xright)=0$

$$
begin{align*}
x&=0+pi n&&boxed{text{Simplify}}\
x&=color{#c34632}{pi n}&&boxed{text{Simplify}}\
end{align*}
$$

Second we solve $sec left(xright)=0$

$$
begin{align*}
x=operatorname{arcsec} left(0right)+2pi n,:x&=-operatorname{arcsec} left(0right)+2pi n&&boxed{text{General solutions }}\
x&=textbf{ No solution}&&boxed{text{Simplify}}\
end{align*}
$$

Finally we solve $sin left(xright)=0$

$$
begin{align*}
x=0+2pi n,:x&=pi +2pi n&&boxed{text{Simplify}}\
x=2pi n,:x&=pi +2pi n&&boxed{text{Simplify}}\
end{align*}
$$

The equation is $textbf{ Sometimes true}$

$$
begin{align*}
&boxed{{color{#c34632}x=pi n,:x=2pi n,:x=pi +2pi n} }&&boxed{text{Combine all the solutions}}\
end{align*}
$$

Step 4
4 of 6
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

$$
begin{align*}
sec ^2left(xright)&=0quad mathrm{or}quad cos left(xright)=0&&boxed{text{Solving each part separately}}\
end{align*}
$$

First we solve $sec^2 left(xright)=0$

$$
begin{align*}
sec left(xright)&=0&&boxed{text{Apply rule}}\
x=operatorname{arcsec} left(0right)+2pi n,&:x=-operatorname{arcsec} left(0right)+2pi n&&boxed{text{General solutions}}\
x&=textbf{ No solution}&&boxed{text{Simplify}}\
end{align*}
$$

Second we solve $cos left(xright)=0$

$$
begin{align*}
x&=frac{pi }{2}+2pi n,:x=frac{3pi }{2}+2pi n&&boxed{text{General solutions }}\
end{align*}
$$

The equation is $textbf{ Never true}$

$$
begin{align*}
&boxed{{color{#c34632}text{ No solution for }x inmathbb{R} } }&&boxed{text{Final solution}}\
end{align*}
$$

Step 5
5 of 6
$$
{color{#4257b2}text{e)}}
$$

Solution to this example is given below

Manipulating left side

$$
begin{align*}
&cos left(xright)sec left(xright)&&boxed{text{Simplify}}\
&cos left(xright)frac{1}{cos left(xright)}&&boxed{text{Using the basic trigonometric identity}}\
&frac{cos left(xright)}{cos left(xright)}&&boxed{text{Multiply fractions}}\
&1&&boxed{text{Cancel the common factor }cos(x)}\
&text{ True}&&boxed{text{Simplify}}\
end{align*}
$$

The equation is $textbf{ Sometimes true}$

$$
begin{align*}
&boxed{{color{#c34632}text{True}} }&&boxed{text{Final solution}}\
end{align*}
$$

Result
6 of 6
$$
color{#4257b2} text{ a) }x=frac{pi }{3}+2pi n,:x=frac{2pi }{3}+2pi n
$$

$$
color{#4257b2} text{ b) } x=frac{pi }{3}+2pi n,:x=frac{5pi }{3}+2pi n
$$

$$
color{#4257b2} text{ c) }x=pi n,:x=2pi n,:x=pi +2pi n
$$

$$
color{#4257b2} text{ d) No solution for }x in mathbb{R}
$$

$$
color{#4257b2} text{ e) True }
$$

Exercise 57
Step 1
1 of 10
Reciprocal Trigonometric Function

Reciprocal of a trigonometric function is meant by dividing the trigonometric function by one. After that, we will sketch the graph of the root function and reciprocal function. The comparison between the graph based on their values at some defined radians will explain what is meant by the term “Reciprocal Trigonometric function”.

Step 2
2 of 10
In order to have complete knowledge of this learning log we will illustrate our understanding by taking some examples of some trigonometric functions. For eg.

$$
begin{align*}
y &= sin(x)tag{1}\
y & = cos(x)tag{2}\
end{align*}
$$

Step 3
3 of 10
We will sketch a table of trigonometric function $(1)$ and $(2)$. \
Table for $y = sin(x)$.
begin{center}
renewcommand{arraystretch}{2}
begin{tabular}{ c | c | c | c | c | c | c }
$$ & 0 & $dfrac{pi}{6}$ & $dfrac{pi}{4}$ & $dfrac{pi}{3}$ & $dfrac{pi}{2}$ &$pi$ \
hline
$sin(x)$ & 0 & $dfrac{1}{2}$ & $dfrac{1}{sqrt2}$ & $dfrac{sqrt3}{2}$& $1$ & $0$ \
end{tabular}
end{center}
Table for $y = cos(x)$.\
begin{center}
renewcommand{arraystretch}{2}
begin{tabular}{ c | c | c | c | c | c | c }
$$ & 0 & $dfrac{pi}{6}$ & $dfrac{pi}{4}$ & $dfrac{pi}{3}$ & $dfrac{pi}{2}$ &$pi$ \
hline
$cos(x)$ & $1$ & $dfrac{sqrt3}{2}$ & $dfrac{1}{sqrt2}$ & $dfrac{1}{2}$& $0$ & $-1$\
end{tabular}
end{center}
Step 4
4 of 10
From the above table we can sketch the graph of function $(1)$.

Exercise scan

Step 5
5 of 10
From the table formed above we can also sketch the graph of function $(2)$.

Exercise scan

Step 6
6 of 10
Now, the reciprocal of the trigonometric function $(1)$ and $(2)$ can be written by the logic defined above.

$$
begin{align*}
y &= dfrac{1}{sin(x)}tag{3} \\
y & = dfrac{1}{cos(x)}tag{4} \\
end{align*}
$$

Step 7
7 of 10
Now, the trigonometric table of $(3)$ and $(4)$ is given as follows, \
Table for $y = dfrac{1}{sin(x)}$.
begin{center}
renewcommand{arraystretch}{2}
begin{tabular}{ c | c | c | c | c | c | c }
$$ & 0 & $dfrac{pi}{6}$ & $dfrac{pi}{4}$ & $dfrac{pi}{3}$ & $dfrac{pi}{2}$ &$pi$\
hline
$dfrac{1}{sin(x)}$ & 0 & $2$ & $sqrt2$ & $dfrac{2}{sqrt3}$ & $1$ & $0$\
end{tabular}
end{center}
Table for $y = cos(x)$.\
begin{center}
renewcommand{arraystretch}{2}
begin{tabular}{ c | c | c | c | c | c | c }
$$ & 0 & $dfrac{pi}{6}$ & $dfrac{pi}{4}$ & $dfrac{pi}{3}$ & $dfrac{pi}{2}$ &$pi$\
hline
$dfrac{1}{cos(x)}$ & $1$ & $dfrac{2}{sqrt3}$ & $sqrt2$ & $2$& $0$ & $-1$\
end{tabular}
end{center}
Step 8
8 of 10
Based on the table we will now sketch the graph of $y = dfrac{1}{sin(x)}$.

Exercise scan

Step 9
9 of 10
Also, the graph of $y = dfrac{1}{cos(x)}$.

Exercise scan

Step 10
10 of 10
From the above two sketched graphs we can say that the reciprocal of $sine$ is named cosecant abbreviated as $co$ $sec$ $(x)$ and the reciprocal of $cosine$ is named secant abbreviated as $sec$ $(x)$.
Exercise 58
Step 1
1 of 5
According to the triangle, we obtain

a)

$$
sin (A) = frac {text{side opposite}}{text{hypotenuse}} = frac ac
$$

Step 2
2 of 5
b) Using the formula

$$
color{#c34632}{csc (theta) = frac {1}{sin theta}}
$$

Then

$$
csc (A) = frac {1}{sin (A)} = frac {1}{frac ac} = frac ca
$$

Step 3
3 of 5
c)

$$
cos (B) = frac {text{side adjacent}}{text{hypotenuse}} = frac ac
$$

Step 4
4 of 5
d) Using the formula

$$
color{#c34632}{ sec theta = frac {1}{ cos theta}}
$$

Then

$$
sec (B) = frac {1}{cos (B)} = frac {1}{frac ac} = frac ca
$$

Result
5 of 5
a) $sin (A) = frac ac$

b) $csc (A) = frac ca$

c) $cos (B) = frac ac$

d) $sec (B) = frac ca$

Exercise 59
Step 1
1 of 8
a. We have to find the solution to the given equation,

$$
4 sin^2 (x) = 1
$$

We can begin by first simplifying the equation,

$$
begin{align*}
4 sin^2 (x) &= 1 \
sin^2 (x) &= dfrac{1}{4} tag{Dividing both sides by 4} \\
sqrt{sin^2 (x)} &= sqrt{dfrac{1}{4}} tag{Square rooting both sides}\\
sin (x) &= pm dfrac{1}{2} \
end{align*}
$$

Step 2
2 of 8
Now we have 2 solutions,

$sin x = dfrac{1}{2}$, and $sin x = -dfrac{1}{2}$

First we will solve the first solution,

$$
begin{align*}
sin x &= dfrac{1}{2} \\
sin ^{-1} (sin x) &= sin ^{-1} dfrac{1}{2} tag {Taking $sin ^{-1}$ on both sides} \\
x&= sin ^{-1} dfrac{1}{2} \\
x&= dfrac{pi}{6}
end{align*}
$$

We now have x = $dfrac{pi}{6}$.

We also know that $sin$ is positive in second quadrant as well.

This implies $sin theta = sin (pi – theta)$

Therefore,

$sin dfrac{pi}{6} = sin (pi – dfrac{pi}{6}) = sin dfrac{5pi}{6}$

Since we are given 0 $leq$ x $<$ $2 pi$ we have x = $dfrac{pi}{6}$ and x = $dfrac{5pi}{6}$ for the first solution i.e. when $sin x = dfrac{1}{2}$

Step 3
3 of 8
Now we will solve the second solution, i.e. $sin x = -dfrac{1}{2}$

$$
begin{align*}
sin x &= -dfrac{1}{2} \\
sin ^{-1} (sin x) &= sin ^{-1} left(-dfrac{1}{2}right) tag {Taking $sin ^{-1}$ on both sides} \\
x&= sin ^{-1} left(-dfrac{1}{2}right) \\
x&= -dfrac{pi}{6}
end{align*}
$$

We now have x = $-dfrac{pi}{6}$ but we are given we are given 0 $leq$ x $<$ $2 pi$.

Step 4
4 of 8
We know, $sin dfrac{pi}{6} = dfrac{1}{2}$

We also know that $sin$ is negative in third and fourth quadrant.

This implies $sin (pi + theta) = -sin theta$

$$
begin{align*}
sin (pi + dfrac{pi}{6}) &= – sin dfrac{pi}{6} \\
sin ( dfrac{7pi}{6}) & = – dfrac{1}{2} tag{as $sin dfrac{pi}{6} = dfrac{1}{2}$}
end{align*}
$$

Also, $sin (2pi – theta) = -sin theta$

$$
begin{align*}
sin (2pi – dfrac{pi}{6}) &= – sin dfrac{pi}{6} \\
sin ( dfrac{11pi}{6}) & = – dfrac{1}{2} tag{as $sin dfrac{pi}{6} = dfrac{1}{2}$} \
end{align*}
$$

Thus we have x = $dfrac{7pi}{6}$, and x = $dfrac{11pi}{6}$ for the second solution i.e. $sin x = -dfrac{1}{2}$

Therefore, for $4 sin^2 (x) = 1$ we have x=$dfrac{pi}{6}$, x=$dfrac{5pi}{6}$, x=$dfrac{7pi}{6}$, x=$dfrac{11pi}{6}$ for
0 $leq$ x $<$ $2 pi$.

Step 5
5 of 8
b. We have to find the solution to the given equation,

$$
3 tan^2 (x) = 1
$$

We can begin by first simplifying the equation,

$$
begin{align*}
3 tan^2 (x) &= 1 \
tan^2 (x) &= dfrac{1}{3} tag{Dividing both sides by 3} \\
sqrt{tan^2 (x)} &= sqrt{dfrac{1}{3}} tag{Square rooting both sides}\\
tan (x) &= pm dfrac{1}{sqrt3} \
end{align*}
$$

Step 6
6 of 8
Now we have 2 solutions,

$tan x = dfrac{1}{sqrt3}$, and $tan x = -dfrac{1}{sqrt3}$

First we will solve the first solution,

$$
begin{align*}
tan x &= dfrac{1}{sqrt3} \\
tan ^{-1} (tan x) &= tan ^{-1} dfrac{1}{sqrt3} tag {Taking $tan ^{-1}$ on both sides} \\
x&= tan ^{-1} dfrac{1}{sqrt3} \\
x&= dfrac{pi}{6}
end{align*}
$$

We now have x = $dfrac{pi}{6}$.

We also know that $tan$ is positive in the third quadrant as well.

This implies $tan theta = tan (pi + theta)$

Therefore,

$tan dfrac{pi}{6} = tan (pi + dfrac{pi}{6}) = tan dfrac{7pi}{6}$

Since we are given 0 $leq$ x $<$ $2 pi$ we have x = $dfrac{pi}{6}$ and x = $dfrac{7pi}{6}$ for the first solution i.e. when $tan x = dfrac{1}{sqrt3}$

Step 7
7 of 8
Now we will solve the second solution, i.e. $tan x = -dfrac{1}{sqrt3}$

$$
begin{align*}
tan x &= -dfrac{1}{sqrt3} \\
tan ^{-1} (tan x) &= tan ^{-1} left(-dfrac{1}{sqrt3}right) tag {Taking $tan ^{-1}$ on both sides} \\
x&= tan ^{-1} left(-dfrac{1}{sqrt3}right) \\
x&= -dfrac{pi}{6}
end{align*}
$$

We now have x = $-dfrac{pi}{6}$ but we are given we are given 0 $leq$ x $<$ $2 pi$.

Step 8
8 of 8
We know, $tan dfrac{pi}{6} = dfrac{1}{sqrt3}$

We also know that $tan$ is negative in second and fourth quadrant.

This implies $tan (pi – theta) = -tan theta$

$$
begin{align*}
tan (pi – dfrac{pi}{6}) &= – tan dfrac{pi}{6} \\
tan ( dfrac{5pi}{6}) & = – dfrac{1}{sqrt3} tag{as $tan dfrac{pi}{6} = dfrac{1}{sqrt3}$}
end{align*}
$$

Also, $tan (2pi – theta) = -tan theta$

$$
begin{align*}
tan (2pi – dfrac{pi}{6}) &= – tan dfrac{pi}{6} \\
tan ( dfrac{11pi}{6}) & = – dfrac{1}{sqrt3} tag{as $tan dfrac{pi}{6} = dfrac{1}{sqrt3}$} \
end{align*}
$$

Thus we have x = $dfrac{5pi}{6}$, and x = $dfrac{11pi}{6}$ for the second solution i.e. $tan x = -dfrac{1}{sqrt3}$

Therefore, for $3 tan^2 (x) = 1$ we have x=$dfrac{pi}{6}$, x=$dfrac{7pi}{6}$, x=$dfrac{5pi}{6}$, x=$dfrac{11pi}{6}$ for
0 $leq$ x $<$ $2 pi$.

Exercise 60
Solution 1
Solution 2
Step 1
1 of 3
The solution of equation:

$$
begin{align*}
2sin x cos x+ cos x&=0\
cos x( 2sin x + 1) &= 0\
cos x=0 qquad 2sin x+1&=0\
2sin x&=-1\
sin x &=- frac 12
end{align*}
$$

By applying the inverse function we get

$$
begin{align*}
x&= arccos 0\
x&= frac{pi}2 qquad x=frac{3pi}2\
x&=90^{text{textdegree}} qquad x=270^{text{textdegree}}
end{align*}
$$

and

$$
begin{align*}
x&= arcsin left(-frac 12 right)\
x&= frac{7pi}6 qquad x=frac{11pi}6\
x&=210^{text{textdegree}} qquad x=330^{text{textdegree}}
end{align*}
$$

Step 2
2 of 3
Since, the period of the $sin x$ and $cos x$ function is $2pi$, we obtain

$$
begin{align*}
x &= frac {pi}{2} + 2k pi qquad x= frac {3 pi}{2} + 2k pi\
x &= 90^{text{textdegree}} + 360^{text{textdegree}} k qquad x= 270^{text{textdegree}} + 360^{text{textdegree}} k
end{align*}
$$

and

$$
begin{align*}
x &= frac {7 pi}{6} + 2k pi qquad x = frac {11 pi}{6} + 2k pi\
x &= 210^{text{textdegree}} + 360^{text{textdegree}} k qquad x = 330^{text{textdegree}} + 360^{text{textdegree}} k
end{align*}
$$

Result
3 of 3
$$
begin{align*}
x &= frac {pi}{2} + 2k pi qquad x= frac {3 pi}{2} + 2k pi\
x &= 90^{text{textdegree}} + 360^{text{textdegree}} k qquad x= 270^{text{textdegree}} + 360^{text{textdegree}} k
end{align*}
$$

and

$$
begin{align*}
x &= frac {7 pi}{6} + 2k pi qquad x = frac {11 pi}{6} + 2k pi\
x &= 210^{text{textdegree}} + 360^{text{textdegree}} k qquad x = 330^{text{textdegree}} + 360^{text{textdegree}} k
end{align*}
$$

Step 1
1 of 4
$$
2sin xcos x+cos x=0
$$
We are given the equation:
Step 2
2 of 4
$$
cos x(2sin x+1)=0
$$
We factor:
Step 3
3 of 4
$cos x=0Rightarrow x_1=dfrac{(2k+1)pi}{2}=90text{textdegree}+180text{textdegree} k$

or

$2sin x+1=0$

$2sin x=-1$

$sin x=-dfrac{1}{2}$

$x_2=dfrac{7pi}{6}+2kpi=210text{textdegree}+360text{textdegree} k$

$x_3=dfrac{11pi}{6}+2kpi=330text{textdegree}+360text{textdegree} k$

We solve the equation:
Result
4 of 4
$x_1=dfrac{(2k+1)pi}{2}=90text{textdegree}+180text{textdegree} k$

$x_2=dfrac{7pi}{6}+2kpi=210text{textdegree}+360text{textdegree} k$

$x_3=dfrac{11pi}{6}+2kpi=330text{textdegree}+360text{textdegree} k,k$ integer

Exercise 61
Step 1
1 of 3
We will simplify the following expression:

a)

$$
begin{align*}
frac {3}{(x-4)(x+1)} + frac {6}{x+1} &= frac {3+6(x-4)}{(x-4)(x+1)}\
&= frac {3+6x-24}{x^2 – 4x +x -4}\
&= frac {6x-21}{x^2 – 3x -4}
end{align*}
$$

Therefore

$$
frac {3}{(x-4)(x+1)} + frac {6}{x+1} = frac {6x-21}{x^2 – 3x -4}
$$

Step 2
2 of 3
b)

$$
begin{align*}
frac {x+2}{x^2-9} – frac {1}{x+3} &= frac {x+2}{(x-3)(x+3)} – frac {1}{x+3}\
&= frac {x+2-1 cdot (x-3)}{(x-3)(x+3)}\
&= frac {x+2-x+3}{x^2 – 9}\
&= frac {5}{x^2 – 9}
end{align*}
$$

Using the formula

$$
color{#c34632}{a^2+b^2=(a-b)(a+b)}
$$

Therefore

$$
frac {x+2}{x^2-9} – frac {1}{x+3} = frac {5}{x^2 – 9}
$$

Result
3 of 3
a) $frac {3}{(x-4)(x+1)} + frac {6}{x+1} = frac {6x-21}{x^2 – 3x -4}$

b) $frac {x+2}{x^2-9} – frac {1}{x+3} = frac {5}{x^2 – 9}$

Exercise 62
Step 1
1 of 2
$x+y+z=40$          (1)

$y=x-5 qquad rightarrow qquad x-y=5$          (2)

$x=2z qquad rightarrow qquad x-2z=0$          (3)

Adding (1) and (2) to eliminate $y$

$x+y+z=40$          (1)

+

$x-y=5$          (2)

————————

$2x+z=45$

$4x+2z=90$          (Multiply (4) by 2.

Adding (3) and (4)

$x-2z=0$          (3)

+

$4x+2z=90$          (4)

—————————

$5x=90$

$$
x=18
$$

Substituting 18 for $x$ in equations (2) and (3)

$y=18-5$

$$
y=13
$$

$18=2z$

$$
z=9
$$

The solution is:          $(18, 13, 9)$

Result
2 of 2
The system solution is:          $(18, 13, 9)$
Exercise 63
Solution 1
Solution 2
Step 1
1 of 5
a) The graph of the function

$$
f(x)= frac 2{x-1}+3
$$

Exercise scan

Step 2
2 of 5
b) The graph of the function

$$
g(x)= -0.5(x+2)^3-3
$$

Exercise scan

Step 3
3 of 5
c) The graph of the function

$$
h(x)=left|x+5 right|-4
$$

Exercise scan

Step 4
4 of 5
d) The graph of the function

$$
k(x)= 2sqrt{x+1}+3
$$

Exercise scan

Result
5 of 5
The functions are shown in the figures.
Step 1
1 of 8
$$
f(x)=dfrac{2}{x-1}+3
$$
a) We are given the function:
Step 2
2 of 8
Exercise scan
We start from the parent function $f_0(x)=dfrac{1}{x}$. We shift $f_0$ one unit to the right to get $f_1(x)=dfrac{1}{x-1}$, then we vertically stretch $f_1$ by a factor of 2 to get $f_2(x)=dfrac{2}{x-1}$ and finally we shift $f_2$ 3 units up to get $f(x)$.
Step 3
3 of 8
$$
g(x)=-0.5(x+2)^3-3
$$
b) We are given the function:
Step 4
4 of 8
Exercise scan
We start from the parent function $g_0(x)=x^3$. We shift $g_0$ 2 units to the left to get $g_1(x)=(x+2)^3$, then we vertically shrink $g_1$ by a factor of 0.5 to get $g_2(x)=0.5(x+3)^3$, then we reflect $g_2$ across the $x$-axis to get $g_3(x)=-0.5(x+2)^3$ and finally we shift $g_3$ 3 units down to get $g(x)$.
Step 5
5 of 8
$$
h(x)=|x+5|-4
$$
c) We are given the function:
Step 6
6 of 8
Exercise scan
We start from the parent function $h_0(x)=|x|$. We shift $h_0$ 5 units to the left to get $h_1(x)=|x+5|$, then we shift $h_1$ 4 units down to get $h(x)$.
Step 7
7 of 8
$$
k(x)=2sqrt{x+1}+3
$$
d) We are given the function:
Step 8
8 of 8
Exercise scan
We start from the parent function $k_0(x)=sqrt x$. We shift $k_0$ one unit to the left to get $k_1(x)=sqrt{x+1}$, then we vertically stretch $k_1$ by a factor of 2 to get $k_2(x)=2sqrt{x+1}$ and finally we shift $k_2$ 3 units up to get $k(x)$.
Exercise 64
Step 1
1 of 5
$$
(a-b)^8
$$
We are given:
Step 2
2 of 5
$$
T_{k+1}=_nC_k a^{n-k}b^k
$$
The general term of the binomial expansion is:
Step 3
3 of 5
$n=8$

$n-k=5$

$$
Rightarrow k=3
$$

We are interested in the term $a^5$:
Step 4
4 of 5
$T_4=_8C_3 a^5(-b)^3=-dfrac{8!}{5!3!}cdot a^5b^3$

$=-dfrac{cancel{5!}cdot 6cdot 7cdot 8}{cancel{5!}cdot 1cdot 2cdot 3}cdot a^5b^3$

$$
=-56a^5b^3
$$

We determine the term which contains $a^5$:
Result
5 of 5
$$
T_4=-56a^5b^3
$$
Exercise 65
Step 1
1 of 4
According to the triangle, we obtain

a) Since

$$
begin{align*}
sin (A) &= frac ac\
cos (A) &= frac bc
end{align*}
$$

according to the formula

$$
color{#c34632}{tan (theta) = frac {sin (theta)}{cos (theta)}}
$$

we obtain

$$
tan (A) = frac {sin (A)}{cos (A)} = frac {frac ac}{frac bc} = frac ab
$$

Step 2
2 of 4
b) Since

$$
begin{align*}
sin (A) &= frac ac\
cos (A) &= frac bc
end{align*}
$$

according to the formula

$$
color{#c34632}{cot (theta) = frac {cos (theta)}{sin (theta)}}
$$

we obtain

$$
cot (A) = frac {cos (A)}{sin (A)} = frac {frac bc}{frac ac} = frac ba
$$

Step 3
3 of 4
c) Since

$$
begin{align*}
sin (B) &= frac bc\
cos (B) &= frac ac
end{align*}
$$

according to the formula

$$
color{#c34632}{tan (theta) = frac {sin (theta)}{cos (theta)}}
$$

we obtain

$$
tan (B) = frac {sin (B)}{cos (B)} = frac {frac bc}{frac ac} = frac ba
$$

Result
4 of 4
a) $tan (A) = frac ab$

b) $cot (A) = frac ba$

c) $tan (B) = frac ba$

Exercise 66
Step 1
1 of 1
Exercise scan
Exercise 67
Step 1
1 of 11
Exercise scan
a) We are given the function:
Step 2
2 of 11
$$
y=2sinleft(dfrac{x}{2}+dfrac{3pi}{4}right)+1
$$
We write a possible equation for the given graph:
Step 3
3 of 11
$a=dfrac{y_{max}-y_{min}}{2}=dfrac{3-(-1)}{2}=2$

$$
a=2
$$

The amplitude of the function is:
Step 4
4 of 11
$T=dfrac{2pi}{dfrac{1}{2}}=4pi$

$$
T=4pi
$$

We determine the period $T$:
Step 5
5 of 11
The graph of the function was obtained starting from the parent function $y=sin x$. We horizontally shrink the parents function, then we horizontally shift to the left by $dfrac{3pi}{4}$ units, then we vertically stretch by a factor of 2 and in the end we shift one unit up to get the given graph.
Step 6
6 of 11
Exercise scan
b) We are given the function:
Step 7
7 of 11
$$
y=5cosleft(x-dfrac{pi}{2}right)-2
$$
We write a possible equation for the given graph:
Step 8
8 of 11
$a=dfrac{y_{max}-y_{min}}{2}=dfrac{3-(-7)}{2}=5$

$$
a=5
$$

The amplitude of the function is:
Step 9
9 of 11
$T=dfrac{2pi}{1}=4pi$

$$
T=2pi
$$

We determine the period $T$:
Step 10
10 of 11
The graph of the function was obtained starting from the parent function $y=cos x$. We shift the parent function by $dfrac{pi}{2}$ units to the right, then we vertically stretch by a factor of 5 and in the end we shift 2 units down to get the given graph.
Result
11 of 11
a) $y=2sinleft(dfrac{x}{2}+dfrac{3pi}{4}right)+1$

b) $y=5cosleft(x-dfrac{pi}{2}right)-2$

Exercise 68
Step 1
1 of 2
Assuming $b$ is the blue marbles, $r$ is the red marbles, $g$ is the green marbles.

$r+g+b=40$          (The sum of marbles are 40 mrbles)          (1)

$r=b+5$          (5 more marbles than blue)          (2)

$r=2g$          (Red marbles are twice the green marbles)          (3)

Substituting for $r$ from equation (3) in equations (1) and (2)

$2g+g+b=40$

$3g+b=40$          (1′)

$2g=b+5$

$2g-b=5$          (2′)

Adding (1′) and (2′)

$3g+b=40$          (1′)

+

$2g-b=5$          (2′)

———————–

$5g qquad =45$

$$
g=9
$$

Substituting in equation (3)

$r=2(9)$          (3)

$$
r=18
$$

Substituting in equation (1)

$18+9+b=40$

$b=40-27$

$$
b=13
$$

The number of each color of marbles is:

18 red marbles.

9 green marbles.

13 blue marbles.

Result
2 of 2
The collection contains:          18 red, 9 green, and 13 blue marbles.
Exercise 69
Step 1
1 of 6
Exercise scan
a) We are given:
Step 2
2 of 6
$$
180text{textdegree}-6text{textdegree}-63text{textdegree}=111text{textdegree}
$$
Considering $sin 16text{textdegree}=dfrac{x}{10}$ is wrong because the given triangle is not a right triangle with $x$ a leg and hypotenuse of 10. he should have started by computing the third angle:
Step 3
3 of 6
$dfrac{x}{sin 6text{textdegree}}=dfrac{10}{sin 111text{textdegree}}$

$xsin 111text{textdegree}=10sin 6text{textdegree}$

$$
x=dfrac{10cdot 0.10452846}{0.93358043}approx 1.12
$$

The second step is using the Law of Sines:
Step 4
4 of 6
Exercise scan
b) We are given:
Step 5
5 of 6
$x^2=10^2+70^2-2(10)(70)cos 50text{textdegree}$

$=100+4900-1400cdot0.64278761$

$=4100.0973$

$x=sqrt{4100.0973}$

$$
xapprox 64.03
$$

The first step is correct: he applied the Law of Cosines:
Result
6 of 6
a) 1.12

b) 64.03

Exercise 70
Step 1
1 of 5
Exercise scan
We are given:
Step 2
2 of 5
$dfrac{195}{V}=dfrac{195}{pi left(dfrac{16}{2}right)^2cdot 12}$

$approx 0.081$ peaches/cubic inch

a) We determine the density of peaches:
Step 3
3 of 5
1 foot= 12 inches

$0.081peaches/inch^3=dfrac{0.081 peaches}{left(dfrac{1}{12}right)^3foot^3}$

$$
approx 140peaches/foot^3
$$

b) We determine the density of peaches per cubic foot:
Step 4
4 of 5
$V_{truck}=45cdot 7cdot 8=2520$ $foot^3$
c) We determine the truck’s volume:
Step 5
5 of 5
$2520cdot 140=352,800$ peaches
We determine the number of peaches per truck:
Exercise 71
Solution 1
Solution 2
Step 1
1 of 5
a) In this exercise we use the formulas

$$
begin{align*}
color{#c34632}{(a+b)^2 = a^2 + 2ab + b^2}\
color{#c34632}{(a-b)^2 = a^2 – 2ab + b^2}
end{align*}
$$

Therefore

$$
begin{align*}
(x+2)^2 – (x-2)^2 &= 8\
(x^2 + 4x +4) – ( x^2 – 4x + 4) &= 8\
x^2 + 4x + 4 – x^2 +4x -4 &= 8\
8x &= 8\
x &=1
end{align*}
$$

The solution of equation is

$$
x=1
$$

Step 2
2 of 5
b) The solution of equation:

$$
begin{align*}
frac 1x + frac {1}{x+2} &= 3\
frac {x+2+x}{x(x+2)} &= 3\
frac {2x+2}{x(x+2)} &= 3\
2x+2 &= 3x(x+2)\
2x+2 &= 3x^2 + 6x\
3x^2 + 6x – 2x-2 &= 0\
3x^2 + 4x – 2 &= 0
end{align*}
$$

The solution of a square equation $ax^2 + bx+c=0$ is shape

$$
color{#c34632}{x= frac {-b pm sqrt {b^2 – 4ac}}{2a}}
$$

Now, we have

$$
begin{align*}
x &= frac {-4 pm sqrt {16 + 24}}{2 cdot 3}\
x &= frac {-4 pm sqrt {40}}{6}\
x &= frac {-4 pm 2 sqrt {10}}{6}\
x &= frac {-2 pm sqrt {10}}{3}
end{align*}
$$

The solution of equation is

$$
x = frac {-2 + sqrt {10}}{3} qquad text{and} qquad x = frac {-2 – sqrt {10}}{3}
$$

Step 3
3 of 5
c) Solution of equation:

$$
begin{align*}
11(4^x) -15 &= -14\
11(4^x) &= 1\
4^x &= frac {1}{11}
end{align*}
$$

We use the $ln$ function on both sides of the equation

$$
ln 4^x = ln frac {1}{11}
$$

According to the formula

$$
color{#c34632}{ln a^b = b ln a}
$$

we have

$$
begin{align*}
x ln 4 &= ln frac {1}{11}\
x &= frac {ln frac {1}{11}}{ln 4}
end{align*}
$$

The solution of equation is

$$
x = frac {ln frac {1}{11}}{ln 4}
$$

Step 4
4 of 5
d) Solution of the equation:

$$
begin{align*}
4 log_{13}{x} – 8 &= 16\
4 log_{13}{x} &= 24\
log_{13}{x} &= 6
end{align*}
$$

According to the formula

$$
begin{align*}
color{#c34632}{log_ba = c}\
color{#c34632}{a = b^c}
end{align*}
$$

we have

$$
x= 13^6
$$

The solution of equation is

$$
x= 13^6
$$

Result
5 of 5
a) $x=1$

b) $x = frac {-2 + sqrt {10}}{3} qquad text{and} qquad x = frac {-2 – sqrt {10}}{3}$

c) $x = frac {ln frac {1}{11}}{ln 4}$

d) $x=13^6$

Step 1
1 of 15
$$
(x+2)^2-(x-2)^2=8
$$
a) We are given the equation:
Step 2
2 of 15
$x^2+4x+4-x^2+4x-4=8$

$8x=8$

$$
x=1
$$

We square the binomials and simplify:
Step 3
3 of 15
$$
dfrac{1}{x}+dfrac{1}{x+2}=3
$$
b) We are given the equation:
Step 4
4 of 15
$$
(-infty,-2)cup(-2,0)cup(0,infty)
$$
The domain of the equation is:
Step 5
5 of 15
$dfrac{1}{x}cdot x(x+2)+dfrac{1}{x+2}cdot x(x+2)=3cdot x(x+2)$

$x+2+x=3x(x+2)$

$$
2x+2=3x^2+6x
$$

We multiply all terms by $x(x+2)$ to clear fractions:
Step 6
6 of 15
$3x^2+6x-2x-2=0$

$$
3x^2+4x-2=0
$$

We subtract $2x+2$ from both sides:
Step 7
7 of 15
$x=dfrac{-4pmsqrt{4^2-4(3)(-2)}}{2(3)}$

$=dfrac{-4pm 2sqrt{10}}{6}$

$=dfrac{-2pmsqrt{10}}{3}$

$x_1=dfrac{-2-sqrt{10}}{3}$

$x_2=dfrac{-2+sqrt{10}}{3}$

We use the Quadratic Formula:
Step 8
8 of 15
$$
11(4^x)-15=-14
$$
c) We are given the equation:
Step 9
9 of 15
$11(4^x)-15+15=-14+15$

$$
11(4^x)=1
$$

We add 15 to both sides:
Step 10
10 of 15
$$
4^x=dfrac{1}{11}
$$
We divide by 11:
Step 11
11 of 15
$ln 4^x=lndfrac{1}{11}$

$xln 4=lndfrac{1}{11}$

$x=dfrac{lndfrac{1}{11}}{ln 4}$

$$
xapprox -1.73
$$

We apply logarithm:
Step 12
12 of 15
$$
4log_{13} x-8=16
$$
d) We are given the equation:
Step 13
13 of 15
$4log_{13} x-8+8=16+8$

$$
4log_{13} x=24
$$

We add 8 to both sides:
Step 14
14 of 15
$$
log_{13} x=6
$$
We divide by 4:
Step 15
15 of 15
$$
x=13^6=4,826,809
$$
We write the equation in exponential form:
Exercise 72
Step 1
1 of 10
We have the equation, \\
$$2 sin (x) cos (x) = dfrac{1}{2}$$ \

a. We have to find if we can solve for x algebraically. We can do this by simplifying the equation. \

begin{align*}
2 sin (x) cos (x) &= dfrac{1}{2} \\
sin (x) cos (x) + sin (x) cos (x) &= dfrac{1}{2} \\
intertext{Using the identity, $sin A cos B + sin B cos A = sin (A+B)$, we get} \
sin (x + x) &= dfrac{1}{2} \\
sin (2x) & = dfrac{1}{2} \\
end{align*}

Now we have $sin (2x) = dfrac{1}{2} $.

Step 2
2 of 10
Now we will solve the equation $sin (2x) = dfrac{1}{2}$ \

begin{align*}
sin (2x) & = dfrac{1}{2} \\
intertext{Taking $sin ^{-1}$ on both sides} \
sin ^{-1} [sin (2x)] & = sin ^{-1} left(dfrac{1}{2}right) \\
2x &= dfrac{pi}{6} tag{$sin ^{-1} left(dfrac{1}{2}right)= dfrac{pi}{6}$}\\
x&= dfrac{pi}{12} \\
end{align*}

We also know $sin theta$ is positive in second quadrant as well. \
Therefore, we can say $sin theta = sin (pi – theta)$ \

Accordingly $sin 2x = sin (pi – 2x)$ \

Also, $2x = dfrac{pi}{6}$ \

Thus, $sin 2x = sin (pi – dfrac{pi}{6})$ or $sin 2x = sin dfrac{5pi}{6}$ \

Therefore, we have $2x=dfrac{5pi}{6}$. \\
Thus, $x=dfrac{5pi}{12}$.\

We are given $0leq x < 2 pi$ \

And in this interval we have $x=dfrac{pi}{12}$ and $x=dfrac{5pi}{12}$ for $sin (2x) = dfrac{1}{2}$ \

Step 3
3 of 10
Now we know the period of $sin$x is $2pi$. But in our equation we have 2 as a coefficient. So the period becomes $dfrac{2pi}{2}$ i.e. $pi$. So in our given interval $0leq x < 2 pi$ the values will repeat if we add $pi$ to the radians we just calculated.

Therefore, for $sin (2x) = dfrac{1}{2}$ we had found $x=dfrac{pi}{12}$ and $x=dfrac{5pi}{12}$

Additionally, $x=dfrac{pi}{12} + pi$ or $x=dfrac{13pi}{12}$

Similarly, $x=dfrac{5pi}{12} + pi$ and $x=dfrac{17pi}{12}$

Therefore, we have 4 solutions in our interval $0leq x < 2 pi$

$x=dfrac{pi}{12}$

$x=dfrac{5pi}{12}$

$x=dfrac{13pi}{12}$

$$
x=dfrac{17pi}{12}
$$

Step 4
4 of 10
b. Now we will graph the equation $2 sin (x) cos (x) = dfrac{1}{2}$

Exercise scan

Step 5
5 of 10
As we can observe in our interval $0leq x < 2 pi$ there are 4 solutions.

$$
x= dfrac{pi}{12}, dfrac{5pi}{12}, dfrac{13pi}{12}, dfrac{17pi}{12}
$$

Step 6
6 of 10
c. As we have already seen that \
begin{align*}
2 sin (x) cos (x) &= sin (x) cos (x) + sin (x) cos (x) \\
intertext{Using the identity, $sin A cos B + sin B cos A = sin (A+B)$, we get} \
2 sin (x) cos (x) &= sin (x + x) \\
&=sin (2x) \\
end{align*}

Thus, $2 sin (x) cos (x) = sin 2x $

Step 7
7 of 10
We can understand better with the help of a graph.

As we can observe the graph is exactly the same of both the equations. Thus there is more than 1 function. The function $sin 2x = dfrac{1}{2}$ is the simplest.

Exercise scan

Step 8
8 of 10
d. Now we will solve the equation $sin (2x) = dfrac{1}{2}$ \

begin{align*}
sin (2x) & = dfrac{1}{2} \\
intertext{Taking $sin ^{-1}$ on both sides} \
sin ^{-1} [sin (2x)] & = sin ^{-1} left(dfrac{1}{2}right) \\
2x &= dfrac{pi}{6} tag{$sin ^{-1} left(dfrac{1}{2}right)= dfrac{pi}{6}$}\\
x&= dfrac{pi}{12} \\
end{align*}

We also know $sin theta$ is positive in second quadrant as well. \
Therefore, we can say $sin theta = sin (pi – theta)$ \

Accordingly $sin 2x = sin (pi – 2x)$ \

Also, $2x = dfrac{pi}{6}$ \

Thus, $sin 2x = sin (pi – dfrac{pi}{6})$ or $sin 2x = sin dfrac{5pi}{6}$ \

Therefore, we have $2x=dfrac{5pi}{6}$. \\
Thus, $x=dfrac{5pi}{12}$.\

We are given $0leq x < 2 pi$ \

And in this interval we have $x=dfrac{pi}{12}$ and $x=dfrac{5pi}{12}$ for $sin (2x) = dfrac{1}{2}$ \

Step 9
9 of 10
Now we know the period of $sin$x is $2pi$. But in our equation we have 2 as a coefficient. So the period becomes $dfrac{2pi}{2}$ i.e. $pi$. So in our given interval $0leq x < 2 pi$ the values will repeat if we add $pi$ to the radians we just calculated.

Therefore, for $sin (2x) = dfrac{1}{2}$ we had found $x=dfrac{pi}{12}$ and $x=dfrac{5pi}{12}$

Additionally, $x=dfrac{pi}{12} + pi$ or $x=dfrac{13pi}{12}$

Similarly, $x=dfrac{5pi}{12} + pi$ and $x=dfrac{17pi}{12}$

Therefore, we have 4 solutions in our interval $0leq x < 2 pi$

$x=dfrac{pi}{12}$

$x=dfrac{5pi}{12}$

$x=dfrac{13pi}{12}$

$x=dfrac{17pi}{12}$

As we can clearly see the values algebraically and from the graph are the same.

Step 10
10 of 10
We have derived the equation as follows,

$$
2 sin (x) cos (x) = sin 2x
$$

And this is the Double Angle Identity for sine.

Exercise 73
Step 1
1 of 18
We have to graph the given functions and have to determine if there is any other function having the same graph, thereby making new identities.

a. $y=cos (-x)$

We will first graph this function.

Exercise scan

Step 2
2 of 18
We know that $sin (90 text{textdegree} -theta) = cos theta$

So we can write $y=cos (-x)$ as $y=sin [90text{textdegree}-(-x)]$ or $y=sin (90text{textdegree}+x)$

We also know $sin (A+B) = sin A cos B + sin B cos A$

We will now simplify the equation,

$$
begin{align*}
sin (90text{textdegree}+x) &= sin 90text{textdegree} cos x + cos 90text{textdegree} sin x \
&=(1) times cos x + (0) times sin x tag{$sin 90text{textdegree} = 1$ and $cos 90text{textdegree} = 0$} \
&= cos x \
end{align*}
$$

Therefore we get $sin (90text{textdegree}+x) = cos x$

This implies, $cos(-x)=cos(x)$.

We can also check by drawing the graph of $y=cos x$ and comparing it with the graph of $y = cos (-x)$ drawn above.

We can clearly see both the graphs are exactly the same.

Therefore, we have a new identity
$$
boxed {cos(-x)=cos(x)}
$$

Exercise scan

Step 3
3 of 18
b. $y=sin (-x)$

We will first graph this function.

Exercise scan

Step 4
4 of 18
We know that $cos (90 text{textdegree} -theta) = sin theta$

So we can write $y=sin (-x)$ as $y=cos [90text{textdegree}-(-x)]$ or $y=cos (90text{textdegree}+x)$

We also know $cos (A+B) = cos A cos B – cos B cos A$

We will now simplify the equation,

$$
begin{align*}
cos (90text{textdegree}+x) &= cos 90text{textdegree} cos x – sin 90text{textdegree} sin x \
&=(0) times cos x – (1) times sin x tag{$sin 90text{textdegree} = 1$ and $cos 90text{textdegree} = 0$} \
&= – sin x \
end{align*}
$$

Therefore we get $cos (90text{textdegree}+x) = -sin x$

This implies, $sin (-x)=-sin(x)$.

We can also check by drawing the graph of $y=-sin x$ and comparing it with the graph of $y = sin (-x)$ drawn above.

We can clearly see both the graphs are exactly the same.

Therefore, we have a new identity
$$
boxed {sin(-x)=-sin(x)}
$$

Exercise scan

Step 5
5 of 18
c. $y = cos (dfrac{pi}{2} – x)$

In terms of degree, this can be written as $y = cos (90- x)$

We will first draw the graph of this function.

Exercise scan

Step 6
6 of 18
We know $cos (A-B) = cos A cos B + cos B cos A$

We will now simplify the equation,

$$
begin{align*}
cos (90text{textdegree}-x) &= cos 90text{textdegree} cos x + sin 90text{textdegree} sin x \
&=(0) times cos x+ (1) times sin x tag{$sin 90text{textdegree} = 1$ and $cos 90text{textdegree} = 0$} \
&= sin x \
end{align*}
$$

Therefore we get $cos (90text{textdegree}-x) = sin x$

We can also check by drawing the graph of $y=sin x$ and comparing it with the graph of $y =cos (90text{textdegree}-x)$ drawn above.

We can clearly see both the graphs are very similar.

Therefore, we have the identity
$$
boxed {cos (dfrac{pi}{2} – x)=sin(x)}
$$

Exercise scan

Step 7
7 of 18
d. $y = sin (dfrac{pi}{2} – x)$

In terms of degree, this can be written as $y = sin (90- x)$

We will first draw the graph of this function.

Exercise scan

Step 8
8 of 18
We know $sin (A-B) = sin A cos B – sin B cos A$

We will now simplify the equation,

$$
begin{align*}
sin (90text{textdegree}-x) &= sin 90text{textdegree} cos x – sin x cos 90text{textdegree} \
&=(1) times cos x+ sin x times (0) tag{$sin 90text{textdegree} = 1$ and $cos 90text{textdegree} = 0$} \
&= cos x \
end{align*}
$$

Therefore we get $sin (90text{textdegree}-x) = cos x$

We can also check by drawing the graph of $y=cos x$ and comparing it with the graph of $y =sin (90text{textdegree}-x)$ drawn above.

We can clearly see both the graphs are very similar.

Therefore, we have the identity
$$
boxed {sin (dfrac{pi}{2} – x)=cos(x)}
$$

Exercise scan

Step 9
9 of 18
e. $y=cos^{2} (x)$

We will first graph this function.

Exercise scan

Step 10
10 of 18
We know $sin^2 x + cos^2 x = 1$ \

Also, $cos (A+B) = cos A cos B – sin A sin B$ \

By using this identity we can find the value of $cos(2x)$ \

begin{align*}
cos (2x) &= cos(x + x) \
&= cos x cos x – sin x sin x \
&= cos^2 x – sin^2 x \
intertext{We know $sin^2 x + cos^2 x = 1$ or $sin^2 x =1 – cos^2 x $}
cos (2x) &= cos^ 2x – (1 – cos^2 x) \
&= cos^ 2x – 1 + cos^2 x \
&= 2 cos^ 2x – 1 \
end{align*}

Thus, we get $cos (2x) = 2 cos^ 2x – 1 $ or $cos (2x) + 1 = 2 cos^ 2x $ or \

$dfrac{cos (2x) + 1}{2}= cos^ 2x $

Now we have $cos^ 2x = dfrac{cos (2x) + 1}{2}$ \

We will graph the function $y= dfrac{cos (2x) + 1}{2}$ to check if we have at the right conclusion. \

We can clearly observe that the graph of the function $y=cos^ 2x $ drawn \
above
is identical to graph of the function $y= dfrac{cos (2x) + 1}{2}$ drawn below. \

Therefore, we have the identity $$boxed {cos^ 2x= dfrac{cos (2x) + 1}{2}}$$

Exercise scan

Step 11
11 of 18
Similarly, \

begin{align*}
cos (2x) &= cos(x + x) \
intertext{using $cos(A+B) = cos A cos B – sin A sin B$}
&= cos x cos x – sin x sin x \
&= cos^2 x – sin^2 x \
end{align*}

Thus, we get $cos (2x) = cos^2 x – sin^2 x $ or \

$cos (2x) + sin^2 x= cos^ 2x $

Now we have $cos^ 2x = cos (2x) + sin^2 x$ \

We will graph the function $y= cos (2x) + sin^2 x$ to check if we have at the right conclusion. \

We can clearly observe that the graph of the function $y=cos^ 2x $ drawn \
above
is identical to graph of the function $y=cos (2x) + sin^2 x$ drawn below. \

Therefore, we have the identity $$boxed {cos^ 2x=cos (2x) + sin^2 x}$$

Exercise scan

Step 12
12 of 18
f. $y=sin^{2} (x)$

We will first graph this function.

Exercise scan

Step 13
13 of 18
We know $sin^2 x + cos^2 x = 1$ \

Also, $cos (A+B) = cos A cos B – sin A sin B$ \

By using this identity we can find the value of $cos(2x)$ \

begin{align*}
cos (2x) &= cos(x + x) \
&= cos x cos x – sin x sin x \
&= cos^2 x – sin^2 x \
intertext{We know $sin^2 x + cos^2 x = 1$ or $ cos^2x = 1 – sin^2 x$}
cos (2x) &= 1 – sin^2 x – sin^2x \
&= 1 – 2 sin^ 2x \
end{align*}

Thus, we get $cos (2x) = 1 – 2 sin^ 2x $ or $1 – cos (2x) = 2 sin^ 2x $ or \

$dfrac{1 – cos (2x)}{2}= sin^ 2x $

Now we have $cos^ 2x = dfrac{1 – cos (2x)}{2}$ \

We will graph the function $y= dfrac{1 – cos (2x)}{2}$ to check if we have at the right conclusion. \

We can clearly observe that the graph of the function $y=sin^ 2x $ drawn \
above
is identical to graph of the function $y= dfrac{1 – cos (2x)}{2}$ drawn below. \

Therefore, we have the identity $$boxed {sin^ 2x= dfrac{1 – cos (2x)}{2}}$$

Exercise scan

Step 14
14 of 18
Similarly, \
begin{align*}
cos (2x) &= cos(x + x) \
intertext{using $cos(A+B) = cos A cos B – sin A sin B$}
&= cos x cos x – sin x sin x \
&= cos^2 x – sin^2 x \
end{align*}

Thus, we get $cos (2x) = cos^2 x – sin^2 x $ or \

$ cos^2 x – cos (2x) = sin^ 2x $

Now we have $sin^ 2x =cos^2 x – cos (2x)$ \

We will graph the function $y= cos^2 x – cos (2x)$ to check if we have at the right conclusion. \

We can clearly observe that the graph of the function $y=sin^ 2x $ drawn \
above
is identical to graph of the function $y=cos^2 x – cos (2x)$ drawn below. \

Therefore, we have the identity $$boxed {sin^ 2x=cos^2 x – cos (2x)}$$

Exercise scan

Step 15
15 of 18
g. We have the function $y = cos^2 (x) – sin^2 (x)$

We will first graph this function,

Exercise scan

Step 16
16 of 18
We will first solve for $cos 2x$ \

begin{align*}
cos (2x) &= cos(x + x) \
intertext{using $cos(A+B) = cos A cos B – sin A sin B$}
&= cos x cos x – sin x sin x \
&= cos^2 x – sin^2 x \
end{align*}

Thus, we get $ cos^2 x – sin^2 x =cos (2x) $ or \

We will graph the function $y= cos 2x$ to check if we have at the right conclusion. \

We can clearly observe that the graph of the function $y=cos 2x $ drawn \
above
is identical to graph of the function $y= cos^2 x – sin^2 x$ drawn below. \

Therefore, we have the identity $$boxed { cos^2 (x) – sin^2 (x)=cos 2 x }$$

Exercise scan

Step 17
17 of 18
g. We have the function $y = cos^2 (x) + sin^2 (x)$

We will first graph this function,

Exercise scan

Step 18
18 of 18
As we can observe that the graph of the function $y = cos^2 (x) + sin^2 (x)$ is same as that of $y=1$

Therefore, we have the identity
$$
boxed { cos^2 (x) + sin^2 (x)=1 }
$$

Exercise scan

Exercise 74
Step 1
1 of 6
a. We have the equation $$2 cos left(dfrac{pi}{2} – xright) = 1$$ \

We can simplify it further, \

begin{align*}
2 cos left(dfrac{pi}{2} – xright) &= 1 \\
cos left(dfrac{pi}{2} – xright) &= dfrac{1}{2} \\
intertext{We have the identity $cos left(dfrac{pi}{2} – x right) = sin x$, this implies }
sin x &= dfrac{1}{2}\\
sin^ {-1} (sin x)&= sin^{-1} left(dfrac{1}{2}right) tag{taking $sin^{-1}$ on both sides} \\
x&= dfrac{pi}{6} tag{$sin^{-1} left(dfrac{1}{2} right) = dfrac{pi}{6}$ }
end{align*}

Therefore, we have $x= dfrac{pi}{6}$ \

Now, we are not given any domain. \

Step 2
2 of 6
We know $sin$ is positive in the first and second quadrant.

This implies, $sin (pi – theta) = sin theta$

Accordingly,

$$
begin{align*}
sin left(pi – dfrac{pi}{6} right) &= sin dfrac{pi}{6} \\
sin dfrac{5 pi}{6} & = sin dfrac{pi}{6} \\
end{align*}
$$

Therefore we have x = $dfrac{pi}{6}$ and x = $dfrac{5 pi}{6}$

The period of $sin x$ is $2 pi$. Therefore, the value of $sin x = dfrac{1}{2}$ will repeat after adding 2 $pi$ n number of times (where n is a positive integer)

This implies,

x=$dfrac{pi}{6} + 2pi n$ and

x=$dfrac{5pi}{6} + 2pi n$

for $2 cos left(dfrac{pi}{2} – xright) = 1$ (for all x)

Step 3
3 of 6
b. We are given the expression
$$
cos^2 x – sin^2 x = dfrac{sqrt3}{2}
$$

We have an identity $cos^2 x – sin^2 x = dfrac{sqrt3}{2} = cos (2x)$

Therefore, we have $cos (2x) = dfrac{sqrt3}{2}$

Step 4
4 of 6
Now we will solve for x

$$
begin{align*}
cos (2x) &= dfrac{sqrt3}{2} \\
cos^{-1} (cos 2x)&= cos^{-1}left( dfrac{sqrt3}{2}right) tag{Taking $cos^{-1} $ on both sides} \\
2x &= dfrac{pi}{6} tag{$cos^{-1}left( dfrac{sqrt3}{2}right) =dfrac{pi}{6} $} \\
x&= dfrac{pi}{12} \\
end{align*}
$$

We have $x= dfrac{pi}{12}$

Step 5
5 of 6
We know cosine is positive in the first and fourth quadrants.

This implies, $cos (2 pi – theta) = cos theta$

Therefore,

$$
begin{align*}
cos (2 pi – 2x) &= cos 2x \\
cos left(2 pi – dfrac{pi}{6}right)& = cos dfrac{pi}{6} tag{$2x = dfrac{pi}{6}$} \\
cos dfrac{11 pi}{6} &= cos dfrac{pi}{6}
end{align*}
$$

Therefore we have 2x = $dfrac{pi}{6}$ and 2x = $dfrac{11 pi}{6}$

And accordingly, x = $dfrac{pi}{12}$ and x = $dfrac{11 pi}{12}$

Step 6
6 of 6
Now, The period of $cos 2x$ is $pi$. Therefore, the value of $cos 2x = dfrac{1}{2}$ will repeat after adding $pi$ to the values of x we have found above. Also, we are given $0 leq x <2pi$

This implies,

x=$dfrac{pi}{12} + pi$ or $dfrac{13pi}{12}$ and

x=$dfrac{11pi}{12} + pi$ or $dfrac{23pi}{12}$

Therefore we have

x =$dfrac{pi}{12}$;

x =$dfrac{11pi}{12}$;

x =$dfrac{13pi}{12}$;

x =$dfrac{13pi}{12}$

for $cos^2 x – sin^2 x = dfrac{sqrt3}{2}$ where $0 leq x<2pi$

Exercise 75
Step 1
1 of 6
a. We have the equation, $cos^2 (x) + sin^2 (x) = 1$

We will first draw a graph of $x^2 + y^2 = 1$ and a tringle inside it as shown below.
![‘slader’](https://d2nchlq0f2u6vy.cloudfront.net/21/05/25/d66ddb723369bd941fd7c3ca25b42110/5b33f6af3649c193b87b28e1d2cc09e0/image_scan.png)

Step 2
2 of 6
In $triangle$ ABC we have \

Base = BC = b units
Height = AB = a units
Hypotenuse = AC = c units

By Pythagoras theorem,

$text{(Base)}^2 + text{(Height)}^2 = text{(Hypotenuse)}^2$

Therefore, we have
$$begin{aligned}
text{(BC)}^2 + text{(AB)}^2 &= text{(AC)}^2 \
b^2 + a^2 &= c^2 \
end{aligned}$$

Now we know,

$sin theta = dfrac{text{Height}}{text{Hypotenuse}}$

As per the figure above, we have

$sin x = dfrac{text{AB}}{text{AC}} = dfrac{a}{c}$

Also,

$cos theta = dfrac{text{Base}}{text{Hypotenuse}}$

As per the figure above, we have

$cos x = dfrac{text{BC}}{text{AC}} = dfrac{b}{c}$

Step 3
3 of 6
Now we have $sin x = dfrac{a}{c}$ and $cos x = dfrac{b}{c}$

and as per the Pythagoras theorem, we have $b^2 + a^2 = c^2$

Now,

$$begin{aligned}
sin^2 x + cos^2 x &= left(dfrac{a}{c}right)^2 + left(dfrac{b}{c}right)^2 \\
&= dfrac{a^2 + b^{2}}{c^{2}} \\
&= dfrac{c^{2}}{c^{2}} \\
&=1 \
end{aligned}$$

As shown above we have derived the identity
$sin^2 x + cos^2 x = 1$ with the help of the Pythagoras theorem. Therefore, this identity is also called the Pythagorean Identity. \

Step 4
4 of 6
b. The Pythagorean identity $sin^2 x + cos^2 x = 1$ can be used to derive other identities.

For this, we must keep in mind

$$begin{aligned}
csc theta &= dfrac{1}{sin theta} \\
cot theta &= dfrac{cos theta}{sin theta} \\
tan theta &= dfrac{sin theta}{cos theta} \\
sec theta &= dfrac{1}{cos theta} \\
end{aligned}$$

Step 5
5 of 6
Now,
$$begin{aligned}
sin^2 x + cos^2 x &= 1 \\
dfrac{sin^2 x}{sin^2 x} + dfrac{cos^2 x}{sin^2 x} &= dfrac{1}{sin^2 x} \\
1 + cot^2 x &= csc^2 x
end{aligned}$$

Therefore we have derived a new identity,
$$boxed{1 + cot^2 x = csc^2 x}$$

Step 6
6 of 6
Similarly,
$$begin{aligned}
sin^2 x + cos^2 x &= 1 \\
dfrac{sin^2 x}{cos^2 x} + dfrac{cos^2 x}{cos^2 x} &= dfrac{1}{cos^2 x} \\
tan^2 x + 1&= sec^2 x
end{aligned}$$

Therefore we have derived a new identity, \\
$$boxed{tan^2 x + 1= sec^2 x}$$

Exercise 76
Step 1
1 of 6
we have to write the expressions in terms of either $sin (theta)$ or $cos (theta)$.

a. The expression is $tan (theta)$

We know, $tan (theta) = dfrac{sin (theta)}{cos (theta)}$

We have the Pythagorean Identity,
$$sin^2 (theta)+cos^2 (theta) =1$$

Thus, we can write$sin (theta)$ in terms of $cos (theta)$ and vice versa.

$$begin{aligned}
sin^2 (theta)+cos^2 (theta) &=1 \
sin^2 (theta)&= 1 – cos^2 (theta) \
sin (theta)&= sqrt{1 – cos^2 (theta)} \
end{aligned}$$
Therefore we can write,

$$boxed{tan (theta)=dfrac{sqrt{1 – cos^2 (theta)}}{cos (theta)}}$$

Step 2
2 of 6
Similarly,
$$begin{aligned}
sin^2 (theta)+cos^2 (theta) &=1 \
cos^2 (theta)&= 1 – sin^2 (theta) \
cos (theta)&= sqrt{1 – sin^2 (theta)} \
end{aligned}$$
Therefore we can write,

$$boxed{tan (theta)=dfrac{sin (theta)}{sqrt{1 – sin^2 (theta)}}}$$

Step 3
3 of 6
b. We have the expression $csc (theta)$

This can be written as
$$boxed{csc (theta) = dfrac{1}{sin (theta)}}$$

Step 4
4 of 6
c. We have the expression $cot (theta)$

We know, $cot (theta) = dfrac{cos (theta)}{sin (theta)}$

We have the Pythagorean Identity,
$$sin^2 (theta)+cos^2 (theta) =1$$

Thus, we can write$sin (theta)$ in terms of $cos (theta)$ and vice versa.

$$begin{aligned}
sin^2 (theta)+cos^2 (theta) &=1 \
sin^2 (theta)&= 1 – cos^2 (theta) \
sin (theta)&= sqrt{1 – cos^2 (theta)} \
end{aligned}$$
Therefore we can write,

$$boxed{cot (theta)=dfrac{cos (theta)}{sqrt{1 – cos^2 (theta)}}}$$

Step 5
5 of 6
Similarly,
$$begin{aligned}
sin^2 (theta)+cos^2 (theta) &=1 \
cos^2 (theta)&= 1 – sin^2 (theta) \
cos (theta)&= sqrt{1 – sin^2 (theta)} \
end{aligned}$$
Therefore we can write,

$$boxed{cot (theta)=dfrac{sqrt{1 – sin^2 (theta)}}{sin (theta)}}$$

Step 6
6 of 6
d. We have the expression $sec (theta)$

This can be written as
$$boxed{sec (theta) = dfrac{1}{cos (theta)}}$$

Exercise 77
Solution 1
Solution 2
Step 1
1 of 3
a) Solution of equation:

$$
begin{align*}
2 sin (x) &= 1\
sin x &= frac 12
end{align*}
$$

By applying the inverse formula we get

$$
begin{align*}
x &= arcsin frac 12\
x &= frac {pi}{6} qquad x = frac {5 pi}{6}
end{align*}
$$

The solutions of equation are

$$
x = frac {pi}{6} qquad x = frac {5 pi}{6}
$$

Step 2
2 of 3
b) Solution of equation:

$$
cos^2 x + 4 cos x + 4 = 0
$$

Let $cos x=a$ then we have

$$
a^2 + 4a +4=0
$$

The solution of a square equation $ax^2 + bx + c= 0$ is shape

$$
color{#c34632}{x = frac {-b pm sqrt {b^2 – 4ac}}{2a}}
$$

Therefore

$$
begin{align*}
a &= frac {-4 pm sqrt {16 – 16}}{2}\
a &= frac {-4 pm 0}{2}\
a &= -2
end{align*}
$$

Substitute $a= cos x$

$$
cos x = -2
$$

Since

$$
-1 leq cos x leq 1
$$

there is no solution.

Result
3 of 3
a) $x = frac {pi}{6} qquad x = frac {5 pi}{6}$

b) no solution

Step 1
1 of 8
$$
2sin x=1
$$
a) We are given the equation:
Step 2
2 of 8
$$
sin x=dfrac{1}{2}
$$
We divide by 2:
Step 3
3 of 8
$x=dfrac{pi}{6}+2kpi$ or $x=dfrac{5pi}{6}+2kpi, k$ integer
We find the solutions:
Step 4
4 of 8
$$
cos^2 x+4cos x+4=0
$$
b) We are given the equation:
Step 5
5 of 8
$(cos x+2)^2=0$

$$
cos x+2=0
$$

We factor:
Step 6
6 of 8
$$
cos x=-2
$$
We subtract 2 from both sides:
Step 7
7 of 8
The equation has no solutions because -2 doesn’t belong to the cosine function’s range $[-1,1]$.
Result
8 of 8
a) $x=dfrac{pi}{6}+2kpi$ or $x=dfrac{5pi}{6}+2kpi, k$ integer

b) no solution

Exercise 78
Step 1
1 of 4
$a$
$$begin{aligned}
text{Period} T&= 81-15- left(dfrac{180}{360+180}right)\\
&= 66- dfrac{180}{504}\\
&= 44\
end{aligned}$$
Step 2
2 of 4
$$begin{aligned}
text{Amplitude} Y&=dfrac{23+|-17|}{2}\\
&=dfrac{40}{2}\\
&=20
end{aligned}$$
Step 3
3 of 4
$b$ Equation of the given graph is as follows:
$$y = Y cos left(dfrac{2pi x}{T}right)+(23-20)$$

$$y=20 cos left(dfrac{2pi (x-15)}{T}right)+3 $$

Step 4
4 of 4
$c$.
$$y(81)= 20 cos(3 pi) +3= -17$$
Exercise 79
Step 1
1 of 5
a)

$$
frac{x^2}{x-5}-frac{25}{x-5}=frac{x^2-25}{x-5}
$$

Now we use the following rule of the difference of squares:

$$
x^2-y^2 = (x-y)cdot (x+y)
$$

and apply it to our problem.

$$
frac{x^2-25}{x-5} = frac{(x-5)cdot(x+5)}{x-5}=x+5
$$

Step 2
2 of 5
b)

$$
frac{a^2}{a+5}+frac{10a + 25}{a+5} = frac{a^2 + 10a + 25}{a+5}
$$

We can recognize the square of the sum:

$$
(a+b)^2= a^2+2ab+b^2
$$

and apply it to our problem.

$$
frac{a^2 + 10a + 25}{a+5} = frac{(a+5)^2}{a+5} = a+5
$$

Step 3
3 of 5
c)

$$
frac{x^2}{x-y}-frac{2xy-y^2}{x-y}=frac{x^2-(2xy-y^2)}{x-y}=frac{x^2-2xy+y^2}{x-y}
$$

Just like in the task before we use the square rule only this time it’s the square of the difference:

$$
(a-b)^2= a^2-2ab+b^2
$$

in our problem now it looks like:

$$
frac{x^2-2xy+y^2}{x-y}=frac{(x-y)^2}{x-y} = x-y
$$

Step 4
4 of 5
d)

$$
frac{x}{x+1}+frac{1}{x-1} = frac{x(x-1)+1(x+1)}{(x-1)(x+1)}=
$$

$$
frac{x^2+x-x+1}{(x-1)(x+1)} = frac{x^2+1}{x^2-1}
$$

Result
5 of 5
a) $x+5$ b) $a+5$ c) $x-y$ d) $frac{x^2+1}{x^2-1}$
Exercise 80
Step 1
1 of 2
Assuming $w$ is the pennant from Washington campus, $c$ is the pennant from California campus, and $p$ is the pennant from Pennsylvania campus.

$w=c-5$          (1)

$c=2p$          (2)

$w+c+p=40$          (3)

Substituting for $c$ from equation (2) in equations (1) and (3)

$w=2p-5$

$w-2p=-5$          (1′)

$w+3p=40$          (2′)

Subtracting (1′) from (2′)

$w+3p=40$          (2′)

$w-2p=-5$          (1′)

————————-

$0+5p=45$

$$
p=9
$$

Substituting in equation (2)

$c=2(9)$

$$
c=18
$$

Substituting in equation (1)

$w=2(9)-5=18-5$

$$
w=13
$$

Pennant from Washington campus = 13

Pennant from California campus = 18

Pennant from Pennsylvania campus = 9

Result
2 of 2
Pennant from Washington campus = 13

Pennant from California campus = 18

Pennant from Pennsylvania campus = 9

Exercise 81
Step 1
1 of 2
$$
begin{cases}
x+y+z=40\
y=x-5\
x=2z
end{cases}
$$
The problems 12.62, 12.68 and 12.80 can be modeled using the same system of equations:
Step 2
2 of 2
This means the solution is also the same.
Exercise 82
Solution 1
Solution 2
Step 1
1 of 3
a) This is geometric series

$$
a+ar+ar^2 +cdot cdot cdot
$$

Therefore

$$
8-6+ frac 92 – frac {27}{8} + cdot cdot cdot
$$

where

$$
a=8 qquad text{and} qquad r = – frac 34
$$

According to the formula

$$
color{#c34632}{S = frac {a}{1-r} }
$$

we obtain

$$
begin{align*}
S &= frac {8}{1- left( – frac 34 right)}\
S &= frac {8}{1+ frac 34}\
S &= frac {8}{frac 74}\
S &= frac {32}{7}
end{align*}
$$

The sum is

$$
S = frac {32}{7}
$$

Step 2
2 of 3
b) This is a geometric series

$$
sum_{k=0}^{infty} frac 18 2^k = frac 18 + frac 14 + frac 12 +cdot cdot cdot
$$

where

$$
a= frac 18 qquad text{and} qquad r=2
$$

According to the formula

$$
color{#c34632}{S = frac {a}{1-2}}
$$

we obtain

$$
begin{align*}
S &= frac {frac 18}{1-2}\
S &= frac {frac 18}{-1} = – frac 18
end{align*}
$$

The sum is

$$
S = – frac 18
$$

Result
3 of 3
a) $S= frac {32}7$

b) $S = – frac 18$

Step 1
1 of 7
$$
8-6+dfrac{9}{2}-dfrac{27}{8}+…
$$
a) We are given the infinite series:
Step 2
2 of 7
$a_1=8$

$a_{n}=-dfrac{6}{8}a_{n-1}=-dfrac{3}{4}a_{n-1}$

$$
q=-dfrac{3}{4}
$$

We consider the geometric sequence:
Step 3
3 of 7
$S=dfrac{a_1}{1-q}=dfrac{8}{1-left(-dfrac{3}{4}right)}$

$=dfrac{8}{dfrac{7}{4}}$

$=8cdotdfrac{4}{7}$

$$
=dfrac{32}{7}
$$

Because $|q|=left|-dfrac{3}{4}right|=dfrac{3}{4}<1$, the series converges and its sum is:
Step 4
4 of 7
$$
sum_{k=0}^{infty}dfrac{1}{8}(2)^k
$$
b) We are given the infinite series:
Step 5
5 of 7
$a_1=dfrac{1}{8}(2)^0=dfrac{1}{8}$

$a_n=2a_{n-1}$

$$
q=2
$$

We consider the geometric sequence:
Step 6
6 of 7
Because $|q|=|2|=2>1$, the series diverges.
Result
7 of 7
a) $dfrac{32}{7}$

b) divergent series

Exercise 83
Step 1
1 of 11
We have the Pythagorean identity,
$$cos^2 (x) + sin^2 (x) = 1$$
We can rewrite it in various ways.

For this, we must keep in mind \

$$begin{aligned}
csc theta &= dfrac{1}{sin theta} \\
cot theta &= dfrac{cos theta}{sin theta} \\
tan theta &= dfrac{sin theta}{cos theta} \\
sec theta &= dfrac{1}{cos theta} \\
end{aligned}$$

Step 2
2 of 11
a. Now,
$$begin{aligned}
sin^2 x + cos^2 x &= 1 \\
dfrac{sin^2 x}{sin^2 x} + dfrac{cos^2 x}{sin^2 x} &= dfrac{1}{sin^2 x} \\
1 + cot^2 x &= csc^2 x
end{aligned}$$

Therefore we have derived a new identity, \\
$$boxed{1 + cot^2 x = csc^2 x}$$

Step 3
3 of 11
b. Similarly,
$$begin{aligned}
sin^2 x + cos^2 x &= 1 \\
dfrac{sin^2 x}{cos^2 x} + dfrac{cos^2 x}{cos^2 x} &= dfrac{1}{cos^2 x} \\
tan^2 x + 1&= sec^2 x \
end{aligned}$$

Therefore we have derived a new representation, \\
$$boxed{tan^2 x + 1= sec^2 x} $$

Step 4
4 of 11
c. We also know, $cos (2x) = 2 cos^2 (x) – 1$

This can also be written as $2 cos^2 (x) = cos (2x)+1$ or

$cos^2 (x) = dfrac{cos (2x)+1}{2}$

Substituting the value of $cos^2 (x)$ in the Pythagorean identity, we get

$$begin{aligned}
sin^2 (x) + dfrac{cos (2x)+1}{2} &= 1 \\
dfrac{2sin^2 (x) +cos (2x)+1}{2} &= 1 \\
2sin^2 (x) +cos (2x)+1 &= 2 \\
end{aligned}$$

Therefore we have derived a new representation,

$$boxed{2sin^2 (x) +cos (2x)+1 = 2}$$

Step 5
5 of 11
d. We also know, $cos (2x) = 1 – 2 sin^2 (x)$

This can also be written as $2 sin^2 (x) = 1 – cos (2x)$ or

$sin^2 (x) = dfrac{1 -cos (2x)}{2}$

Substituting the value of $cos^2 (x)$ in the Pythagorean identity, we get
$$begin{aligned}
dfrac{1 -cos (2x)}{2} + cos^2 (x) &= 1 \\
dfrac{1 – cos (2x)+ 2cos^2 (x) }{2} &= 1 \\
1 – cos (2x)+ 2cos^2 (x) &= 2 \\
end{aligned}$$
Therefore we have derived a new representation,

$$boxed{1 – cos (2x)+ 2cos^2 (x) = 2}$$

Step 6
6 of 11
e. We have $cos (2x) = cos^2 (x) – sin^2 (x)$

This can be written as $cos^2 (x) = cos (2x)+ sin^2 (x)$

Substituting this in the Pythagorean Identity we get,
$$begin{aligned}
sin^2 (x) + cos (2x)+ sin^2 (x)& = 1 \
2sin^2 (x) + cos (2x) &= 1
end{aligned}$$
Therefore we have derived a new representation,

$$boxed{2sin^2 (x) + cos (2x) = 1}$$

Step 7
7 of 11
f. We have $cos (2x) = cos^2 (x) – sin^2 (x)$

This can be written as $sin^2 (x) = cos^2 (x) – cos (2x)$

Substituting this in the Pythagorean Identity we get,
$$begin{aligned}
cos^2 (x) – cos (2x)+ cos^2 (x)& = 1 \
2cos^2 (x) – cos (2x) &= 1
end{aligned}$$
Therefore we have derived a new representation,

$$boxed{2cos^2 (x) – cos (2x) = 1}$$

Step 8
8 of 11
g. We are aware of the algebraic identity
$$a^2 – b^2 = (a-b)(a+b)$$

The Pythagorean identity can also be written as

$$begin{aligned}
sin^2 (x) &=1 – cos^2 (x) \
&=(1)^2 – (cos (x))^2 \
&=(1-cos x)(1+ cos x) \
end{aligned}$$

Therefore we have derived a new representation,

$$boxed{sin^2 (x)= (1-cos x)(1+ cos x)}$$

Step 9
9 of 11
h. We are aware of the algebraic identity
$$a^2 – b^2 = (a-b)(a+b)$$

The Pythagorean identity can also be written as

$$begin{aligned}
cos^2 (x) &=1 – sin^2 (x) \
&=(1)^2 – (sin (x))^2 \
&=(1-sin x)(1+ sin x) \
end{aligned}$$

Therefore we have derived a new representation,

$$boxed{cos^2 (x)= (1-sin x)(1+ sin x)}$$

Step 10
10 of 11
i. We are aware of the algebraic identity
$$a^2 – b^2 = (a-b)(a+b)$$

The Pythagorean identity can also be written as

$$begin{aligned}
cos^2 (x) &=1 – sin^2 (x) \
&=1 – dfrac{1}{csc^2 (x)} \\
&=dfrac{csc^2 (x) – 1}{csc^2 (x)} \\
&=dfrac{(csc x – 1)(csc x +1)}{csc^2 (x)}
end{aligned}$$

Therefore we have derived a new representation,

$$boxed{cos^2 (x)= dfrac{(csc x – 1)(csc x +1)}{csc^2 (x)}}$$

Step 11
11 of 11
j. We are aware of the algebraic identity
$$a^2 – b^2 = (a-b)(a+b)$$

The Pythagorean identity can also be written as

$$begin{aligned}
sin^2 (x) &=1 – cos^2 (x) \
&=1 – dfrac{1}{sec^2 (x)} \\
&=dfrac{sec^2 (x) – 1}{sec^2 (x)} \\
&=dfrac{(sec x – 1)(sec x +1)}{sec^2 (x)}
end{aligned}$$

Therefore we have derived a new representation,

$$boxed{cos^2 (x)= dfrac{(sec x – 1)(sec x +1)}{sec^2 (x)}}$$

Exercise 84
Step 1
1 of 4
$$
A_{triangle ABC}=24
$$

Exercise scan

We are given:
Step 2
2 of 4
$A_{triangle ABC}=dfrac{ABcdot BC}{2}$

$24=dfrac{ABcdot 8}{2}$

$24=4AB$

$AB=dfrac{24}{4}$

$AB=6$ inches

We determine $AB$:
Step 3
3 of 4
$AC^2=AB^2+BC^2$

$AC^2=6^2+8^2$

$AC^2=36+64$

$AC^2=100$

$AC=sqrt{100}$

$AC=10$ inches

We determine $AC$ using the Pythagorean Theorem:
Result
4 of 4
$AC=10$ inches
Exercise 85
Solution 1
Solution 2
Step 1
1 of 4
a) According to the formula

$$
color{#c34632}{cos^2 theta + sin^2 theta = 1}
$$

we obtain

$$
cos^2 ( theta – pi ) + sin^2 ( theta – pi ) =1
$$

Step 2
2 of 4
b) According to the formula

$$
color{#c34632}{cos (2 theta) = cos^2 theta – sin^2 theta}
$$

we obtain

$$
begin{align*}
cos^2 (2 omega) – sin^2 (2 omega) &= cos ( 2 cdot 2 omega)\
&= cos ( 4 omega)
end{align*}
$$

Step 3
3 of 4
c) According to the formula

$$
color{#c34632}{tan x = frac {sin x}{cos x}}
$$

we obtain

$$
frac {sin theta}{cos theta} = tan theta
$$

Result
4 of 4
a) $cos^2 ( theta – pi ) + sin^2 ( theta – pi ) =1$

b) $cos^2 (2 omega) – sin^2 (2 omega) = cos ( 4 omega)$

c) $frac {sin theta}{cos theta} = tan theta$

Step 1
1 of 7
$$
cos^2(theta-pi)+sin^2(theta-pi)
$$
a) We are given the expression:
Step 2
2 of 7
$$
cos^2(theta-pi)+sin^2(theta-pi)=1
$$
We use the Pythagorean Identity:

$cos^2 x+sin^2 x=1$.

Step 3
3 of 7
$$
cos^2 (2w)-sin^2 (2w)
$$
b) We are given the expression:
Step 4
4 of 7
$$
cos^2 (2w)-sin^2 (2w)=cos (2cdot 2w)=cos(4w)
$$
We use the Double Angle Identity:

$cos 2x=cos^2 x-sin^2 x$.

Step 5
5 of 7
$$
dfrac{sintheta}{costheta}
$$
c) We are given the expression:
Step 6
6 of 7
$$
dfrac{sintheta}{costheta}=tantheta
$$
We use the identity:

$tan x=dfrac{sin x}{cos x}$.

Result
7 of 7
a)1;

b) $cos(4w)$;

c) $tan theta$

Exercise 86
Step 1
1 of 3
a) We will simplify the following expression:

Using the formulas

$$
begin{align*}
color{#c34632}{a^2 – b^2 = (a-b)(a+b)}\
color{#c34632}{(a + b)^2 = a^2 + 2ab + b^2}
end{align*}
$$

Now

$$
frac {x^2 -4}{x^2 +4x+4} = frac {(x-2)(x+2)}{(x+2)^2} = frac {x-2}{x+2}
$$

Therefore

$$
frac {x^2 -4}{x^2 +4x+4} = frac {x-2}{x+2}
$$

Step 2
2 of 3
b) We will simplify the following expression:

$$
begin{align*}
frac {2x^2 – 5x-3}{4x^2 + 4x +1} &= frac {2x^2-6x+x-3}{(2x+1)^2}\
&= frac {2x(x-3)+(x-3)}{(2x+1)^2}\
&= frac {(2x+1)(x-3)}{(2x+1)^2}\
&= frac {x-3}{2x+1}
end{align*}
$$

Therefore

$$
frac {2x^2 – 5x-3}{4x^2 + 4x +1} = frac {x-3}{2x+1}
$$

Result
3 of 3
a) $frac {x^2 -4}{x^2 +4x+4} = frac {x-2}{x+2}$

b) $frac {2x^2 – 5x-3}{4x^2 + 4x +1} = frac {x-3}{2x+1}$

Exercise 87
Step 1
1 of 3
Substituting the points $(0, 0), (3, 9)$ and $(6, 0)$ in the general form of the equation:

$y=ax^2+bx+c$

$0=a(0)^2+b(0)+c$          (Substituting with the point $(0, 0)$)

$c=0$          (1)

$9=a(3)^2+b(3)+c$          (Substituting with the point $(3, 9)$)

$9=9a+3b+c$          (2)

$0=a(6)^2+b(6)+c$          (Substituting with the point $(6, 0)$)

$0=36a+6b+c$          (3)

Eliminating $c$ from equations

$c=0$          (1)

Substituting 0 for $c$ in equations (2) and (3)

$9=9a+3b+0$

$3=3a+b$          (2)

$0=36a+6b+0$

$0=6a+b$          (3)

Subtracting (2) from (3)

$0=6a+b$          (3)

$3=3a+b$          (2)

—————————-

$-3=3a$

$$
a=-1
$$

Substituting in equation (2)

$3=-3+b$          (2)

$$
b=6
$$

The solution is: $a=-1$          $b=6$          $c=0$

The equation is:          $y=-x^2+6x$

Step 2
2 of 3
Checking for solution:

$0=-(0)^2+6(0)+0$          (1)

$0=0+0+0$          checkmark

$9=-(3)^2+3(6)+0$          (2)

$9=-9+18+0$          checkmark

$0=-(6)^2+6(6)+0$          (3)

$0=-36+36$          checkmark

Result
3 of 3
The equation is:          $y=-x^2+6x$
Exercise 88
Step 1
1 of 5
a) The solution of equation

$$
begin{align*}
frac {3x}{x+2} + frac {7}{x-2} &= 3\
frac {3x(x-2)+7 (x+2)}{(x+2)(x-2)} &= 3\
frac {3x^2 – 6x + 7x +14}{x^2 – 4} &= 3\
frac {3x^2 + x + 14}{x^2 – 4} &= 3\
3x^2 + x + 14 &= 3(x^2 -4)\
3x^2 + x + 14 &= 3x^2 -12\
x + 14 &= – 12\
x &= -26
end{align*}
$$

The solution of equation is

$$
x = -26
$$

Step 2
2 of 5
b) The solution of equation:

$$
(x+2)^2 + (x-2)^2 = (2x)^2
$$

Using the formulas

$$
begin{align*}
color{#c34632}{(a+b)^2 = a^2 + 2ab + b^2}\
color{#c34632}{(a-b)^2 = a^2 – 2ab + b^2}
end{align*}
$$

Then

$$
begin{align*}
x^2 + 4x +4 + x^2 -4x + 4 &= 4x^2\
2x^2 + 8 &= 4x^2\
2x^2 &= 8\
x^2 &= 4\
x &= sqrt 4\
x &= pm 2
end{align*}
$$

The solutions of equation are

$$
x= pm 2
$$

Step 3
3 of 5
c) The solution of equation:

$$
begin{align*}
3x^3 + 12x &= 21x^2 + 84\
3x^3 – 21x^2 + 12x – 84 &= 0\
3 (x^3 -7x^2 +4x -28) &= 0\
x^3 – 7x^2 + 4x -28 &= 0\
x^2 (x-7) + 4 (x-7) &= 0\
(x-7)( x^2 +4) &= 0\
x-7 = 0 qquad x^2 + 4 &= 0\
x=7 qquad x^2 &= -4\
x &= 2_i
end{align*}
$$

The solution of equation is

$$
x=7
$$

Step 4
4 of 5
d) The solution of equation:

$$
10 ln 4 + ln x = 16
$$

According to the formulas

$$
begin{align*}
color{#c34632}{a ln b = ln b^a}\
color{#c34632}{ln a + ln b = ln ab}
end{align*}
$$

we obtain

$$
begin{align*}
ln 4^{10} + ln x &= 16\
ln 4^{10} x &= 16\
4^{10} x &= e^{16}\
x &= 4^{-10} e^{16}
end{align*}
$$

The solution of equation is

$$
x = 4^{-10} e^{16}
$$

Result
5 of 5
a) $x=-26$

b) $x=pm 2$

c) $x=7$

d) $x = 4^{-10} e^{16}$

Exercise 89
Step 1
1 of 8
$f(x)=log_5 (x+9)-5$

Exercise scan

We graph the function:
Step 2
2 of 8
$x+9>0Rightarrow x>-9$

Domain: $(-9,infty)$

a) We determine the domain of $f(x)$:
Step 3
3 of 8
$$
(-infty,infty)
$$
We determine the range of $f(x)$:
Step 4
4 of 8
$y=0Rightarrow log_5(x+9)-5=0$

$log_5(x+9)=5$

$x+9=5^5$

$x=3125-9$

$$
x=3116
$$

b) We determine the $x$-intercept:
Step 5
5 of 8
$$
x=0Rightarrow y=log_5 (0+9)-5=log_5 9-5approx -3.6
$$
We determine the $y$-intercept:
Step 6
6 of 8
$y=log_5(x+9)-5$

$x=log_5(y+9)-5$

$x+5=log_5(y+9)$

$y+9=5^{x+5}$

$y=5^5cdot 5^x-9$

$y=3125(5^x)-9$

$f^{-1}(x)=3125(5^x)-9$

c) We determine the equation of the inverse:
Step 7
7 of 8
$$
(-infty,infty)
$$
d) The domain of the inverse is:
Step 8
8 of 8
$$
(-9,infty)
$$
The range of the inverse is:
Exercise 90
Step 1
1 of 9
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

Manipulating left side

$$
begin{align*}
&cot left(xright)+tan left(xright)&&boxed{text{Simplify}}\
&frac{cos left(xright)}{sin left(xright)}+tan left(xright)&&boxed{text{Using the Basic Trigonometric identity }}\
&frac{cos left(xright)}{sin left(xright)}+frac{sin left(xright)}{cos left(xright)}&&boxed{text{Using the Basic Trigonometric identity}}\
&frac{cos ^2left(xright)}{sin left(xright)cos left(xright)}+frac{sin ^2left(xright)}{sin left(xright)cos left(xright)}&&boxed{text{Adjust fractions based on the LCM}}\
&frac{cos ^2left(xright)+sin ^2left(xright)}{cos left(xright)sin left(xright)}&&boxed{text{Add fractions}}\
&frac{1}{cos left(xright)sin left(xright)}&&boxed{text{Use the following identity}}\
end{align*}
$$

Manipulating right side

$$
begin{align*}
&sec left(xright)csc left(xright)&&boxed{text{Simplify}}\
&frac{1}{sin left(xright)}sec left(xright)&&boxed{text{Using the Basic Trigonometric identity}}\
&frac{1}{cos left(xright)}cdot frac{1}{sin left(xright)}&&boxed{text{Using the Basic Trigonometric identity}}\
&frac{1}{cos left(xright)sin left(xright)}&&boxed{text{Simplify}}\\
end{align*}
$$

We showed hat the two sides
could take the same form

$$
begin{align*}
&boxed{{color{#c34632}text{True}} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 2
2 of 9
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

Manipulating right side

$$
begin{align*}
&frac{1}{1+tan ^2left(xright)}&&boxed{text{Simplify}}\
&frac{1}{left(frac{sin left(xright)}{cos left(xright)}right)^2+1}&&boxed{text{Using the Basic Trigonometric identity }}\
&frac{1}{frac{sin ^2left(xright)}{cos ^2left(xright)}+1}&&boxed{text{Raise the denominator to the second power}}\
&frac{1}{frac{sin ^2left(xright)+cos ^2left(xright)}{cos ^2left(xright)}}&&boxed{text{Simplify}}\
&frac{cos ^2left(xright)}{sin ^2left(xright)+cos ^2left(xright)}&&boxed{text{Fraction rules}}\
&cos ^2left(xright)&&boxed{text{Use the following identity}}\
&left(1+sin left(xright)right)left(1-sin left(xright)right)&&boxed{text{Use the following identity}}\
end{align*}
$$

We showed hat the two sides
could take the same form

$$
begin{align*}
&boxed{{color{#c34632}text{True}} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 3
3 of 9
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

Manipulating left side

$$
begin{align*}
&frac{1}{sec ^2left(xright)}+frac{1}{csc ^2left(xright)}&&boxed{text{Simplify}}\
&frac{1}{left(frac{1}{sin left(xright)}right)^2}+frac{1}{sec ^2left(xright)}&&boxed{text{Using the Basic Trigonometric identity }}\
&frac{1}{left(frac{1}{sin left(xright)}right)^2}+frac{1}{left(frac{1}{cos left(xright)}right)^2}&&boxed{text{Using the Basic Trigonometric identity}}\
&cos ^2left(xright)+sin ^2left(xright)&&boxed{text{Simplify}}\
&1&&boxed{text{Use the following identity}}\
end{align*}
$$

We showed hat the two sides
could take the same form

$$
begin{align*}
&boxed{{color{#c34632}text{True}} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 4
4 of 9
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

Manipulating left side

$$
begin{align*}
&sec ^2left(xright)-csc ^2left(xright)&&boxed{text{Simplify}}\
&sec ^2left(xright)-1-cot ^2left(xright)&&boxed{text{Use the following identity }}\
&-cot ^2left(xright)+tan ^2left(xright)&&boxed{text{Use the following identity}}\
end{align*}
$$

We showed hat the two sides
could take the same form

$$
begin{align*}
&boxed{{color{#c34632}text{True}} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 5
5 of 9
$$
{color{#4257b2}text{e)}}
$$

Solution to this example is given below

Manipulating left side

$$
begin{align*}
&frac{sec left(xright)}{tan left(xright)+cot left(xright)}&&boxed{text{Simplify}}\
&frac{frac{1}{cos left(xright)}}{cot left(xright)+tan left(xright)}&&boxed{text{Using the Basic Trigonometric identity }}\
&frac{frac{1}{cos left(xright)}}{frac{cos left(xright)}{sin left(xright)}+tan left(xright)}&&boxed{text{Using the Basic Trigonometric identity}}\
&frac{frac{1}{cos left(xright)}}{frac{cos left(xright)}{sin left(xright)}+frac{sin left(xright)}{cos left(xright)}}&&boxed{text{Using the Basic Trigonometric identity}}\
&frac{1}{cos left(xright)left(frac{cos left(xright)}{sin left(xright)}+frac{sin left(xright)}{cos left(xright)}right)}&&boxed{text{Apply the fraction rule}}\
&frac{sin left(xright)}{cos ^2left(xright)+sin ^2left(xright)}&&boxed{text{Simplify}}\
&sin left(xright)&&boxed{text{Use the following identity}}\
end{align*}
$$

We showed hat the two sides
could take the same form

$$
begin{align*}
&boxed{{color{#c34632}text{True}} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 6
6 of 9
$$
{color{#4257b2}text{f)}}
$$

Solution to this example is given below

Manipulating left side

$$
begin{align*}
&sin ^2left(xright)cot ^2left(xright)+cos ^2left(xright)tan ^2left(xright)&&boxed{text{Simplify}}\
&cos ^2left(xright)left(frac{sin left(xright)}{cos left(xright)}right)^2+cot ^2left(xright)sin ^2left(xright)&&boxed{text{Using the Basic Trigonometric identity }}\
&left(frac{cos left(xright)}{sin left(xright)}right)^2sin ^2left(xright)+left(frac{sin left(xright)}{cos left(xright)}right)^2cos ^2left(xright)&&boxed{text{Using the Basic Trigonometric identity}}\
&cos ^2left(xright)+sin ^2left(xright)&&boxed{text{Simplify}}\
&1&&boxed{text{Use the following identity}}\
end{align*}
$$

We showed hat the two sides
could take the same form

$$
begin{align*}
&boxed{{color{#c34632}text{True}} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 7
7 of 9
$$
{color{#4257b2}text{g)}}
$$

Solution to this example is given below

Manipulating left side

$$
begin{align*}
&frac{csc ^2left(xright)-1}{csc ^2left(xright)}&&boxed{text{Simplify}}\
&frac{-1+left(frac{1}{sin left(xright)}right)^2}{left(frac{1}{sin left(xright)}right)^2}&&boxed{text{Using the Basic Trigonometric identity }}\
&frac{left(frac{1}{sin left(xright)}right)^2-1}{left(frac{1}{sin left(xright)}right)^2}&&boxed{text{Using the Basic Trigonometric identity}}\
&1-sin ^2left(xright)&&boxed{text{Simplify}}\
&cos ^2left(xright)&&boxed{text{Use the following identity}}\
end{align*}
$$

We showed hat the two sides
could take the same form

$$
begin{align*}
&boxed{{color{#c34632}text{True}} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 8
8 of 9
$$
{color{#4257b2}text{h)}}
$$

Solution to this example is given below

Manipulating left side

$$
begin{align*}
&frac{sin left(xright)}{cos left(xright)}+frac{cos left(xright)}{sin left(xright)}-2=0&&boxed{text{Subtract }2 text{ from both sides}}\
&frac{sin left(xright)}{cos left(xright)}+frac{cos left(xright)}{sin left(xright)}-frac{2}{1}&&boxed{text{Convert element to a fraction }2=frac{2}{1}}\
&frac{sin ^2left(xright)}{cos left(xright)sin left(xright)}+frac{cos ^2left(xright)}{cos left(xright)sin left(xright)}-frac{2cos left(xright)sin left(xright)}{cos left(xright)sin left(xright)}&&boxed{text{Adjust fraction based on the LCM}}\
&frac{sin ^2left(xright)+cos ^2left(xright)-2cos left(xright)sin left(xright)}{cos left(xright)sin left(xright)}=0&&boxed{text{Simplify}}\
&sin ^2left(xright)+cos ^2left(xright)-2cos left(xright)sin left(xright)=0&&boxed{text{Simplify}}\
&1-2cos left(xright)sin left(xright)=0&&boxed{text{Use the following identity}}\
&1-sin left(2xright)=0&&boxed{text{Use the following identitty}}\
&1-sin left(2xright)-1=0-1&&boxed{text{Subtract 1 from both sides}}\
&-sin left(2xright)=-1&&boxed{text{Simplify}}\
&frac{-sin left(2xright)}{-1}=frac{-1}{-1}&&boxed{text{Divide both sides by }-1}\
&sin left(2xright)=1&&boxed{text{Simplify}}\
end{align*}
$$

We showed hat the two sides
could take the same form

$$
begin{align*}
&boxed{{color{#c34632}text{True}} }&&boxed{text{Final solution}}\
end{align*}
$$

Result
9 of 9
$$
color{#4257b2} text{ a) True }
$$

$$
color{#4257b2} text{ b) True }
$$

$$
color{#4257b2} text{ c) True }
$$

$$
color{#4257b2} text{ d) True }
$$

$$
color{#4257b2} text{ e) True }
$$

$$
color{#4257b2} text{ f) True }
$$

$$
color{#4257b2} text{ g) True }
$$

$$
color{#4257b2} text{ h) True }
$$

Exercise 91
Step 1
1 of 4
We have the domain $0 le x < 2 pi$. And we have to find the value of various expressions.

a. We have the expression $sin (x) = -1$ \

We know that $sin left(dfrac{pi}{2}right) = 1$

Also, sine is negative in the third and fourth quadrant. This implies $sin (pi + theta) = – sin theta$ and $sin (2pi – theta) = – sin theta$

Taking $theta = dfrac{pi}{2}$

$$begin{aligned}
sin left(pi+dfrac{pi}{2}right) &= -sin left(dfrac{pi}{2}right) \\
sin left(dfrac{3 pi}{2}right) &= -1 \\
end{aligned}$$
and
$$begin{aligned}
sin left(2pi-dfrac{pi}{2}right) &= -sin left(dfrac{pi}{2}right) \\
sin left(dfrac{3 pi}{2}right) &= -1 \\
end{aligned}$$

Therefore $x = dfrac{3 pi}{2}$ for $sin (x) = -1$

Step 2
2 of 4
b. The next expression is $2 cos (x) – 1 = 0$

We can rewrite it as $2 cos (x) = 1$ or $cos (x) = dfrac{1}{2}$

Now taking $cos^{-1}$ on both sides, we get

$$begin{aligned}
cos^{-1}[cos (x)] &=cos^{-1}left(dfrac{1}{2}right) \\
x&=dfrac{pi}{3}
end{aligned}$$

Now we have x$=dfrac{pi}{3}$

Since cosine is positive in the fourth quadrant,
$cos (2pi – theta) = cos (theta)$

This implies, taking $theta = dfrac{pi}{3}$

$cos (2pi – dfrac{pi}{3}) = cos left(dfrac{pi}{3}right)$

or

$cos left(dfrac{5pi}{3}right) = cos left(dfrac{pi}{3}right)$

Thus, we have x = $dfrac{pi}{3}$ and x= $dfrac{5pi}{3}$

for $2 cos (x) – 1 = 0$ where $0 le x < 2 pi$

Step 3
3 of 4
c. The expression is $tan(x) = 1$

Taking $tan^{-1}$ on both sides, we get
$$begin{aligned}
tan^{-1} [tan (x)] &= tan^{-1} (1) \\
x&=dfrac{pi}{4}
end{aligned}$$

We know $tan$ is positive in the third quadrant. Therefore, we have
$tan (pi + theta) = tan (theta)$

Putting $theta = dfrac{pi}{4}$ we get

$$begin{aligned}
tan left(pi + dfrac{pi}{4}right) &= tan left(dfrac{pi}{4}right) \\
tan left(dfrac{5pi}{4}right) &= tan left(dfrac{pi}{4}right)
end{aligned}$$

Thus, we have x = $dfrac{pi}{4}$ and x= $dfrac{5pi}{4}$

for $tan(x) = 1$ where $0 le x < 2 pi$

Step 4
4 of 4
d. We have the expression $2 sin (x) = 4 sin (x) + 1$

We will first simplify this expression \
$$begin{aligned}
2 sin (x) &= 4 sin (x) + 1 \
4 sin (x) – 2 sin (x) &= -1 \
2 sin (x) &= -1 \
sin(x)&= -dfrac{1}{2} \
end{aligned}$$

We know, $sin left(dfrac{pi}{6}right) = dfrac{1}{2}$

Also, sine is negative in the third and fourth quadrant. This implies $sin (pi + theta) = – sin theta$ and $sin (2pi – theta) = – sin theta$

Accordingly,
$$begin{aligned}
sin left(pi+dfrac{pi}{6}right) &= -sin left(dfrac{pi}{6}right) \\
sin left(dfrac{7 pi}{6}right) &= -dfrac{1}{2} \\
end{aligned}$$
and
$$begin{aligned}
sin left(2pi-dfrac{pi}{6}right) &= -sin left(dfrac{pi}{6}right) \\
sin left(dfrac{11 pi}{6}right) &= -dfrac{1}{2} \\
end{aligned}$$

Thus, we have x = $dfrac{7pi}{6}$ and x= $dfrac{11pi}{6}$

for $2 sin (x) = 4 sin (x) + 1$ where $0 le x < 2 pi$

Exercise 92
Solution 1
Solution 2
Step 1
1 of 2
The Pythagorean identity is

$$
color{#c34632}{sin^2 theta + cos^2 theta = 1}
$$

Sine takes value with $y-text{axis}$

$$
sin theta = frac yr
$$

Since $r=1$ we obtain

$$
sin theta = y
$$

Cosine takes value with $x-text{axis}$

$$
cos theta = frac xr
$$

Since $r=1$ we obtain

$$
cos theta = x
$$

Now we have

$$
y^2 + x^2 =1
$$

We have $y=- frac 38$, then

$$
begin{align*}
x^2 &+ left( – frac 38 right)^2 = 1\
x^2 &+ frac {9}{64} = 1\
x^2 &= 1 – frac {9}{64}\
x^2 &= frac {64-9}{64}\
x^2 &= frac {55}{64}\
x &= pm sqrt {frac {55}{64}}\
x &= pm frac {sqrt {55}}{8}
end{align*}
$$

The point is

$$
(x,y) = left( pm frac {sqrt {55}}{8} , – frac 38 right)
$$

Result
2 of 2
$$
(x,y) = left( pm frac {sqrt {55}}{8} , – frac 38 right)
$$
Step 1
1 of 5
$$
Pleft(x,-dfrac{3}{8}right)
$$
We are given:
Step 2
2 of 5
$costheta=dfrac{x}{r}=dfrac{x}{1}=x$

$sintheta=dfrac{y}{r}=dfrac{y}{1}=y$

For a point $(x,y)$ on the unit circle we have:
Step 3
3 of 5
$x^2+y^2=1^2$

$x^2+left(-dfrac{3}{8}right)^2=1$

$x^2+dfrac{9}{64}=1$

$x^2=1-dfrac{9}{64}$

$x^2=dfrac{55}{64}$

$$
x=pmdfrac{sqrt{55}}{8}
$$

We apply the Pythagorean Identity:

$sin^2theta+cos^2theta=1$.

Step 4
4 of 5
$P_1left(-dfrac{sqrt{55}}{8},-dfrac{3}{8}right)$

$P_2left(dfrac{sqrt{55}}{8},-dfrac{3}{8}right)$

There are two points which fit the problem:
Result
5 of 5
$P_1left(-dfrac{sqrt{55}}{8},-dfrac{3}{8}right)$

$P_2left(dfrac{sqrt{55}}{8},-dfrac{3}{8}right)$

Exercise 93
Solution 1
Solution 2
Step 1
1 of 3
The triangleExercise scan
Step 2
2 of 3
Opposite the longer side is a larger angle. Since, the $AC = 10$ side is longer, it is necessary to find the angle $theta$.

Using the formula

$$
color{#c34632}{c^2 = a^2 + b^2 – 2ab cos theta}
$$

Therefore

$$
begin{align*}
10^2 &= 5^2 + 9^2 – 2 cdot 5cdot 9 cos theta\
100 &= 25 + 81 – 90 cos theta\
-6 &= -90 cos theta
end{align*}
$$

Multiply by $(-1)$

$$
begin{align*}
90cos theta &= 6\
cos theta &= frac {6}{90}\
cos theta &= 0.06
end{align*}
$$

By applying the inverse function we get

$$
begin{align*}
theta &= arccos 0.06\
theta &= 1.51\
theta &= 86.5^{text{textdegree}}
end{align*}
$$

Result
3 of 3
$$
theta = 86.5^{text{textdegree}}
$$
Step 1
1 of 4
$AB=5$

$BC=9$

$$
AC=10
$$

We are given:
Step 2
2 of 4
$$
AC>BC>AB
$$
The largest angle is opposite to the largest side, therefore the largest angle is $B$.
Step 3
3 of 4
$AC^2=AB^2+BC^2-2(AB)(BC)cos B$

$10^2=5^2+9^2-2(5)(9)cos B$

$100=25+81-90cos B$

$100=106-90cos B$

$90cos B=106-100$

$90cos B=6$

$cos B=dfrac{6}{90}$

$cos B=dfrac{1}{15}$

$$
B=cos^{-1}dfrac{1}{15}approx 86.19text{textdegree}
$$

We apply the Law of Cosines:
Result
4 of 4
$$
Bapprox 86.19text{textdegree}
$$
Exercise 94
Step 1
1 of 11
$$
f(x)=2sinleft(x+dfrac{pi}{2}right)
$$
a) We are given the function:
Step 2
2 of 11
$a=2$

$$
T=dfrac{2pi}{1}=2pi
$$

We determine the amplitude $a$ and period $T$ of the function:
Step 3
3 of 11
Exercise scan
We graph the function on the interval $[0,4pi]$.

We start with the parent function $f_0(x)=sin x$. We shift $f_0$ $dfrac{pi}{2}$ units to the left to get $f_1(x)=sinleft(x+dfrac{pi}{4}right)$,then we vertically stretch $f_1$ by a factor of 2 to get $f(x)$:

Step 4
4 of 11
$$
y=cos(2x)-1
$$
b) We are given the function:
Step 5
5 of 11
$a=1$

$$
T=dfrac{2pi}{2}=pi
$$

We determine the amplitude $a$ and period $T$ of the function:
Step 6
6 of 11
Exercise scan
We graph the function on the interval $[0,2pi]$.

We start with the parent function $f_0(x)=cos x$. We horizontally shrink $f_0$ by a factor of 2 to get $f_1(x)=cos (2x)$, then we shift $f_1$ 1 unit down to get $f(x)$:

Step 7
7 of 11
$$
y=tanleft(x+dfrac{pi}{4}right)
$$
c) We are given the function:
Step 8
8 of 11
$$
T=dfrac{pi}{1}=pi
$$
There is no amplitude for the tangent function.

We determine the period $T$ of the function:

Step 9
9 of 11
Exercise scan
We graph the function on the interval $[0,2pi]$.

We start with the parent function $f_0(x)=tan x$. We shift $f_0$ $dfrac{pi}{2}$ units to the left to get $f(x)$:

Step 10
10 of 11
$$
f(x)=sin x+1
$$
d) The given graph is that of the function $sin x$, shifted up by 1 unit:
Step 11
11 of 11
$$
f(x)=cos (2x)
$$
e) The given graph is that of the function $cos x$, horizontally shrunk by a factor of 2:
Exercise 95
Step 1
1 of 3
a. A parabola has an equation of the form $f(x)=ax^2+bx+c$. Evalaute the function at the given points:

$$
5=c
$$

$$
1=4a+2b+c
$$

$$
17=36a+6b+c
$$

Replace $c$ with its known values in the other equations:

$$
5=c
$$

$$
1=4a+2b+5
$$

$$
17=36a+6b+5
$$

Rewrite the equations:

$$
c=5
$$

$$
-2=2a+b
$$

$$
2=6a+b
$$

Subtract the third equation from the second equation:

$$
c=5
$$

$$
-4=-4a
$$

$$
2=6a+b
$$

Solve the second equation to $a$:

$$
c=5
$$

$$
1=a
$$

$$
2-6a=b
$$

Determine $b$:

$$
c=5
$$

$$
a=1
$$

$$
b=2-6a=2-6(1)=-4
$$

Thus the equation then becomes $f(x)=x^2-4x+5$

Step 2
2 of 3
b. The axis of symmetry is:

$$
x=dfrac{-b}{2a}=dfrac{4}{2}=2
$$

The vertex is the intersection of the axis of symmetry and the function:

$$
f(2)=2^2-4(2)+5=4-8+5=1
$$

Thus the vertex is $(2,1)$.

Result
3 of 3
a. $f(x)=x^2-4x+5$

b. $(2,1)$

Exercise 96
Solution 1
Solution 2
Step 1
1 of 3
The graph of function

$$
y= sqrt[3]{x-4} + 2
$$

Exercise scan

Step 2
2 of 3
A locator point is a point which gives the position of a graph with respect to the axes.

Now, the locator point is

$$
(4,2)
$$

Result
3 of 3
$$
(4,2)
$$
Step 1
1 of 2
$$
f(x)=sqrt[3]{x-4}+2
$$
We are given the function:
Step 2
2 of 2
Exercise scan
The graph of the function can be obtained starting with the parent function $f_0(x)=sqrt[3] x$. We shift $f_0$ 4 units to the right to get $f_1(x)=sqrt[3]{x-4}$, then we shift $f_1$ 2 units up to get $f(x)$:
Exercise 97
Step 1
1 of 3
This is the arithmetic sequence

$$
0.52, 0.55, 0.58, …, 2.02
$$

where

$$
a= 0.52 qquad text{and} qquad d=0.03
$$

a) To calculate the number of terms, we need to subtract the first term $0.52$ from the last term $2.02$

$$
2.02 – 0.52 = 1.5
$$

Since

$$
frac {1.5}{d} = frac {1.5}{0.03} = 50
$$

we have $50$ terms.

Therefore

$$
n=50
$$

Step 2
2 of 3
b) According to the formula

$$
color{#c34632}{ S = frac n2 [ 2a + (n-1) d]}
$$

we obtain

$$
begin{align*}
S &= frac {50}{2} [ 2 cdot 0.52 + (50-1) 0.03 ]\
S &= 25 [ 1.04 + 49 cdot 0.03 ]\
S &= 25 [ 1.04 + 1.47 ]\
S &= 25 cdot 2.51\
S &= 62.75
end{align*}
$$

The sum is

$$
S= 62.75
$$

Result
3 of 3
a) $n=50$

b) $S= 62.75$

Exercise 98
Step 1
1 of 4
We will examine whether the equation is an identiti.

a) According to the formula

$$
color{#c34632}{ sin^2 theta + cos^2 theta = 2}
$$

we obtain

$$
begin{align*}
( sin theta + cos theta )^2 &= 1 + 2 sin theta cos theta\
sin^2 theta + 2 sin theta cos theta + cos^2 theta &= 1 + 2 sin theta cos theta\
sin^2 theta + cos^2 theta + 2 sin theta cos theta &= 1 + 2 sin theta cos theta\
1 + 2 sin theta cos theta &= 1 + 2 sin theta cos theta
end{align*}
$$

The equation is identity.

Step 2
2 of 4
b) According to the formulas

$$
color{#c34632}{tan theta = frac {sin theta}{cos theta}}
$$

$$
color{#c34632}{cot theta = frac {cos theta}{sin theta}}
$$

$$
color{#c34632}{sec theta = frac {1}{cos theta}}
$$

$$
color{#c34632}{csc theta = frac {1}{sin theta}}
$$

we obtain

$$
begin{align*}
tan theta + cot theta &= sec theta csc theta\
frac {sin theta}{cos theta} + frac {cos theta}{sin theta} &= frac {1}{cos theta} cdot frac {1}{sin theta}\
frac {sin^2 theta + cos^2 theta}{cos theta sin theta} &= frac {1}{cos theta sin theta}\
frac {1}{cos theta sin theta} &= frac {1}{cos theta sin theta}
end{align*}
$$

The equation is identity.

Step 3
3 of 4
c) According to the formula

$$
color{#c34632}{tan theta = frac {sin theta}{cos theta}}
$$

$$
color{#c34632}{sec theta = frac {1}{cos theta}}
$$

we obtain

$$
begin{align*}
( tan theta cos theta ) left( sin^2 theta + frac {1}{sec^2 theta} right) &= sin theta\
left( frac {sin theta}{cos theta} cdot cos theta right) left( sin^2 theta + frac {1}{frac {1}{cos^2 theta}} right) &= sin theta\
sin theta ( sin^2 theta + cos^2 theta ) &= sin theta\
sin theta &= sin theta
end{align*}
$$

The equation is identity.

Result
4 of 4
a) $1 + 2 sin theta cos theta = 1 + 2 sin theta cos theta$

b) $frac {1}{cos theta sin theta} = frac {1}{cos theta sin theta}$

c) $sin theta = sin theta$

Exercise 99
Solution 1
Solution 2
Step 1
1 of 2
We can solve the equation

$$
begin{align*}
frac {2 + sin^2 theta}{3} &= frac 34\
2 + sin^2 theta &= frac 34 cdot 3\
2 + sin^2 theta &= frac 94\
sin^2 theta &= frac 94 – 2\
sin^2 theta &= frac 14\
sin theta &= pm sqrt {frac 14}\
sin theta &= pm frac 12
end{align*}
$$

By applying the inverse function we get

$$
theta = arcsin left( pm frac 12 right)
$$

solution:

$$
begin{align*}
theta &= arcsin frac 12\
theta &= frac {pi}{6} qquad theta = frac {5 pi}{6}
end{align*}
$$

solution:

$$
begin{align*}
theta &= arcsin left( – frac 12 right)\
theta &= frac {7pi}{6} qquad theta = frac {11 pi}{6}
end{align*}
$$

The solutions of the equation are

$$
begin{align*}
theta &= frac {pi}{6} qquad theta = frac {5 pi}{6}\
theta &= frac {7pi}{6} qquad theta = frac {11 pi}{6}
end{align*}
$$

Result
2 of 2
$$
begin{align*}
theta &= frac {pi}{6} qquad theta = frac {5 pi}{6}\
theta &= frac {7pi}{6} qquad theta = frac {11 pi}{6}
end{align*}
$$
Step 1
1 of 7
$$
dfrac{2+sin^2theta}{3}=dfrac{3}{4},0leqtheta<2pi
$$
We are given the equation:
Step 2
2 of 7
$4(2+sin^2theta)=9$

$8+4sin^2theta=9$

We multiply both sides by 12:
Step 3
3 of 7
$4sin^2theta=1$
We subtract 8 from both sides:
Step 4
4 of 7
$sin^2theta=dfrac{1}{4}$

$sintheta=pmdfrac{1}{2}$

We divide by 4:
Step 5
5 of 7
$sintheta=dfrac{1}{2}$

$theta_1=dfrac{pi}{6}$

$theta_2=dfrac{5pi}{6}$

$sintheta=-dfrac{1}{2}$

$theta_3=dfrac{7pi}{6}$

$theta_4=dfrac{11pi}{6}$

We solve the equation:
Step 6
6 of 7
Exercise scan
We show the solutions on the unit circle:
Result
7 of 7
$$
left{dfrac{pi}{6},dfrac{5pi}{6},dfrac{7pi}{6},dfrac{11pi}{6}right}
$$
Exercise 100
Step 1
1 of 1
Exercise scan
Exercise 101
Step 1
1 of 3
a.Exercise scan
Step 2
2 of 3
b. Yes the point is on the graph because:

$$
3(1)+(2)-(-1)=3+2+1=6
$$

Result
3 of 3
a. See graph
b. Yes
Exercise 102
Step 1
1 of 4
Given,
$$cos (x) = dfrac{1}{2} rightarrow(1)$$
Step 2
2 of 4
$a$.
Solving ,
$$begin{aligned}
cos (x)&= cos 30^{o}\
&boxed{x=30}\
end{aligned}$$
Step 3
3 of 4
$b$.
Sketching the graph of equation (1) :

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/f390245c-cecc-4fe9-ac1b-dd960065f760-1624100040900564.png)

Step 4
4 of 4
$c$. Unit Circle showing all the possible solutions is shown below:

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/6d318163-a4eb-46e9-a591-d4567663c3bf-1624100342868923.png)

Exercise 103
Step 1
1 of 4
a) When $f(x)=0$ we obtain

$$
x^2 – 3x – 4 =0
$$

The solution of a square equation $a^2 + bx + c =0$ is shape

$$
x= frac {-b pm sqrt {b^2 -4ac}}{2a}
$$

Now, we have

$$
begin{align*}
x &= frac {3 pm sqrt {9+16}}{2}\
x &= frac {3 pm sqrt {25}}{2}\
x &= frac {3 pm 5}{2}\
x &= 4 qquad x = -1
end{align*}
$$

Step 2
2 of 4
b) When $f(x) geq 0$ we obtain

$$
x^2 – 3x – 4 geq 0
$$

Discriminant is

$$
begin{align*}
D &= b^2 – 4ac = (-3)^2 – 4 cdot 1 cdot (-4)= 9 + 16 = 25 > 0
end{align*}
$$

then

$$
x^2 – 3x – 4 geq 0
$$

for

$$
xin ( – infty , -1 ] cup [ 4, + infty )
$$

Step 3
3 of 4
c) When $f(x) leq 0$ we obtain

$$
x^2 -3x -4 leq 0
$$

The solution of the inequality is

$$
x in [-1, 4]
$$

Result
4 of 4
a)$x = 4 qquad x = -1$

b)$xin ( – infty , -1 ] cup [ 4, + infty )$

c)$x in [-1, 4]$

Exercise 104
Solution 1
Solution 2
Step 1
1 of 3
We get distance between two points according to the formula

$$
color{#c34632}{ d = sqrt {(x_2 – x_1)^2 + ( y_2 – y_1)^2}}
$$

a) Let $(x_1, y_1)=(x,y)$ and $(x_2, y_2)=(-3, y)$

Now we have

$$
begin{align*}
d &= sqrt {(-3 – x)^2 + ( y – y)^2}\
d &= sqrt {(-3-x) +0}\
d &= sqrt {(-3-x)^2}\
d &= |-3-x|\
d &= |3+x|
end{align*}
$$

Step 2
2 of 3
b) Let $(x_1, y_1)=(x,y)$ and $(x_2, y_2)=(-3,2)$

Now we have

$$
d = sqrt {(-3-x)^2 + (2-y)^2}
$$

Result
3 of 3
a)$d = |3+x|$

b)$d = sqrt {(-3-x)^2 + (2-y)^2}$

Step 1
1 of 5
$(x,y)$

$$
(-3,y)
$$

a) We are given the points:
Step 2
2 of 5
$d=sqrt{(-3-x)^2+(y-y)^2}$

$d=sqrt{(x+3)^2}$

$$
d=|x+3|
$$

We determine the distance between the two points using the Distance Formula:

$d=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$.

Step 3
3 of 5
$(x,y)$

$$
(-3,2)
$$

b) We are given the points:
Step 4
4 of 5
$d=sqrt{(-3-x)^2+(2-y)^2}$

$d=sqrt{(x+3)^2+(y-2)^2}$

We determine the distance between the two points using the Distance Formula:
Result
5 of 5
a) $d=|x+3|$

b) $d=sqrt{(x+3)^2+(y-2)^2}$

Exercise 105
Step 1
1 of 7
From the given figure, we can conclude the following things :
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/47ae2ea7-a8ee-4b50-b266-e2fa4425cf27-1623975018960262.png)

Step 2
2 of 7
$a$.
Since we know that the external angle is equal to the sum of interior opposite angles. Thus, $angle POQ$ can be expressed in terms of $alpha$ and $beta$ as follows :
$$m (angle POQ ) = alpha – beta rightarrow (1)$$
Step 3
3 of 7
$b$.
Method 1 $rightarrow$ “Distance Formula”
Method 1 $rightarrow$ “Law of cosines”
Step 4
4 of 7
$c$.
Coordinate of $P rightarrow (cos alpha, sin alpha)$.

Coordinate of $Q rightarrow (cos beta, sin beta)$

Step 5
5 of 7
$d$.
Using Pythagorean indentity and substitute the value of the coordinate, we get
$$begin{aligned}
d&= sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}\
PQ&= sqrt{(cos beta – cos alpha)^2+ (sin beta – sin alpha)^2}\
PQ&= sqrt{cos^2beta + cos^2 beta – 2 cosalpha cos beta + sin^2 beta + sin^2alpha- 2sinalphasin beta}\
&boxed{PQ=sqrt{2 – 2sin alpha sin beta – 2 cos alpha cos beta}} rightarrow (sin^2 x + cos^2 = 1)\
end{aligned}$$
Step 6
6 of 7
$e$.
Using law of cosines to write an expression for the length of side $PQ$.
Since it is an unit circle , the radius $OP$ & $OQ$ will be of one unit.
$$begin{aligned}
PQ^2&= OP^2 + OQ^2-2(OP)(OQ)cos(angle POQ)\
text{Substituting the values, }\
PQ^2&= (1)^2 + (1)^2 – 2(1)(1) cos (alpha – beta) rightarrow(text{ From} (1))\
PQ^2&= 2 – 2 cos (alpha – beta)
text{Taking square root both sides,}\
PQ&= pmsqrt{2 – 2cos (alpha – beta) }
end{aligned}$$
Step 7
7 of 7
$f$.
Using the result of the item $d$ and $e$ :
$$2 – 2 sin alpha sin beta – 2 cos alpha cos beta = 2 – 2 cos (alpha – beta)$$
$$cos (alpha – beta) = cos alpha cos beta + sin alpha sin beta$$
Exercise 106
Step 1
1 of 2
We know,
$$cos (alpha – beta) = cos alpha cos beta + sin alpha sin beta$$

Danny and Damian want to know the formula of $cos (alpha + beta)$ Damian has proposed to rewrite the above expression as
$$cos [alpha – (-beta)]$$

Accordingly,

$$cos [alpha – (-beta)]= cos alpha cos (-beta) + sin alpha sin (-beta)$$

Now, sine is an odd function and cosine an even one.
This implies

$sin (-x) = -sin x$ and $cos (-x) = cos x$

Therefore in our equation above $sin (-beta) = -sin beta$ and $cos (-beta) = cos beta$

Therefore,

$$begin{aligned}
cos [alpha – (-beta)]&= cos alpha cos (-beta) + sin alpha sin (-beta) \
&= cos alpha cos (beta) + sin alpha [-sin (beta)] \
&=cos alpha cos beta – sin alpha sin beta \
end{aligned}$$

Thus we have

$$boxed{cos (alpha + beta) = cos alpha cos beta – sin alpha sin beta}$$

Result
2 of 2
$cos (alpha + beta) = cos alpha cos beta – sin alpha sin beta$
Exercise 107
Step 1
1 of 3
a. Danny is thinking of the complimentary identity of sine and cosine.

$$cos left(dfrac{pi}{2} -thetaright) = sin (theta)$$

and

$$sin left(dfrac{pi}{2} -thetaright) = cos (theta)$$

Step 2
2 of 3
b. We can use the above identity above to write the Angle Sum identity for sine i.e. $sin (alpha + beta)$

Now we know,

$sin (theta) = cos left(dfrac{pi}{2} -thetaright)$ and

$cos (alpha – beta) = cos alpha cos beta + sin alpha sin beta$

Therefore,
$$begin{aligned}
sin (alpha + beta) &= cos left(dfrac{pi}{2} -[alpha + beta]right) \\
&=cos left(dfrac{pi}{2} – alpha – betaright) \\
&=cos left([dfrac{pi}{2} – alpha] – betaright) \\
&=cos left(dfrac{pi}{2} -alpharight) cos beta + sin left(dfrac{pi}{2} -alpharight) sin beta \\
&=sin alpha cos beta + cos alpha sin beta \
end{aligned}$$

Therefore, we have the Angle Sum Identity for sine,

$$boxed{sin (alpha + beta)=sin alpha cos beta + cos alpha sin beta}$$

Step 3
3 of 3
c. We now know,
$$sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta$$

Danny and Damian want to know the formula of $sin (alpha – beta)$
We can rewrite the above expression as
$$sin [alpha + (-beta)]$$

Accordingly,

$$sin [alpha + (-beta)]= sin alpha cos (-beta) + cos alpha sin (-beta)$$

Now, sine is an odd function and cosine an even one.
This implies

$sin (-x) = -sin x$ and $cos (-x) = cos x$

Therefore in our equation above $cos (-beta) = cos beta$ and $sin (-beta) = -sin beta$

Therefore,

$$begin{aligned}
sin [alpha + (-beta)]&= sin alpha cos (-beta) + cos alpha sin (-beta) \
&= sin alpha cos (beta) + cos alpha [-sin (beta)] \
&=sin alpha cos beta – cos alpha sin beta \
end{aligned}$$

Thus we have the Angle Difference identity,

$$boxed{sin (alpha – beta) = sin alpha cos beta – cos alpha sin beta}$$

Exercise 108
Step 1
1 of 3
Solution to this example is given below

First we solve $textbf{sine }$ of $boldsymbol{frac{pi}{12}}$

$$
begin{align*}
&sin left(frac{frac{pi }{6}}{2}right)&&boxed{text{Simplify}}\
&sqrt{frac{1-cos left(frac{pi }{6}right)}{2}}&&boxed{text{Using the half angle identity}}\
&sqrt{frac{1-frac{sqrt{3}}{2}}{2}}&&boxed{text{Use the following trivial identity}}\
&frac{sqrt{2-sqrt{3}}}{sqrt{4}}&&boxed{text{Apply radical rule}}\
&frac{sqrt{2-sqrt{3}}}{sqrt{2^2}}&&boxed{text{Factor the number: }4=2^2}\
&frac{sqrt{2-sqrt{3}}}{2}&&boxed{text{Simplify}}\
end{align*}
$$

Step 2
2 of 3
Second we solve $textbf{cosine }$ of $boldsymbol{frac{pi}{12}}$

$$
begin{align*}
&cos left(frac{frac{pi }{6}}{2}right)&&boxed{text{Simplify}}\
&sqrt{frac{1+cos left(frac{pi }{6}right)}{2}}&&boxed{text{Using the half angle identity}}\
&sqrt{frac{1+frac{sqrt{3}}{2}}{2}}&&boxed{text{Use the following trivial identity}}\
&frac{sqrt{2+sqrt{3}}}{sqrt{4}}&&boxed{text{Apply radical rule}}\
&frac{sqrt{2+sqrt{3}}}{sqrt{2^2}}&&boxed{text{Factor the number: }4=2^2}\
&frac{sqrt{2+sqrt{3}}}{2}&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}sinfrac{pi}{12}=frac{sqrt{2-sqrt{3}}}{2}, cosfrac{pi}{12}=frac{sqrt{2+sqrt{3}}}{2}} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{Using:the:half:angle:identity}:quad sin left(frac{x}{2}right)=sqrt{frac{1-cos left(xright)}{2}}}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:radical:rule:}sqrt[n]{frac{a}{b}}=frac{sqrt[n]{a}}{sqrt[n]{b}},:quad mathrm{:assuming:}age :0,:bge :0}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:the:fraction:rule}:quad frac{frac{b}{c}}{a}=frac{b}{c:cdot :a} }
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:radical:rule}:quad sqrt[n]{a^n}=a }
$$

Result
3 of 3
$$
color{#4257b2} text{ }sinfrac{pi}{12}=frac{sqrt{2-sqrt{3}}}{2}, cosfrac{pi}{12}=frac{sqrt{2+sqrt{3}}}{2}
$$
Exercise 109
Solution 1
Solution 2
Step 1
1 of 3
a) Using the formula

$$
begin{align*}
color{#c34632}{sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta} tag{$star$}
end{align*}
$$

Now, we can write

$$
begin{align*}
sin frac {7 pi}{12} &= sin left( frac {4 pi}{12} + frac {3 pi}{12} right)\
&= sin left( frac {pi}{3} + frac {pi}{4} right)\
&overset{(star)}= sin frac {pi}{3} cos frac {pi}{4} + cos frac {pi}{3} sin frac {pi}{4}\
&= frac {sqrt 3}{2} cdot frac {sqrt 2}{2} + frac 12 frac {sqrt 2}{2}\
&= frac {sqrt 6}{4} + frac {sqrt 2}{4}\
&= frac {sqrt 6 + sqrt 2}{4}
end{align*}
$$

Step 2
2 of 3
b) Using the formula

$$
color{#c34632}{ cos ( alpha + beta) = cos alpha cos beta – sin alpha sin beta}
$$

Now, we can write

$$
begin{align*}
cos left( frac {11 pi}{12} right) &= cos left( frac {8 pi}{12} + frac {3 pi}{12} right)\
&= cos left( frac {2 pi}{3} + frac {pi}{4} right)\
&= cos frac {2 pi}{3} cos frac{pi}{4} – sin frac {2 pi}{3} sin frac {pi}{4}\
&= – frac 12 cdot frac {sqrt 2}{2} – frac {sqrt 3}{2} cdot frac {sqrt 2}{2}\
&= – frac {sqrt 2}{4} – frac {sqrt 6}{4}\
&= frac {- sqrt 2 – sqrt 6}{4}
end{align*}
$$

Result
3 of 3
a) $sin frac {7 pi}{12} = frac {sqrt 6 + sqrt 2}{4}$

b) $cos left( frac {11 pi}{12} right) = frac {- sqrt 2 – sqrt 6}{4}$

Step 1
1 of 7
$$
sindfrac{7pi}{12}
$$
a) We are given:
Step 2
2 of 7
$sindfrac{7pi}{12}=sinleft(dfrac{3pi}{12}+dfrac{4pi}{12}right)$

$$
=sinleft(dfrac{pi}{4}+dfrac{pi}{3}right)
$$

We have:
Step 3
3 of 7
$sinleft(dfrac{pi}{4}+dfrac{pi}{3}right)$

$=sindfrac{pi}{4}cos dfrac{pi}{3}+cos dfrac{pi}{4}sin dfrac{pi}{3}$

$=dfrac{sqrt 2}{2}cdot dfrac{1}{2}+dfrac{sqrt 2}{2}cdot dfrac{sqrt 3}{2}$

$$
=dfrac{sqrt 2+sqrt 6}{4}
$$

We use the Sum Identity:

$sin(x+y)=sin xcos y+cos xsin y$.

Step 4
4 of 7
$$
cosdfrac{11pi}{12}
$$
b) We are given:
Step 5
5 of 7
$cosdfrac{11pi}{12}=cosleft(dfrac{3pi}{12}+dfrac{8pi}{12}right)$

$$
=cosleft(dfrac{pi}{4}+dfrac{2pi}{3}right)
$$

We have:
Step 6
6 of 7
$cosleft(dfrac{pi}{4}+dfrac{2pi}{3}right)$

$=cosdfrac{pi}{4}cos dfrac{2pi}{3}-sin dfrac{pi}{4}sin dfrac{2pi}{3}$

$=dfrac{sqrt 2}{2}left(-dfrac{1}{2}right)-dfrac{sqrt 2}{2}cdot dfrac{sqrt 3}{2}$

$$
=-dfrac{sqrt 2+sqrt 6}{4}
$$

We use the Sum Identity:

$cos(x+y)=cos xcos y-sin xsin y$.

Result
7 of 7
a) $dfrac{sqrt 2+sqrt 6}{4}$

b) $-dfrac{sqrt 2+sqrt 6}{4}$

Exercise 110
Step 1
1 of 5
We have the Angle sum identity of both Cosine and Sine.

$$cos (alpha + beta) = cos alpha cos beta – sin alpha sin beta$$
and
$$sin (alpha + beta) = sin alpha cos beta + cos alpha sin beta$$

We can write
$$sin(2x) = sin(x+x)$$
and
$$cos(2x) =cos(x+x)$$

Step 2
2 of 5
First we will solve for $sin(x+x)$
$$begin{aligned}
sin(x+x)&=sin x cos x + cos x sin x\
&=sin x cos x + sin x cos x \
&=2sin x cos x \
end{aligned}$$

Therefore, we have the identity,
$$boxed{sin(x+x)=2sin x cos x }$$

Step 3
3 of 5
Now we will solve for $cos(x+x)$
$$begin{aligned}
cos(x+x)&=cos x cos x sin x sin x\
&=cos^2 x – sin^2 x \
end{aligned}$$

Therefore, we have the identity,
$$boxed{cos(x+x)=cos^2 x – sin^2 x}$$

Step 4
4 of 5
We have derived $cos(x+x)=cos^2 x – sin^2 x$ above.

We also know the Pythagorean identity i.e.
$$cos^2 x + sin^2 x=1$$

This can be rewritten as,

$$cos^2 x =1- sin^2 x$$

Substituting this in the identity of $cos (2x)$
$$begin{aligned}
cos(2x)&= cos^2 x – sin^2 \
&=1- sin^2 x- sin^2 x \
&=1- 2sin^2 x
end{aligned}$$

Therefore, we have the identity,
$$boxed{cos(x+x)=1 – 2sin^2 x}$$

Step 5
5 of 5
Similarly, the Pythagorean identity can be rewritten as,

$$ sin^2 x =1 – cos^2 x $$

Substituting this in the identity of $cos (2x)$
$$begin{aligned}
cos(2x)&= cos^2 x – (1 – cos^2 x) \
&=cos^2 x – 1+ cos^2 x) \
&=2cos^2 x – 1 \
end{aligned}$$

Therefore, we have the identity,
$$boxed{cos(x+x)=2cos^2 x – 1}$$

Exercise 111
Step 1
1 of 4
a. We are given the function

$$f(x)=cosleft(x+dfrac{pi}{2}right)$$

We can graph the function as follows:

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/5d24cb92-20ab-47e6-abb6-33600ff27641-1622129703354327.png)

Step 2
2 of 4
b. We know that cosine is negative in the second quadrant. Also, cosine and sine are complementary to each other. This implies

$$cosleft(theta+dfrac{pi}{2}right) = -sin (theta)$$

Therefore,
$$cosleft(x+dfrac{pi}{2}right) = – sin (x)$$

Step 3
3 of 4
c. We will now apply the Angle Sum Identity os cosine. First, we will write down the identity. \

$$cos (alpha + beta) = cos alpha cos beta – sin alpha sin beta$$

It must be noted

$cosleft(dfrac{pi}{2}right) = 0$ and $sinleft(dfrac{pi}{2}right) = 1$

Now solving our function as per the Angle Sum Identity of cosine

$$begin{aligned}
cosleft(x+dfrac{pi}{2}right) &= cos (x) cosleft(dfrac{pi}{2}right) – sin (x) sinleft(dfrac{pi}{2}right) \\
&=cos x times 0 – sin (x) times 1 \
&= – sin(x)
end{aligned}$$

Therefore we have

$$cosleft(x+dfrac{pi}{2}right) = – sin (x)$$

We will graph $- sin(x)$

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/e39ba7c4-477b-444e-a3cf-3f0d459654d1-1622130420871940.png)

Step 4
4 of 4
d. It is clear from the graphs that we made in part a and part b and the expansion of the function in part c that the expansion confirms the conclusion that we have reached. The simpler trigonometric function of our function in question is $-sin (x)$. This is the same as the conclusion that we have reached when we expanded our function in question in part c above.
Exercise 112
Step 1
1 of 5
We are given the expression

$$dfrac{cos(x)}{1 – tan(x)} – dfrac{sin(x)}{cot (x) -1} $$

We know

$tan (theta) = dfrac{sin (theta)}{cos (theta)}$

and

$cot (theta) = dfrac{cos (theta)}{sin (theta)}$

The expression has two parts. We will solve these parts separately.

Step 2
2 of 5
First, we will solve the first one which is

$$dfrac{cos(x)}{1 – tan(x)}$$

Simplifying it we get

$$begin{aligned}
dfrac{cos(x)}{1 – tan(x)} &= dfrac{cos(x)}{1 – frac{sin (x)}{cos (x)}} \\
&= dfrac{cos(x)}{frac{cos (x)-sin (x)}{cos (x)}} \\
&= dfrac{cos(x) times cos (x)}{cos (x)-sin (x)} \\
&= dfrac{cos^2(x) }{cos (x)-sin (x)} \
end{aligned}$$

Therefore we have,
$$dfrac{cos(x)}{1 – tan(x)}=dfrac{cos^2(x) }{cos (x)-sin (x)}$$

Step 3
3 of 5
First, we will solve the second one which is

$$dfrac{sin(x)}{cot(x)-1}$$

Simplifying it we get

$$begin{aligned}
dfrac{sin(x)}{cot(x)-1}&= dfrac{sin(x)}{frac{cos (x)}{sin (x)}-1} \\
&= dfrac{sin(x)}{frac{cos (x)-sin (x)}{sin (x)}} \\
&= dfrac{sin(x) times sin (x)}{cos (x)-sin (x)} \\
&= dfrac{sin^2(x) }{cos (x)-sin (x)} \
end{aligned}$$

Therefore we have,
$$dfrac{sin(x)}{cot(x)-1}=dfrac{sin^2(x) }{cos (x)-sin (x)}$$

Step 4
4 of 5
Now we will subtract the resultant equation in Step 4 from the one in Step 3.
$$dfrac{cos^2(x) }{cos (x)-sin (x)} – dfrac{sin^2(x) }{cos (x)-sin (x)}$$

We must note that $a^2 – b^2 = (a-b)(a+b)$

Simplifying our equation we get

$$begin{aligned}
dfrac{cos^2(x) }{cos (x)-sin (x)} – dfrac{sin^2(x) }{cos (x)-sin (x)} &= dfrac{cos^2(x)-sin^2(x) }{cos (x)-sin (x)} \\
&=dfrac{[cos(x)-sin(x)][cos(x)+sin(x)] }{cos (x)-sin (x)} \\
&=cos(x)+sin(x)\\
end{aligned}$$

Therefore we have

$$boxed{dfrac{cos(x)}{1 – tan(x)} – dfrac{sin(x)}{cot (x) -1}=cos(x)+sin(x)}$$

Result
5 of 5
$$dfrac{cos(x)}{1 – tan(x)} – dfrac{sin(x)}{cot (x) -1}=cos(x)+sin(x)$$
Exercise 113
Step 1
1 of 14
$$
begin{cases}
-4x=z-2y+12\
y+z=12-x\
8x-3y+4z=1
end{cases}
$$
a) We are given the system:
Step 2
2 of 14
$$
begin{cases}
-4x+2y-z=12\
x+y+z=12\
8x-3y+4z=1
end{cases}
$$
We rewrite the system in standard form:
Step 3
3 of 14
$$
begin{cases}
-4x+2y-z+x+y+z=12+12\
-16x+8y-4z+8x-3y+4z=48+1
end{cases}
$$

$$
begin{cases}
-3x+3y=24\
-8x+5y=49
end{cases}
$$

$$
begin{cases}
-x+y=8\
-8x+5y=49
end{cases}
$$

We add the first two equations. We multiply the first equation by 4 and add it to the third equation:
Step 4
4 of 14
$5x-5y-8x+5y=8(-5)+49$

$-3x=9$

$$
textcolor{#4257b2}{x=-3}
$$

We multiply the first equation by -5 and add it to the second:
Step 5
5 of 14
$-x+y=8$

$-(-3)+y=8$

$3+y=8$

$y=8-3$

$$
textcolor{#4257b2}{y=5}
$$

We determine $y$:
Step 6
6 of 14
$y+z=12-x$

$5+z=12-(-3)$

$z=15-5$

$$
textcolor{#4257b2}{z=10}
$$

We determine $z$:
Step 7
7 of 14
$x=-3$

$y=5$

$$
z=10
$$

The solution is:
Step 8
8 of 14
$$
begin{cases}
3x+y-2z=6\
x+2y+z=7\
6x+2y-4z=12
end{cases}
$$
b) We are given the system:
Step 9
9 of 14
$$
begin{cases}
3x+y-2z=6\
x+2y+z=7\
-3x-y+2z=-6
end{cases}
$$
We divide the last equation by -2:
Step 10
10 of 14
$3x+y-2z-3x-y+2z=6-6$

$$
0=0
$$

We add the first and the last equation:
Step 11
11 of 14
$$
begin{cases}
3x+y=2k+6\
x+2y=7-k
end{cases}
$$
The system has an infinity of solutions. We note:

$$
z=k
$$

Step 12
12 of 14
$3x+y-3x-6y=2k+6-21+3k$

$-5y=5k-15$

$y=3-k$

$$
x=7-k-2(3-k)=7-k-6+2k=1+k
$$

We multiply the second equation by $-3$ and add it to the first:
Step 13
13 of 14
$x=1+k$

$y=3-k$

$z=k, k$ real number

The solution is:
Step 14
14 of 14
c) The system $(b)$ has an infinity of solutions.
Exercise 114
Step 1
1 of 7
Black: 60

Red: 240

a) We are given:
Step 2
2 of 7
$$
P(black)=dfrac{60}{60+240}=dfrac{60}{300}=dfrac{1}{5}
$$
We determine the probability to draw a black jellybean:
Step 3
3 of 7
Black: $60+60=120$

Red: $240$

b) We are given:
Step 4
4 of 7
$$
P(black)=dfrac{60+60}{60+60+240}=dfrac{120}{360}=dfrac{1}{3}
$$
We determine the probability to draw a black jellybean:
Step 5
5 of 7
$P(black)=dfrac{x+60}{x+60+240}$

$dfrac{x+60}{x+300}=2cdotdfrac{1}{5}$

$dfrac{x+60}{x+300}=dfrac{2}{5}$

$5(x+60)=2(x+300)$

$5x+300=2x+600$

$5x-2x=600-300$

$3x=300$

$x=dfrac{300}{3}$

$$
x=100
$$

c) Let’s note:

$x$=the number of black jellybeans that must be added so that the probability to draw a black one is doubled.

We determine the probability to draw a black jellybean:

Step 6
6 of 7
$dfrac{x+60}{x+300}=dfrac{2}{5}$
d) The equation in part $(c)$ is:
Result
7 of 7
a) $dfrac{1}{5}$

b) $dfrac{1}{3}$

c) $100$;

d) $dfrac{x+60}{x+300}=dfrac{2}{5}$

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New