Core Connections Integrated 3
Core Connections Integrated 3
1st Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283939
Textbook solutions

All Solutions

Page 53: Questions

Exercise 1
Step 1
1 of 7
$y=a(x-h)^2+k$          (Given)
Step 2
2 of 7
The parameter $a$ affects the orientation of the graph:

If $a>0$ the parabola opens upwards.

If $a0$ The shift is upwards.

If $k0$ The shift is to the left.

If $h1$ the parabola is stretched.

If $a<1$ the parabola is compressed.

Step 3
3 of 7
The values for $a>1$ stretch the graph vertically. because they increase the value of $y$

The values for $a<1$ compress the graph vertically. because they decrease the value of $y$

Step 4
4 of 7
The sign of $a$ flip the graph vertically.
Step 5
5 of 7
The values of $h$ shift the graph left or right.

If $h>0$ The shift is to the left.

If $h<0$ The shift is to the right.

Step 6
6 of 7
The values of $k$ shift the graph up or down.

If $k>0$ The shift is upwards.

If $k<0$ The shift is downwards.

Result
7 of 7
If $a>0$ the parabola opens upwards.

If $a0$ The shift is upwards.

If $k0$ The shift is to the left.

If $h1$ the parabola is stretched.

If $a<1$ the parabola is compressed.

Exercise 2
Step 1
1 of 8
a-

$y=(x+9)^2$          (Given)

The coordinates of the vertex is:          $(-9, 0)$

$a=1>0$          the graph opens up.

$a=1$          There is neither vertical stretch nor compression.

Step 2
2 of 8
b-

$y=x^2+7$          (Given)

The coordinates of the vertex is:          $(0, 7)$

$a=1>0$          the graph opens up.

$a=1$          There is neither vertical stretch nor compression.

Step 3
3 of 8
c-

$y=3x^2$          (Given)

The coordinates of the vertex is:          $(0, 0)$

$a=3>0$          the graph opens up.

$a=3>1$          There is a vertical stretch with the factor of 3.

Step 4
4 of 8
d-

$y=dfrac {1}{3}(x-1)^2$          (Given)

The coordinates of the vertex is:          $(1, 0)$

$a=dfrac {1}{3}>0$          the graph opens up.

$a=dfrac {1}{3}>1$          There is a vertical compression with the factor of $dfrac {1}{3}$.

Step 5
5 of 8
e-

$y=-(x-7)^2+6$          (Given)

The coordinates of the vertex is:          $(7, 6)$

$a=-1<0$          the graph opens down.

$a=-1$          There is neither vertical stretch nor compression.

Step 6
6 of 8
f-

$y=2(x+3)^2-8$          (Given)

The coordinates of the vertex is:          $(-3, -8)$

$a=2>0$          the graph opens up.

$a=2>1$          There is a vertical stretch with the factor of 2.

Step 7
7 of 8
The graphs of the functions demonstrates that there is no mistakes in the predictions.Exercise scan
Result
8 of 8
a-          Vertex is: $(-9, 0)$. Opens up. There is no stretch or compression.

b-          Vertex is: $(0, 7)$. Opens up. There is no stretch or compression.

c-          Vertex is: $(0, 0)$. Opens up. There is a stretch with the factor of 3.

d-          Vertex is: $(1, 0)$ Opens up. The compression is with a factor of $dfrac {1}{3}$

e-          Vertex is: $(7, 6)$ Opens down. There is no stretch or compression.

f-          Vertex is: $(-3, -8)$ Opens up. There is a stretch with the factor of 2.

Exercise 3
Step 1
1 of 4
The vertex form of the quadratic equation is $y=a(x-h)^2+k$ where the point $(h, k)$ is the vertex of the graph.
Step 2
2 of 4
a-

$y=(x-7)^2-2$          (Given)

$a=1$

$h=7$

$k=-2$

The vertex is the point $(7, -2)$

$a=1>0$. The parabola opens up.

Exercise scan

Step 3
3 of 4
b-

$y=0.5(x+3)^2+1$          (Given)

$a=0.5$

$h=-3$

$k=1$

The vertex is the point $(-3, 1)$

$a=1>0$. The parabola opens up.

Exercise scan

Result
4 of 4
a-          Vertex is the point $(7, -2)$          $a=1>0$. The parabola opens up.

b-          Vertex is the point $(-3, 1)$          $a=1>0$. The parabola opens up.

Exercise 4
Step 1
1 of 6
a-

$y=2x^2+4x-30$          (Given)

$a=2>0$, So, the parabola opens upwards.

We can reflect the parabola to open in the opposite way by multiplying it by -1.

Step 2
2 of 6
b-

The stretch factor of $y=2x^2+4x-30$ is 2.

To justify this, we convert it to the graphing form.

$y=2x^2+4x-30$

$y=2(x^2+2x-15)$

$y=2(x^2+2x+1-1-15)$

$y=2(x^2+2x+1-16)$

$y=2(x^2+2x+1)-32$

$$
y=2(x+1)^2-32
$$

The stretch factor $a=2$

Step 3
3 of 6
c-

It is not possible to identify the vertex of $y=2x^2+4x-30$ by looking at the equation.

We can conclude the vertex as follows:

x-coordinate of the vertex can be calculated by the formula:

$x=dfrac {-b}{2a}$

$x=dfrac {-4}{2 cdot 2}=-1$

y-coordinate of the vertex is $y(-1)$:

$y(-1)=2-4-30=-32$

The vertex is the point $(-1, -32)$

Step 4
4 of 6
i.          x-intercepts $rightarrow y=0$

$2x^2+4x-30=0$

$$
(2x-6)(x+5)=0
$$

$2x-6=0$ or $x+5=$

x-intercepts are $x=3$ and $x=-5$

ii.          The vertex is located in the middle between the x-intercepts.

x-coordinate of the vertex is:

$x=dfrac {3-5}{2}=-1$

iii.          y-coordinate of the vertex is $y(-1)$:

$y(-1)=2-4-30=-32$

The vertex is the point $(-1, -32)$

Step 5
5 of 6
d-

The graphing form of the equation is:

$$
y=2(x+1)^2-32
$$

Exercise scan

Result
6 of 6
a-          $a=2>0$, So, the parabola opens upwards.

b-          The stretch factor of $y=2x^2+4x-30$ is 2.

c-          It is not possible to identify the vertex by looking at the standard form of the equation.

i.          x-intercepts are $x=3$ and $x=-5$

ii.          The vertex is located in the middle between the x-intercepts.

iii.          y-coordinate of the vertex is $y(-1)$:

Exercise 5
Step 1
1 of 5
a-

$p(x)=x^2-10x+16$          (Write the equation)

x-coordinate of the vertex: $x=dfrac {-b}{2a}$

$x=dfrac {10}{2}=5$

y-coordinate of the vertex $p(5)$

$p(5)=5^2-10(5)+16$

$p(5)=25-50+16=-9$

The vertex is $(5, -9)$

The graphing form of the equation is:

$$
p(x)=(x-5)^2-9
$$

Exercise scan

Step 2
2 of 5
b-

$f(x)=x^2+3x-10$          (Write the equation)

x-coordinate of the vertex: $x=dfrac {-b}{2a}$

$x=dfrac {-3}{2}=-dfrac {3}{2}$

y-coordinate of the vertex $f(-dfrac {3}{2})$

$f(-dfrac {3}{2})=dfrac {9}{4}-dfrac {9}{2}-10$

$f(-dfrac {3}{2})=dfrac {9}{4}-dfrac {18}{4}-dfrac {40}{4}=-dfrac {49}{4}$

The vertex is $(-dfrac {3}{2}, qquad -dfrac {49}{4})$

The graphing form of the equation is:

$$
f(x)=left(x+dfrac {3}{2} right)^2-dfrac {49}{4}
$$

Exercise scan

Step 3
3 of 5
c-

$g(x)=x^2-4x-2$          (Write the equation)

x-coordinate of the vertex: $x=dfrac {-b}{2a}$

$x=dfrac {4}{2}=2$

y-coordinate of the vertex $g(2)$

$g(2)=4-8-2$

$g(2)=-6$

The vertex is $(2, -6)$

The graphing form of the equation is:

$$
g(x)=(x-2)^2-6
$$

Exercise scan

Step 4
4 of 5
d-

$h(x)=-4x^2+4x+8$          (Write the equation)

x-coordinate of the vertex: $x=dfrac {-b}{2a}$

$x=dfrac {-4}{-8}=dfrac {1}{2}$

y-coordinate of the vertex $h(dfrac {1}{2})$

$h(dfrac {1}{2})=-4 times dfrac {1}{4}+4 times dfrac {1}{2}+8$

$h(2)=-1+2+8=9$

The vertex is $left(dfrac {1}{2}, 9 right)$

The graphing form of the equation is:

$$
g(x)=left(x-dfrac {1}{2} right)^2+9
$$

Exercise scan

Result
5 of 5
a-          $p(x)=(x-5)^2-9$

b-          $f(x)=left(x+dfrac {3}{2} right)^2-dfrac {49}{4}$

c-          $g(x)=(x-2)^2-6$

d-          $g(x)=left(x-dfrac {1}{2} right)^2+9$

Exercise 6
Step 1
1 of 6
a-

$y^2-6y=0$          (Write the equation)

$y(y-6)=0$          (Factor out $y$)

$y=0$ or $y=6$

Step 2
2 of 6
b-

$n^2+5n+7=7$          (Write the equation)

$n(n+5)=7-7$          (Factor out $n$

$n(n+5)=0$

$n=0$ or $n=-5$

Step 3
3 of 6
c-

$2t^2-14t+3=3$          (Write the equation)

$2t(t-7)=3-3$          (Factor out $2t$

$2t(t-7)=0$

$t=0$ or $t=7$

Step 4
4 of 6
d-

$dfrac {1}{3}x^2+3x-4=-4$          (Write the equation)

$dfrac {1}{3}x cdot (x+9)=4-4$          (Factor out $dfrac {1}{3}x$

$dfrac {1}{3}x cdot (x+9)=0$

$x=0$ or $x=-9$

Step 5
5 of 6
e-

All the above equations after rearranging their terms have the parameter $c=0$

and that what makes the zero is on of the solutions of each of them.

Result
6 of 6
a-          $y=0$ or $y=6$

b-          $n=0$ or $n=-5$

c-          $t=0$ or $t=7$

d-          $x=0$ or $x=-9$

Exercise 7
Step 1
1 of 5
a-

$y=(x-3)(x-11)$          (Given)

For x-intercepts, $y=0$

$(x-3)(x-11)=0$

x-intercepts are $x=3$ and $x=11$

$x$ coordinate of the vertex $=dfrac {11+3}{2}=7$

$y$ coordinate of the vertex $y(7)=(7-3)(7-11)=4 cdot -4=-16$

The vertex is: $(7, -16)$

The graphing form of the equation is:

$$
y=(x-7)^2-16
$$

Step 2
2 of 5
b-

$y=(x+2)(x-6)$          (Given)

For x-intercepts, $y=0$

$(x+2)(x-6)=0$

x-intercepts are $x=-2$ and $x=6$

$x$ coordinate of the vertex $=dfrac {-2+6}{2}=2$

$y$ coordinate of the vertex $y(2)=(2+2)(2-6)=4 cdot -4=-16$

The vertex is: $(2, -16)$

The graphing form of the equation is:

$$
y=(x-2)^2-16
$$

Step 3
3 of 5
c-

$y=x^2-14x+40$          (Given)

$y=(x-4)(x-10)$          (Factoring)

For x-intercepts, $y=0$

$(x-4)(x-10)=0$

x-intercepts are $x=4$ and $x=10$

$x$ coordinate of the vertex $=dfrac {4+10}{2}=7$

$y$ coordinate of the vertex $y(7)=7^2-14(7)+40=49-98+40=-9$

The vertex is: $(7, -9)$

The graphing form of the equation is:

$$
y=(x-7)^2-9
$$

Step 4
4 of 5
d-

$y=(x-2)^2-1$          (Given)

The equation is in the graphing form.

The vertex is: $(2, -1)$

Result
5 of 5
a-          Vertex: $(7, -16)$                   Graphing Form:          $y=(x-7)^2-16$

b-          Vertex: $(2, -16)$                   Graphing Form:          $y=(x-2)^2-16$

c-          Vertex: $(7, -9)$                   Graphing Form:          $y=(x-7)^2-9$

a-          Vertex: $(2, -1)$                   Equation is in the Graphing Form.

Exercise 8
Step 1
1 of 4
We do not need to average the x-intercept to find the vertex in part (d) of the preceding problem. because the equation is given in the vertex form that uses the coordinates of the vertex as a parameters of it.
Step 2
2 of 4
a-          the coordinates of the vertex is :         $(2, -1)$
Step 3
3 of 4
b-          If an equation is in the vertex form $y=a(x-h)^2+k$. then the vertex coordinates are: $(h, k)$

In this problem $h=2$ and $k=-1$

Result
4 of 4
We do not need to average the x-intercepts to find the vertex.

a-          The vertex is $(2, -1)$

b-          If an equation is in the vertex form $y=a(x-h)^2+k$. then the vertex coordinates are: $(h, k)$

Exercise 9
Step 1
1 of 5
a.

Let us calculate $x$. We use trigonometric rations and get

$$
sin 15^{circ} = frac{text{opposite leg}}{text{hypotenuse}} = frac{x}{20}.
$$

Therefore,
$$
x=20 cdot sin 15^{circ}.= 20 cdot 0,2588 = 5,176.
$$

We can conclude
$$
color{#c34632} x=5,176.
$$

Exercise scan

Step 2
2 of 5
b.

Let us calculate $x$. We use trigonometric rations and get

$$
tan15^{circ} = frac{text{opposite leg}}{text{adjacent leg}} = frac{5}{x}.
$$

Therefore,
$$
x=frac{5}{tan15^{circ}}.= frac{5}{0,268} = 18, 657.
$$

We can conclude
$$
color{#c34632} x=18,657.
$$

Exercise scan

Step 3
3 of 5
c.

Let us calculate $theta$. We use trigonometric rations and get

$$
cos theta = frac{text{adjacent leg}}{text{hypotenuse}} = frac{10}{11} = 0,9.
$$

Therefore,
$$
theta = arccos {0,9} = 24,62^{circ}.
$$

We can conclude
$$
color{#c34632} theta=24,62^{circ}.
$$

Exercise scan

Step 4
4 of 5
d.

Let us calculate $x$. This time we can use the Pythagorean theorem and calculate the missing side of the given triangle. Now we have

$$
begin{align*}
x^2 &= 6^2+12^2 \ x^2 &= 36+144 \ x^2 &= 180 \ x&= sqrt{180} approx 13,4.
end{align*}
$$

We can conclude
$$
color{#c34632} x=sqrt{180} approx 13,4.
$$

Exercise scan

Result
5 of 5
a. $x=5,176$

b. $x=18,657$

c. $theta = 24,62^{circ}$

d. $x = sqrt{180} approx 13,4$

Exercise 10
Step 1
1 of 2
Ted can solve the system algebraically:

$y=18x-30$          (1)

$y=-22x+50$          (2)

$18x-30=-22x+50$          (Equation both equation)

$18x+22x=50+30$          (Grouping similar terms)

$40x=80$          (Simplify)

$x=2$          (Solve for $x$)

Substituting for $x$ in equation (1):

$y=18(2)-30=36-30=6$

The point of intersection is:          $(2, 6)$

Result
2 of 2
The solution of the system is the point $(2, 6)$
Exercise 11
Step 1
1 of 2
Let us consider
$$
color{#4257b2} 10^{3x}=10^{x-8}.
$$

Since the base is the same number in order for the equality to stand the exponent must be the same too. Thereore

$$
begin{align*}
3x &=x-8 \ 3x-x&=-8 \ 2x &=-8 \ x&=-frac{8}{2} = -4.
end{align*}
$$

Therefore, the solution is
$$
color{#c34632} x=-4.
$$

Let us now check the solution. We have

$$
begin{align*}
10^{3x} &= 10^{3 cdot (-4)} = 10^{-12} \
10^{x-8} &= 10^{-4-8} = 10^{-12}.
end{align*}
$$

Hence, we can conclude that the solution is correct.

Result
2 of 2
$$
x=-4
$$
Exercise 12
Step 1
1 of 3
(a)
The center of Hush Puppy is $58.3$, while the center of Quiet Down is $54.85$
Shape of two cases is parabola that opens downward.
Step 2
2 of 3
(b)
I suggest **Hush Puppy**, because it has the **minimum range**.
Step 3
3 of 3
(c)
This information did not change my opinion, because it gives me the same expectation.
Exercise 13
Step 1
1 of 3
Assuming the jackrabbit start jumping at the point $(0, 0)$ and landing at the point $(8, 0)$

The vertex is the point $(4, 3)$

Considering the function that that represents this situation is:

$y=a(x-h)^2+k$

From the vertex:          $h=4$ and $k=3$

Substituting in the equation with the point $(8, 0)$

$0=a(8-4)^2+3$

$16a=-3$

$$
a=-dfrac {3}{16}
$$

The equation that fits the situation is:

$$
y=-dfrac {3}{16}(x-4)^2+3
$$

Step 2
2 of 3
The graph that represents the situation

By using the regression function in the graphing calculator, we get the same result:

$$
y=-0.1875(x-4)^2+3
$$

Exercise scan

Result
3 of 3
$$
y=-dfrac {3}{16}(x-4)^2+3
$$
Exercise 14
Step 1
1 of 4
From the previous exercise, the model equation is
$$y=-dfrac{3}{16}(x-4)^2+3$$
Its graph is
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/7c7b02ed-2309-4cbf-9474-850f05e68e90-1634863086393664.png)
Step 2
2 of 4
Now for the case in the height of wall equals to $2.5$ ft
Which is mean
$$h=4hspace{1cm}textrm{and}hspace{1cm}k=2.5$$
Substituting by the point $(8,0)$
$$0=a(8-4)+2.5Rightarrow 16a=-2.5Rightarrow a=dfrac{-2.5}{16}$$
The equation will be
$$y=-dfrac{2.5}{16}(x-4)^2+2.5$$
Step 3
3 of 4
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/c3668f07-26d1-4174-83e2-3411c93c4ca7-1634863927437366.png)
Step 4
4 of 4
Therefore, he can clear the wall if his jump is the same height and width as in problem 2-13.
Exercise 15
Step 1
1 of 3
Assuming Ms. Bibbi kicked the ball from the point $(0, 0)$ to the point $(150, 0)$

The vertex is the point $(75, 100)$

Considering the function that that represents this situation is:

$y=a(x-h)^2+k$

From the vertex:          $h=75$ and $k=100$

Substituting in the equation with the point $(0, 0)$

$0=a(0-75)^2+100$

$0=5625a+100$

$$
a=-dfrac {100}{5625}
$$

The equation that fits the situation is:

$$
y=-dfrac {100}{5625}(x-75)^2+100
$$

Step 2
2 of 3
Exercise scan
Result
3 of 3
$$
y=-dfrac {100}{5625}(x-75)^2+100
$$
Exercise 16
Step 1
1 of 3
Assuming The U-Dip widest part extends from the point $(0, 0)$ to the point $(40, 0)$

The vertex is the point $(20, -15)$

Considering the function that that represents this situation is:

$y=a(x-h)^2+k$

From the vertex:          $h=20$ and $k=-15$

Substituting in the equation with the point $(0, 0)$

$0=a(0-20)^2-15$

$0=400a-15$

$400a=15$

$$
a=dfrac {3}{80}
$$

The equation that fits the situation is:

$$
y=dfrac {3}{80}(x-20)^2-15
$$

Step 2
2 of 3
Exercise scan
Result
3 of 3
$$
y=dfrac {3}{80}(x-20)^2-15
$$
Exercise 17
Step 1
1 of 1
To solve this exercise,
1. Write a list of strategies you used,
2. Write decisions that you had to make to create your models.
3. Write the different models that are valid for the same relationship like: Table, graphs, equation.
4. Write an example from this lesson to illustrate your process.
Exercise 18
Step 1
1 of 3
Assuming the barrel (end) is the point $(0, 0)$ and the fire is the point $(120, 0)$

The vertex is the point $(60, 50)$

Considering the function that that represents this situation is:

$y=a(x-h)^2+k$

From the vertex:          $h=60$ and $k=50$

Substituting in the equation with the point $(0, 0)$

$0=a(0-60)^2+50$

$0=3600a+50$

$3600a=-50$

$a=-dfrac {50}{3600}$

$$
a=-dfrac {1}{72}
$$

The equation that fits the situation is:

$$
y=-dfrac {1}{72}(x-60)^2+50
$$

The domain of the function is:          $(0 leq x leq 120)$

The range of the function is:          $(0 leq y leq 50)$

Step 2
2 of 3
Exercise scan
Result
3 of 3
$$
y=-dfrac {1}{72}(x-60)^2+50
$$
Exercise 19
Step 1
1 of 3
* The appropriate unit of time is years.
* The multiplier that should be used is 1.06.
* The initial value is $120,000.
*$f(x)=120,000(1.06)^x$
Step 2
2 of 3
* The appropriate unit of time is hours.
* The multiplier that should be used is 1.22.
* The initial value is 180.
* $f(x)=180(1.22)^x$
Result
3 of 3
a-          $f(x)=120,000(1.06)^x$

b-          $f(x)=180(1.22)^x$

Exercise 20
Step 1
1 of 3
Assuming the triangle is $triangle ABC$ with an exterior angel $=155text{textdegree}$ that is supplementary to $angle ABC$

$overline {AB}=x$          (Given)

$overline {AC}=y$          (Given)

$overline {BC}=3$ units          (Given)

$mangle ABC=180-155=25text{textdegree}$          (A pair of supplementary angles)

$sin B=dfrac {y}{3}=sin 25text{textdegree}$

$dfrac {y}{3}=0.4226$

$y=3 cdot 0.4226=1.2678$

The height of the slide $y=1.2678$ units

$cos B=dfrac {x}{3}=cos 25text{textdegree}=0.9063$

$dfrac {x}{3}=0.9063$

$x=3 cdot 0.9063=2.7189$

The length of the floor covered by the slide $x=2.7189$ units

Step 2
2 of 3
Exercise scan
Result
3 of 3
The height of the slide $y=1.2678$ units

The length of the floor covered by the slide $x=2.7189$ units

Exercise 21
Step 1
1 of 4
a.

Let us solve the given equation
$$
color{#4257b2} frac{3}{x} +6 = -45.
$$

We solve for $x$ and get

$$
begin{align*}
frac{3}{x} +6 = -45 implies frac{3}{x} &= -45-6 \
frac{3}{x} &= -51 \ x &=frac{3}{-51} = -frac{1}{17} approx -0,06.
end{align*}
$$

Therefore, the solution is
$$
color{#c34632} x=-frac{1}{17} approx -0,06.
$$

Step 2
2 of 4
b.

Let us solve the given equation
$$
color{#4257b2} frac{x-2}{5} = frac{10-x}{8}.
$$

We solve for $x$ and get

$$
begin{align*}
frac{x-2}{5} = frac{10-x}{8} implies 8 cdot (x-2) &= 5 cdot (10-x) \
8x -16 &=50-5x \ 8x+5x&=50+16 \ 13x&=66 \ x &=frac{66}{13} approx 5,1.
end{align*}
$$

Therefore, the solution is
$$
color{#c34632} x=frac{66}{13} approx 5,1.
$$

Step 3
3 of 4
c.

Let us solve the given equation
$$
color{#4257b2} (x+1)(x-3)=0.
$$

We can use the Zero Product Property and get

$$
begin{align*}
(x+1)(x-3)=0 implies x+1=0 hspace{3mm} &text{or} hspace{3mm} x-3 = 0 \
x=-1 hspace{3mm} &text{or} hspace{3mm} x=3. end{align*}
$$

Therefore, the solutions are
$$
color{#c34632} x=-1 hspace{3mm} text{color{default}or} hspace{3mm} x=3.
$$

Result
4 of 4
$$
begin{align*}
&text{a.} hspace{3mm} x=-frac{1}{17} approx -0,06 \
&text{b.} hspace{3mm} x=frac{66}{13} approx 5,1 \
&text{c.} hspace{3mm} x=-1 hspace{3mm} text{color{default}or} hspace{3mm} x=3 \
end{align*}
$$
Exercise 22
Step 1
1 of 3
Let us consider the given function $$color{blue} h(x)=x^3-4.$$
We can now make the table of the function.
begin{center}
begin{tabular}{ |c|c|c|c|c|c|c|c|c|c|c|c|c| }
hline
x & -2 & -1 & 0 & 1 & 1,58 & 2 \
hline
y & -12 & -5 & -4 & -3 & 0 & 4 \
hline
end{tabular}
end{center}
And now we can draw the graph. \

Exercise scan

Step 2
2 of 3
Now we can completely describe the graph.

The domain of the function are all real numbers, we can write $x in (-infty, infty)$.

The range of the function are all real numbers, so we can write $y in (-infty, infty)$.

The $x$-intercept is the point $x=1,58$.

The $y$-intercept is the point $y=-4$.

The function is not symmetric.

The function does not have asymptotes.

The function is increasing for $x in (-infty, infty).$

The function does not have minimum or maximum points.

The function is continuous.

Result
3 of 3
The function is graphed and described as instructed.
Exercise 23
Step 1
1 of 2
Assuming the length of the shorter leg $s=x$ inches

The length of the long leg $l=3x+3$ inches.

The are of the triangle $a=dfrac {1}{2}ls$

$84=dfrac {1}{2}x(3x+3)$

$168=3x^2+3x$

$3x^2+3x-168=0$

$x^2+x-56=0$

$(x+8)(x-7)=0$

$x=-8$ or $x=7$

The short leg $s=7$ inches

The long leg $l=3(7)+3=24$ inches.

The hypotenuse $h=sqrt {l^2+s^2}=sqrt {576+49}$

$h=sqrt {625}=25$ inches

The perimeter of the triangle $p=h+l+s=25+24+7=56$ inches

Result
2 of 2
The perimeter of the triangle $p=56$ inches.
Exercise 24
Step 1
1 of 5
The distance between two points formula is $d=sqrt {(y2-y1)^2+(x2-x1)^2}$
Step 2
2 of 5
a-

Points are $(3, -6)$ and $(-2, 5)$          (Given)

The distance between the two points $d=sqrt {(5-(-6))^2+(-2-3)^2}$

$d=sqrt {121+25}$

$$
d=sqrt {146} approx 12.08
$$

Step 3
3 of 5
b-

Points are $(5, -8)$ and $(-3, 1)$          (Given)

The distance between the two points $d=sqrt {(1-(-8))^2+(-3-5)^2}$

$d=sqrt {81+64}$

$$
d=sqrt {145} approx 12.04
$$

Step 4
4 of 5
c-

Points are $(0, 5)$ and $(5, 0)$          (Given)

The distance between the two points $d=sqrt {(0-5)^2+(5-0)^2}$

$d=sqrt {25+25}=sqrt {5^2 cdot 2}$

$$
d=5sqrt {2} approx 7.07
$$

Result
5 of 5
a-          $d=sqrt {146} approx 12.08$

b-          $d=sqrt {145} approx 12.04$

c-          $d=5sqrt {2} approx 7.07$

Exercise 25
Step 1
1 of 6
Assuming we study the transformation for the function $y=x^3$ as a parent function.

We can move the graph left for $a$ distance by adding $a$ to the $x$ variable.

$y’=(x+a)^3$

We can move the graph right for $a$ distance by subtracting $a$ from the $x$ variable.

$y’=(x-a)^3$

The domain of both original and image graphs is:          $(-infty leq x leq infty)$

The range of both original and image graphs is:          $(-infty leq y leq infty)$

Exercise scan

Step 2
2 of 6
We can move the graph up for $a$ distance by adding $a$ to the value of the function.

$y’=(x)^3+a$

We can move the graph down for $a$ distance by subtracting $a$ from the value of the function.

$y’=(x)^3-a$

The domain of both original and image graphs is:          $(-infty leq x leq infty)$

The range of both original and image graphs is:          $(-infty leq y leq infty)$

Exercise scan

Step 3
3 of 6
We can stretch the graph vertically by a factor of $a$ multiplying the term $x^3$ by $a$.

$y’=ax^3$

We can compress the graph vertically by a factor of $dfrac {1}{a}$ by multiplying the term $x^3$ by $dfrac {1}{a}$.

$y’=dfrac {1}{a}(x)^3$

The domain of both original and image graphs is:          $(-infty leq x leq infty)$

The range of both original and image graphs is:          $(-infty leq y leq infty)$

Exercise scan

Step 4
4 of 6
We can flip the graph vertically by multiplying the term $x^3$ by -1.

$y’=-x^3$

The domain of both original and image graphs is:          $(-infty leq x leq infty)$

The range of both original and image graphs is:          $(-infty leq y leq infty)$

Exercise scan

Step 5
5 of 6
The following graph represents stretching the function $y=x^3$ by the factor of 2 and transforming it 2 units left and 3 units up.

$y=x^3 rightarrow y’=2(x+2)^3+3$

Exercise scan

Result
6 of 6
Translating to the left:          $y=x^3 rightarrow y’=(x+a)^3$

Translating to the right:          $y=x^3 rightarrow y’=(x-a)^3$

Translating upwards:          $y=x^3 rightarrow y’=x^3+a$

Translating downwards:          $y=x^3 rightarrow y’=x^3-a$

Stretching by the factor of $a$:          $y=x^3 rightarrow y’=ax^3$

Compressing by the factor of $dfrac {1}{a}$:          $y=x^3 rightarrow y’=dfrac {1}{a}x^3$

Flipping vertically:          $y=x^3 rightarrow y’=-x^3$

Exercise 26
Step 1
1 of 3
$y=x^3$

The domain: $(-infty <x < infty)$

The range: $(-infty <x < infty)$

Step 2
2 of 3
Exercise scan
Result
3 of 3
$y=x^3$

The domain: $(-infty <x < infty)$

The range: $(-infty <x < infty)$

Exercise 27
Step 1
1 of 5
a-

My parent graph is:          $y=x^3$.

Shifting the graph left:          $y=x^3 rightarrow y’=(x+a)^3$

Shifting the graph right:          $y=x^3 rightarrow y’=(x-a)^3$

Exercise scan

Step 2
2 of 5
b-

My parent graph is:          $y=x^3$.

Shifting the graph up:          $y=x^3 rightarrow y’=x^3+a$

Shifting the graph down:          $y=x^3 rightarrow y’=x^3-a$

Exercise scan

Step 3
3 of 5
c-

My parent graph is:          $y=x^3$.

Stretching the graph :          $y=x^3 rightarrow y’=ax^3$

Compressing the graph:          $y=x^3 rightarrow y’=dfrac {1}{a}x^3$

Exercise scan

Step 4
4 of 5
d-

My parent graph is:          $y=x^3$.

flipping the graph :          $y=x^3 rightarrow y’=-x^3$

Exercise scan

Result
5 of 5
Translating to the left:          $y=x^3 rightarrow y’=(x+a)^3$

Translating to the right:          $y=x^3 rightarrow y’=(x-a)^3$

Translating upwards:          $y=x^3 rightarrow y’=x^3+a$

Translating downwards:          $y=x^3 rightarrow y’=x^3-a$

Stretching by the factor of $a$:          $y=x^3 rightarrow y’=ax^3$

Compressing by the factor of $dfrac {1}{a}$:          $y=x^3 rightarrow y’=dfrac {1}{a}x^3$

Flipping vertically:          $y=x^3 rightarrow y’=-x^3$

Exercise 28
Step 1
1 of 3
a-\
$y=a(x-h)^2+k$ qquad (Graphing form of the equation)\
\
Parameter $a$ represents:\
begin{enumerate}
item The opening direction of the parabola:\
begin{itemize}
item If $a>0$, The parabola opens upward.
item If $a1$, The parabola is stretching.\
item If $a<1$, The parabola is compressed.\
end{itemize}
end{enumerate}
Parameter $h$ represents the x-coordinate of the vertex:\
Parameter $k$ represents the y-coordinate of the vertex:\
Step 2
2 of 3
b-          In each equation:

$a$ represents the factor of stretch or compress and the opening direction.

$h$ is the horizontal shift.

$k$ is the vertical shift.

$y=x^3 rightarrow y’=a(x-h)^3+k$

$y=dfrac {1}{x} rightarrow y’=a times dfrac {1}{x-h}+k$

$y=sqrt {x} rightarrow y’=a cdot sqrt {x-h}+k$

$y=|x| rightarrow y’=a cdot |x-h|+k$

$y=b^x rightarrow y’=a cdot b^{x-h}+k$

Result
3 of 3
Parameter $a$ represents the opening direction of the parabola and The stretch or compress factor:

Parameter $h$ represents the x-coordinate of the vertex:

Parameter $k$ represents the y-coordinate of the vertex:

$y=x^3 rightarrow y’=a(x-h)^3+k$

$y=dfrac {1}{x} rightarrow y’=a times dfrac {1}{x-h}+k$

$y=sqrt {x} rightarrow y’=a cdot sqrt {x-h}+k$

$y=|x| rightarrow y’=a cdot |x-h|+k$

$y=b^x rightarrow y’=a cdot b^{x-h}+k$

Exercise 29
Step 1
1 of 1
To apply this exercise,
1. Invite your team.
2. Collect all parent graphs you and your team worked with.
3. Organize work into a large poster and use colors, arrows, and shading to show all of the connections you discover.
Exercise 30
Step 1
1 of 3
Assuming the point $(0, 0)$ represents the nozzle of the hose, The point $(10, 0)$ represents the water landing point on the plant.

The highest point the water reached from the top of the flower is:          $8-4=4$ feet.

The point $(5, 4)$ represents the vertex of the graph.

The graphing from of the equation is:          $y=a(x-h)^2+k$ where $(h, k)$ is the vertex of the parabola

Substituting for the vertex and the point $(0, 0)$

$0=a(0-5)^2+4$

$25a=-4$

$$
a=-dfrac {4}{25}
$$

The equation is:

$$
y=-dfrac {4}{25}(x-5)^2+4
$$

The domain is:          $(0 leq x leq 10)$

The domain is:          $(0 leq y leq 4)$

Step 2
2 of 3
Exercise scan
Result
3 of 3
The equation is:          $y=-dfrac {4}{25}(x-5)^2+4$

The domain is:          $(0 leq x leq 10)$

The domain is:          $(0 leq y leq 4)$

Exercise 31
Step 1
1 of 4
Work as shown below, follow the steps:

$color{#c34632} text{$y=2x^2+3x+1$}$

$$
a)
$$

$bullet,,$For the $x$-intercept(s), set $color{#c34632} text{$,,y=0,,$}$ and solve the resulting equation for $color{#c34632} text{$,,”x”,$}$:

$y=0$

$Rightarrow 2x^2+3x+1=0qquadqquadqquadqquadqquad$ $color{#c34632} text{[$a=2$ , $b=3$ , $c=1$]}$

$color{#c34632} text{Apply the quadratic formula:}$

$color{#c34632} text{$x_{1,2}=dfrac{-b pm sqrt{b^2-4ac}}{2a}$}$

$Rightarrow x_{1,2}=dfrac{-3pm sqrt{3^2-4(2)(1)}}{2(2)}$

$Rightarrow x_{1,2}=dfrac{-3pm sqrt{9-8}}{4}$

$Rightarrow x_{1,2}=dfrac{-3pm sqrt{1}}{4}$

$Rightarrow x_{1,2}=dfrac{-3pm 1}{4}$

$Rightarrow color{#4257b2} text{$x=-1,,,,$}$ or $color{#4257b2} text{$,,,, x=-dfrac{1}{2}$}$

The $x$-intercepts of the graph of this quadratic equation are the points:

$color{#4257b2} text{$big(-1,0big),,$}$ and $color{#4257b2} text{$,,bigg(-dfrac{1}{2} , 0bigg)$}$.

Step 2
2 of 4
$bullet,,$For the $y$-intercept of the graph of this equation set $color{#c34632} text{$,,x=0,,$}$ and solve the resulting equation for $color{#c34632} text{$,,”y”,,$}$ as shown:

$y=2x^2+3x+1qquadqquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[set $x=0$]}$

$Rightarrow y=2(0)^2+3(0)+1$

$Rightarrow y=0+0+1$

$Rightarrow color{#4257b2} text{$y=1$}$

The $y$-intercept of the graph of this quadratic function is the point $color{#4257b2} text{$,,big(0,1big)$}$.

Step 3
3 of 4
$$
b)
$$

Given a quadratic equation written in the standard form $color{#c34632} text{$,,y=ax^2+bx+x,,$}$ with $x$-intercepts $color{#c34632} text{$,,(x_{1} , 0),,$}$ and $color{#c34632} text{$,,(x_{2} , 0),,$}$, the axis of symmetry of the graph of this equation is the vertical line:

$color{#c34632} text{$x=dfrac{x_{1}+x_{2}}{2}$}$

$bullet,,$In this case, the $x$-intercepts of the graph of the given equation are the points $color{#c34632} text{$,,big(-1,0big),,$}$ and $color{#c34632} text{$,,bigg(-dfrac{1}{2} ,,, 0bigg),,$}$ so the axis of symmetry of this parabola is the line:

$x=dfrac{-1+bigg(-dfrac{1}{2}bigg)}{2}$

$Rightarrow x=dfrac{-1-dfrac{1}{2}}{2}$

$Rightarrow x=dfrac{-3/2}{2}$

$Rightarrow x=-dfrac{3}{4}$

$Rightarrow color{#4257b2} text{$x=-0.75$}qquadqquadqquadqquadqquad$ $color{#4257b2} text{The axis of symmetry}$

Step 4
4 of 4
$$
c)
$$

$bullet,,$Given a quadratic function written in the standard form $color{#c34632}text{$,,f(x)=ax^2+bx+c,,$}$ the vertex of the graph of this function is the point:

$color{#c34632} text{$bigg(-dfrac{b}{2a} ,,, fbigg(-dfrac{b}{2a}bigg)bigg)$}$

$bullet,,$In this case for the given quadratic function we have, $color{#4257b2} text{$,,a=2$}$ , $color{#4257b2} text{$b=3$}$ ,$color{#4257b2} text{ $c=1$}$ so:

$bullet,,-dfrac{b}{2a}=-dfrac{3}{2(2)}=color{#4257b2}text{$-dfrac{3}{4}$}$

$bullet,, fbigg(-dfrac{3}{4}bigg)=2bigg(-dfrac{3}{4}bigg)^2+3bigg(-dfrac{3}{4}bigg)+1$

$Rightarrow fbigg(-dfrac{3}{4}bigg)=dfrac{18}{16}-dfrac{9}{4}+1$

$Rightarrow fbigg(-dfrac{3}{4}bigg)=dfrac{18-36+16}{16}$

$Rightarrow fbigg(-dfrac{3}{4}bigg)=-dfrac{2}{16}$

$Rightarrow color{#4257b2} text{$fbigg(-dfrac{3}{4}bigg)=-dfrac{1}{8}$}$

$bullet,,$Finally the vertex of the graph of this quadratic function is the point:

$color{#4257b2} text{$bigg(-dfrac{3}{4} ,,, -dfrac{1}{8}bigg)$}$

$bullet,,$The graph of this function is shown in the picture below:

Exercise scan

Exercise 32
Step 1
1 of 3
The graph of the function:          $y=2x^2+3x+1$

The vertex is $(-dfrac {3}{4}, qquad -dfrac {1}{8})$

To change the equation so that the parabola had only one x-intercept, we translate the equation upwards by the value of the y-coordinate of the vertex $dfrac {1}{8}$

$y’=y+dfrac {1}{8}$

$$
y’=2x^2+3x+1.125
$$

Step 2
2 of 3
Exercise scan
Result
3 of 3
$$
y’=2x^2+3x+1.125
$$
Exercise 33
Step 1
1 of 2
Let us simplify the given expressions.

$$
begin{align*}
&text{a.} hspace{3mm} sqrt{50} = sqrt{25 cdot 2} =sqrt{25} cdot sqrt{2} = color{#c34632} 5sqrt{2}, \ \
&text{b.} hspace{3mm} sqrt{72} = sqrt{36 cdot 2} =sqrt{36} cdot sqrt{2} = color{#c34632} 6sqrt{2}, \ \
&text{c.} hspace{3mm} sqrt{45} = sqrt{9 cdot 5} =sqrt{9} cdot sqrt{5} = color{#c34632} 3sqrt{5}.
end{align*}
$$

Result
2 of 2
$$
text{a.} hspace{2mm} sqrt{50}=5sqrt{2} hspace{10mm} text{b.} hspace{2mm} sqrt{72}=6sqrt{2} hspace{10mm} text{c.} hspace{2mm} sqrt{45}=3sqrt{5}
$$
Exercise 34
Step 1
1 of 3
a-

The appropriate unit of time is:          Years.

The multiple that should be used is:          $1-0.11=0.89$

The initial value is:          $12,250

The equation is:

$$
f(x)=12,250 (0.89)^x
$$

Step 2
2 of 3
b-

The appropriate unit of time is:          Years.

The multiple that should be used is:          1.06

The initial value is:          $1000

The equation is:

$$
f(x)=1000 (1.06)^x
$$

Result
3 of 3
a-          $f(x)=12,250 (0.89)^x$

b-          $f(x)=1000 (1.06)^x$

Exercise 35
Step 1
1 of 2
Assuming $c$ is the amount of Colombian beans and $m$ is the amount of Mocha Java beans.

The torn receipt shows that 18 pounds costs $92.07\
The price of the Colombian beans $4.89 per pound\
The price of the Mocha Java beans $5.43 per pound\
\
We can write the following linear system\$c+m=18          rightarrow          c=18-m$\$4.89c+5.43m=92.07$\
\$4.89(18-m)+5.43m=92.07$\$88.02-4.89m+5.43m=92.07$\$0.54m=92.07-88.02$\$54m=405$\$ $m=7.5$ c+7.5=18$\$ $c=10.5$$

Result
2 of 2
The ratio of blending beans is $10.5:7.5$ Colombian to Mocha Java beans.
Exercise 36
Step 1
1 of 4
a.

The domain is all real numbers
$$
color{#4257b2} D: -infty<x<infty.
$$

We match this domain with the graph number one $1)$ which is seen below.

The range of this function are all real number smaller than $3$
$$
color{#c34632} R: y leq 3 .
$$

Exercise scan

Step 2
2 of 4
b.

The domain is all real numbers bigger than $-2$
$$
color{#4257b2} D: x>-2.
$$

We match this domain with the graph number one $3)$ which is seen below.

The range of this function are all real number bigger than $0$
$$
color{#c34632} R: y > 0.
$$

Exercise scan

Step 3
3 of 4
c.

The domain is all real numbers smaller than $3$ including $3$
$$
color{#4257b2} D: xleq 3.
$$

We match this domain with the graph number one $2)$ which is seen below.

The range of this function are all real numbers than $0$
$$
color{#c34632} R: -infty <y<infty.
$$

Exercise scan

Result
4 of 4
a. We match the domain with graph number 1) and the range is $y leq 3$.

b. We match the domain with graph number 3) and the range is $y >0$.

c. We match the domain with graph number 2) and the range is $y in bold{R}$.

Exercise 37
Step 1
1 of 3
$y=2(x-4)^2-3$          (Given equation)

The equation is in the vertex form, the vertex is the point $(4, -3)$

The line of symmetry is the vertical line that passes the vertex. So, the equation of the line of symmetry is:

$$
x=4
$$

Step 2
2 of 3
Exercise scan
Result
3 of 3
The equation of the line of symmetry is:          $x=4$
Exercise 38
Step 1
1 of 5
GNP can be represented by an exponential function: $G(x)=ar^x$

Initial valuein 1960:          $a=1.665 cdot 10^{12}$

Annual growth rate: $r=%3.17$

Step 2
2 of 5
a-

Years form 1960 to 1989 $=29$ years.

$G(29)=1.665 cdot 10^{12} cdot (1.0317)^{29}$

$G(29)=4.1159 cdot 10^{12}$

Gross National Product in 1989: $=4.1159 cdot 10^{12}$

Step 3
3 of 5
b-

The equation that represents the GNP $t$ years after 1960

$$
G(t)=1.665 cdot 10^{12} cdot (1.0317)^t
$$

Step 4
4 of 5
c-

GNP depends on may factors that are not constants. So, it is not possible that the rate of growth remains constant.

Result
5 of 5
a-          Gross National Product in 1989: $=4.1159 cdot 10^{12}$

b-          The equation of the GNP $t$ years after 1960 is          $G(t)=1.665 cdot 10^{12} cdot (1.0317)^t$

c-          The rate of growth does not remain constant.

Exercise 39
Step 1
1 of 1
Simplify each expression as shown below, follow the steps:

a) $sqrt{24}=$

$=sqrt{4cdot 6}=qquadqquadqquadqquadqquadquad$ $color{#c34632} text{[recall: $sqrt{acdot b}=sqrt{a}cdot sqrt{b}$]}$

$=sqrt{4}cdot sqrt{6}=$

$=color{#4257b2} text{$2sqrt{6}$}$

b) $sqrt{18}=$

$=sqrt{9cdot 2}=qquadqquadqquadqquadqquadquad$ $color{#c34632} text{[recall: $sqrt{acdot b}=sqrt{a}cdot sqrt{b}$]}$

$=sqrt{9}cdot sqrt{2}=$

$=color{#4257b2} text{$3sqrt{2}$}$

c) b) $sqrt{3}+sqrt{3}=$

$=color{#4257b2}text{$2sqrt{3}$}$

d) $sqrt{27}+sqrt{12}=$

$=sqrt{9cdot 3}+sqrt{4cdot 3}=qquadqquadqquadqquad$ $color{#c34632} text{[recall: $sqrt{acdot b}=sqrt{a}cdot sqrt{b}$]}$

$=sqrt{9}cdot sqrt{3}+sqrt{4}cdot sqrt{3}=$

$=3sqrt{3}+ 2sqrt{3}=$

$=color{#4257b2} text{$5sqrt{3}$}$

Exercise 40
Step 1
1 of 3
a.

Let us calculate $x$. Since we know that in the diagram below
$$
triangle ABC sim triangle AED
$$
we conclude that the corresponding sides are in the same proportion. Therefore we write

$$
frac{AC}{AD} = frac{BC}{ED} = frac{AB}{AE} implies frac{x+7}{10} = frac{x+4}{x}.
$$

Now we solve for $x$. We have

$$
begin{align*}
frac{x+7}{10} = frac{x+4}{x} implies x cdot (x+7) &= 10 cdot (x+4) \ x^2 +7x &= 10x +40 \ x^2+7x-10x-40&=0 \
x^2-3x-40 &=0 \ x^2 -8x+5x-40 &=0 \ x cdot (x-8) +5 cdot (x-8) &= 0 \ (x+5)(x-8) &=0 \ x+5=0 vee x-8 &=0.
end{align*}
$$

This is a quadratic equation. We can use the quadratic formula to solve it or we can factorize the function on the left. Let us factorize it . We have

$$
begin{align*}
x^2-3x-40 &=0 \ x^2 -8x+5x-40 &=0 \ x cdot (x-8) +5 cdot (x-8) &= 0 \ (x+5)(x-8) &=0 \ x+5=0 vee x-8 &=0 \ x=-5vee x &=8.
end{align*}
$$

Since $x$ is the length of the triangle side the only solution is
$$
color{#c34632} x=8.
$$

Exercise scan

Step 2
2 of 3
b.

Let us now calculate the perimeter of the $triangle AED$. We have

$$
AD= 10 hspace{5mm} text{and} hspace{5mm} ED = x= 8.
$$

We can use the Pythagorean theorem and calculate the length of $AE$. This yields

$$
begin{align*}
AE &= sqrt{AD^2 + ED^2} \ AE &= sqrt{10^2+8^2} \ AE &=sqrt{100+64} \text{AE} &=sqrt{164} approx 12,8.
end{align*}
$$

Now we calculate the perimeter of the triangle

$$
AD+ED+AE = 10+8+12,8=30,8.
$$

Therefore, the perimeter of the $triangle AED$ is
$$
color{#c34632} 30,8.
$$

Result
3 of 3
a. $x=8$

b. The perimeter of $triangle AED$ is $30,8$.

Exercise 41
Step 1
1 of 3
Let us calculate the distance from the point $(5,10)$ to the line
$$
color{#4257b2} y=-frac{1}{3}x +5.
$$
First, let us write the equation of the perpendicular line to the given line. We need to find the equation

$$
y=k cdot x+n.
$$

We can find the coefficient $k$ using the fact that the two lines are perpendicular. We have
$$
k=-frac{1}{-frac{1}{3}} = 3.
$$

In order to find $n$ we use the fact that our wanted line passes through $(5,10)$. We substitute $k=3$, $x=5$ and $y=10$ and get

$$
10=3 cdot 5 +n implies 10=15+n implies n=10-15 = -5.
$$

Therefore, the equation of the perpendicular line to the line $y=-frac{1}{3}x +5$ which goes through $(5,10)$ is

$$
color{#c34632} y=3x -5.
$$

Step 2
2 of 3
We draw the lines

$$
y=-frac{1}{3}x +5 hspace{5mm} text{and} hspace{5mm} y=3x-5
$$

and on the graph given below see that the two lines intersect at point $(3, 4)$. The distance from the point $(5,10)$ to the line $y=-frac{1}{3}x +5$ is now the distance between the points $(3, 4)$ and $(5, 10)$. We use the formula
$$
d=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}
$$
and get

$$
begin{align*}
d &=sqrt{(5-3)^2+(10-4)^2} = sqrt{2^2+6^2} =sqrt{4+36} \ &= sqrt{40}=sqrt{4 cdot 10} = 2sqrt{10} approx 6,3.
end{align*}
$$

Therefore, the distance from the point $(5,10)$ to the line $y=-frac{1}{3}x +5$ is $color{#c34632} 2sqrt{10} approx 6,3$.

Exercise scan

Result
3 of 3
The distance from the point $(5,10)$ to the line $y=-frac{1}{3}x +5$ is $2sqrt{10} approx 6,3$.
Exercise 42
Step 1
1 of 5
a.

Consider the given equation
$$
color{#4257b2} 2^z=2^3.
$$

Since the base is the same, we can conclude that the exponents must be equal too. Hence, we have

$$
color{#c34632} z=3.
$$

Step 2
2 of 5
b.

Consider the given equation
$$
color{#4257b2} 4^z=8.
$$

Since the bases are not the same, we have to transform the equation so that they become the same. Since $4=2^2$ and $8=2^3$ we write

$$
(2^2)^z=2^3 implies 2^{2z}=2^3.
$$

Now we can conclude that the exponents must be equal. Hence, we have

$$
2z=3 implies color{#c34632} z=frac{3}{2}.
$$

Step 3
3 of 5
c.

Consider the given equation
$$
color{#4257b2} 3^z=81^2.
$$

Since the bases are not the same, we have to transform the equation so that they become the same. Since $81=3^4$ we write

$$
3^z = (3^4)^2 implies 3^z=3^8.
$$

Now we can conclude that the exponents must be equal. Hence, we have

$$
color{#c34632} z=8.
$$

Step 4
4 of 5
d.

Consider the given equation
$$
color{#4257b2} 5^{(z+1)/3}=25^{1/z}.
$$

Since the bases are not the same, we have to transform the equation so that they become the same. Since $25=5^2$ we write

$$
5^{(z+1)/3}=(5^2)^{1/z} implies 5^{(z+1)/3}=5^{2/z}.
$$

Now we can conclude that the exponents must be equal. Hence, we have

$$
begin{align*}
frac{z+1}{3} = frac{2}{z} implies z cdot (z+1) &= 2 cdot 3 \ z^2+z &=6 \ z^2+z-6 &=0.
end{align*}
$$

Since the expression of the left is a quadratic function we can use the quadratic formula

$$
z = frac{-b pm sqrt{b^2-4ac}}{2a}.
$$
We have

$$
a=1 hspace{12mm} b=1 hspace{12mm} c=-6.
$$

Hence, we have

$$
begin{align*}
z &= frac{-1 pm sqrt{1^2-4 cdot 1 cdot (-6)}}{2 cdot 1} \
z &= frac{-1 pm sqrt{1+24}}{2} \
z &= frac{-1 pm sqrt{25}}{2} \
z &= frac{-1 + sqrt{25}}{2} hspace{3mm} text{or} hspace{3mm} frac{1 – sqrt{25}}{2} \
z &= frac{-1 + 5}{2} hspace{3mm} text{or} hspace{3mm} frac{-1 – 5}{2} \
z &= frac{4}{2} hspace{3mm} text{or} hspace{3mm} frac{-6}{2} \
z &=2 hspace{3mm} text{or} hspace{3mm} -3
end{align*}
$$

Therefore, the solutions are
$$
color{#c34632} z=-3 hspace{3mm} text{color{default}or} hspace{3mm} z=2.
$$

Result
5 of 5
$$
begin{align*}
&text{a.} hspace{3mm} z=3 \
&text{b.} hspace{3mm} z=frac{3}{2} \
&text{c.} hspace{3mm} z=8 \
&text{d.} hspace{3mm} z=-3 hspace{3mm} text{color{default}or} hspace{3mm} z=2 \
end{align*}
$$
Exercise 43
Step 1
1 of 3
a-

$y=3x^2+5$

The locator point is $(0, 5)$

Exercise scan

Step 2
2 of 3
b-

$y=-(x-3)^2-7$

The locator point is $(3, -7)$

Exercise scan

Result
3 of 3
a-          The locator point is $(0, 5)$

b-          The locator point is $(3, -7)$

Exercise 44
Step 1
1 of 18
$$
y=dfrac{1}{x+2}
$$
a) The parent function of the graphed function is $y=dfrac{1}{x}$, which was shifted 2 units to the left:
Step 2
2 of 18
Exercise scan
We graph the function using a graphing calculator:
Step 3
3 of 18
$$
y=x^2-5
$$
b) The parent function of the graphed function is $y=x^2$, which was shifted 5 units down:
Step 4
4 of 18
Exercise scan
We graph the function using a graphing calculator:
Step 5
5 of 18
$$
y=(x-3)^3
$$
c) The parent function of the graphed function is $y=x^3$, which was shifted 3 units to the right:
Step 6
6 of 18
Exercise scan
We graph the function using a graphing calculator:
Step 7
7 of 18
$$
y=2^x-3
$$
d) The parent function of the graphed function is $y=2^x$, which was shifted 3 units down:
Step 8
8 of 18
Exercise scan
We graph the function using a graphing calculator:
Step 9
9 of 18
$dfrac{y-0}{-5-0}=dfrac{x-2}{0-2}$

$dfrac{y}{-5}=dfrac{x-2}{-2}$

$-2y=-5(x-2)$

$$
y=dfrac{5(x-2)}{2}
$$

e) The graphed function is a line passing through the points $(0,-5), (2,0)$. We determine the equation of the line:
Step 10
10 of 18
Exercise scan
We graph the function using a graphing calculator:
Step 11
11 of 18
$$
y=(x+2)^3+3
$$
f) The parent function of the graphed function is $y=x^3$, which was shifted 2 units to the left and 3 units up:
Step 12
12 of 18
Exercise scan
We graph the function using a graphing calculator:
Step 13
13 of 18
$$
y=(x+3)^2-6
$$
g) The parent function of the graphed function is $y=x^2$, which was shifted 3 units to the left and 6 units down:
Step 14
14 of 18
Exercise scan
We graph the function using a graphing calculator:
Step 15
15 of 18
$$
y=-(x-3)^2+6
$$
h) The parent function of the graphed function is $y=x^2$, which was reflected across the $x$-axis, shifted 3 units to the right and 6 units up:
Step 16
16 of 18
Exercise scan
We graph the function using a graphing calculator:
Step 17
17 of 18
$$
y=(x+3)^3-2
$$
i) The parent function of the graphed function is $y=x^3$, which was shifted 3 units to the left and 2 units up:
Step 18
18 of 18
Exercise scan
We graph the function using a graphing calculator:
Exercise 45
Step 1
1 of 3
Jim should translate his graph 6 units upwards. because $y=x^3-4x+6$ is a vertical translation 6 units upwards for the function $y=x^3-4x$
Step 2
2 of 3
Exercise scan
Result
3 of 3
Jim should translate his graph 6 units upwards.
Exercise 46
Step 1
1 of 2
Solve the given linear systems as shown below, follow the steps:

$$
a)
$$

$color{#c34632} text{[1]}$ $quad y=5x-2$

$color{#c34632} text{[2]}$ $quad y=3x+18$

$bullet,,$In the equation $color{#c34632} text{[2]}$ substitute $color{#c34632} text{$,,”y”,,$}$ by $color{#c34632} text{$,,5x-2,,$}$ and solve for $color{#c34632} text{$,,”x”,,$}$ as shown:

$y=3x+18qquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[set $y=5x-2$]}$

$Rightarrow 5x-2=3x+18qquadqquadqquadqquadquad$ $color{#c34632} text{[match like terms]}$

$Rightarrow 5x-3x=18+2$

$Rightarrow 2x=20qquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[divide both sides by $2$]}$

$Rightarrow color{#4257b2} text{$x=10$}$

$bullet,,$In the equation $color{#c34632} text{[1]}$ set $color{#c34632} text{$,,x=10,,$}$ and solve for $color{#c34632} text{$,,”y”,,$}$ as shown below:

$y=5x-2qquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[set $x=10$]}$

$Rightarrow y=5(10)-2$

$Rightarrow y=50-2$

$Rightarrow color{#4257b2} text{$y=48$}$

$bullet,,$As we can see the solution of this linear system is the ordered pair $color{#4257b2} text{$,,(10, 48),,$}$ so these two lines intersect at the point $color{#4257b2} text{$,,(10 , 48)$}$.

Step 2
2 of 2
$$
b)
$$

$color{#c34632} text{[1]}$ $quad y=x-4$

$color{#c34632} text{[2]}$ $quad 2x+3y=17$

$bullet,,$In the equation $color{#c34632} text{[2]}$ substitute $color{#c34632} text{$,,”y”,,$}$ by $color{#c34632} text{$,,x-4,,$}$ and solve for $color{#c34632} text{$,,”x”,,$}$ as shown:

$2x+3y=17qquadqquadqquadqquadqquadqquadquad$ $color{#c34632} text{[set $y=x-2$]}$

$Rightarrow 2x+3(x-4)=17qquadqquadqquadqquadquad$

$Rightarrow 2x+3x-12=17qquadqquadqquadqquadqquad$ $color{#c34632} text{[add $12$ in both sides]}$

$Rightarrow 5x=29qquadqquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[divide both sides by $5$]}$

$Rightarrow color{#4257b2} text{$x=dfrac{29}{5}$}$

$bullet,,$In the equation $color{#c34632} text{[1]}$ set $color{#c34632} text{$,,x=dfrac{29}{5},,$}$ and solve for $color{#c34632} text{$,,”y”,,$}$ as shown below:

$y=x-4qquadqquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[set $x=frac{29}{5}$]}$

$Rightarrow y=dfrac{29}{5}-4$

$Rightarrow y=dfrac{29}{5}-dfrac{20}{5}$

$Rightarrow y=dfrac{29-20}{5}$

$Rightarrow color{#4257b2} text{$y=dfrac{9}{5}$}$

$bullet,,$As we can see the solution of this linear system is the ordered pair $color{#4257b2} text{$,,bigg(dfrac{29}{5} ,,, dfrac{9}{5}bigg),,$}$ so these two lines intersect at the point $color{#4257b2} text{$,,bigg(dfrac{29}{5} ,,, dfrac{9}{5}bigg)=big(5.8,,,1.8big),,$}$.

Exercise 47
Step 1
1 of 2
Let us consider the triangle shown on the picture below. We know that the length of the height $BC$ is $12$cm and its area is $60$ square cm. Let us calculate the $measuredangle B$ and the length of the hypotenuse $AB$. We use the formula of the area

$$
60 = frac{BC cdot AC}{2} implies frac{12 AC}{2} = 60 implies 6AC=60 implies AC=10.
$$

Therefore, the length of the side $AC$ is $10$cm. Let us now calculate the hypotenuse of the $triangle ABC$. We have

$$
BC= 12 hspace{5mm} text{and} hspace{5mm} AC = 10.
$$

We can use the Pythagorean theorem and calculate the length of $AB$. This yields

$$
begin{align*}
AB &= sqrt{AC^2 + BC^2} \ AB &= sqrt{10^2+12^2} \ AB &=sqrt{100+144} \ AB &=sqrt{244} approx 15,62.
end{align*}
$$

Therefore, the length of the hypotenuse is
$$
color{#c34632} AB=15,62 text{cm}.
$$

Let us calculate $measuredangle B$. We use trigonometric rations and get

$$
tan measuredangle B = frac{text{opposite leg}}{text{adjacent leg}} = frac{AC}{BC} = frac{10}{12}=0,833.
$$

Therefore,
$$
measuredangle B = arctan {0,83} = 39,8^{circ}.
$$

We can conclude
$$
color{#c34632} measuredangle B=39,8^{circ}.
$$

Exercise scan

Result
2 of 2
$$
measuredangle B=39,8^{circ} hspace{5mm} text{and} hspace{5mm} AB=15,62text{cm}
$$
Exercise 48
Step 1
1 of 4
a-

$(dfrac {1}{81})^{dfrac {-1}{4}}$          (Write the equation)

$=left((dfrac {1}{3})^4right)^{dfrac {-1}{4}}$          (Quotient of power property)

$=left(dfrac {1}{3}right)^{-1}$          (Product of power property)

$left(dfrac {1}{3}right)^{-1}=3$

Step 2
2 of 4
b-

$x^{-2}y^{-4}$          (Write the equation)

$=x^{-2} times y^{-4}$

$dfrac {1}{x^2} times dfrac {1}{y^4}$          (Negative power property)

Step 3
3 of 4
c-

$(2x)^{-2}(16x^2y)^{dfrac {1}{2}}$          (Write the equation)

$=2^{-2} cdot x^{-2} cdot 2^{dfrac {4}{2}} cdot x^{dfrac {2}{2}} cdot y^{dfrac {1}{2}}$          (Product of power property)

$=2^{(2-2)} cdot x^{(1-2)} cdot y^{dfrac {1}{2}}$          (Grouping similar terms)

$=1 cdot x^{-1} cdot y^{dfrac {1}{2}}$

$$
=dfrac {sqrt y}{x}
$$

Result
4 of 4
a-          $(dfrac {1}{81})^{dfrac {-1}{4}}=3$

b-          $x^{-2}y^{-4}=dfrac {1}{x^2} times dfrac {1}{y^4}$

c-          $(2x)^{-2}(16x^2y)^{dfrac {1}{2}}=dfrac {sqrt y}{x}$

Exercise 49
Step 1
1 of 6
$$
n^{2}+4n+4=0
$$
(a) Multiply out brackets and collect similar terms, then complete the square and solve $;$
Step 2
2 of 6
$$
left( n+2right)^{2}-4+4=0
$$
Step 3
3 of 6
$$
n=-2
$$
solution is root of multiplicity 2 $=-2$
Step 4
4 of 6
$$
x^{2}+3x-4=0
$$
$$
(b)
$$
Step 5
5 of 6
$$
left( x+4right)left(x-1 right)=0
$$
Step 6
6 of 6
$$
x=(-4,1)
$$
has two distinct real valued roots$.$
Exercise 50
Step 1
1 of 5
a.

Consider the given equation
$$
color{#4257b2} y=(x-2)^2.
$$

Since
$$
(x-2)^2 geq 0 implies ygeq 0
$$

the smallest output is $y=0$. Let us find the input for output $0$. We substitute $y=0$ in the given equation and solve for $x$. We have

$$
begin{align*}
0 =(x-2)^2 implies x-2 = 0 implies x=2.
end{align*}
$$

Therefore, the input that will produce the smallest possible output is
$$
color{#c34632} x=2.
$$

Since, the highest point on the graph does not exist, the largest possible output does not exist as well.

Step 2
2 of 5
b.

Consider the given equation
$$
color{#4257b2} y=x^2+2.
$$

Since
$$
x^2 geq 0 implies x^2+2 geq 2 implies ygeq 2
$$

the smallest output is $y=2$. Let us find the input for output $2$. We substitute $y=2$ in the given equation and solve for $x$. We have

$$
begin{align*}
2 =x^2+2 implies x^2 = 0 implies x=0.
end{align*}
$$

Therefore, the input that will produce the smallest possible output is
$$
color{#c34632} x=0.
$$

Since, the highest point on the graph does not exist, the largest possible output does not exist as well.

Step 3
3 of 5
c.

Consider the given equation
$$
color{#4257b2} y=(x+3)^2.
$$

Since
$$
(x+3)^2 geq 0 implies ygeq 0
$$

the smallest output is $y=0$. Let us find the input for output $0$. We substitute $y=0$ in the given equation and solve for $x$. We have

$$
begin{align*}
0 =(x+3)^2 implies x+3= 0 implies x=-3.
end{align*}
$$

Therefore, the input that will produce the smallest possible output is
$$
color{#c34632} x=-3.
$$

Since, the highest point on the graph does not exist, the largest possible output does not exist as well.

Step 4
4 of 5
d.

Consider the given equation
$$
color{#4257b2} y=-x^2+5.
$$

Since
$$
x^2 geq 0 implies -x^2 leq 0 implies -x^2+5 leq 5 implies y leq 5
$$

the largest possible output is $y=5$. Let us find the input for output $5$. We substitute $y=5$ in the given equation and solve for $x$. We have

$$
begin{align*}
5 =-x^2+5 implies x^2 = 0 implies x=0.
end{align*}
$$

Therefore, the input that will produce the largest possible output is
$$
color{#c34632} x=0.
$$

Since, the lowest point on the graph does not exist, the smallest possible output does not exist as well.

Result
5 of 5
a. The input that will produce the smallest output is $x=2$. The largest output does not exist.

a. The input that will produce the smallest output is $x=0$. The largest output does not exist.

a. The input that will produce the smallest output is $x=-3$. The largest output does not exist.

a. The input that will produce the largest output is $x=0$. The smallest output does not exist.

Exercise 51
Step 1
1 of 5
$y=x^2$          (Given)
Step 2
2 of 5
a-

$y=x^2 qquad rightarrow qquad y=(x-4)^2$          (Shifting 4 units right)

Step 3
3 of 5
b-

Yes the strategy works for other parent graphs.

To shift a graph $k$ units right for $k>0$, we replace $x$ with $x-k$

For example, to shift the parent graph $y=x^3$ 4 units right $y=(x-4)^3$

Step 4
4 of 5
c-

Replacing $x^2$ with $(x-h)^2$ moves the graph to the right because this replacement moves the corresponding values of the function $y(x)$ to $y(x-h)$. Hence it moves all the graph to the right $h$ units.

Result
5 of 5
a-          $y=x^2 qquad rightarrow qquad y=(x-4)^2$

b- Yes the strategy works for other parent graphs.

Exercise 52
Step 1
1 of 2
Function families we studied are:\
begin{enumerate}
item Linear function: qquad $y=mx+b$.
item Quadratic function: qquad $y=ax^2+bx+c$.
item Cubic function: qquad $y=ax^3+bx^2+cx+d$.
item Exponential function: qquad $y=a^x$
item Logarithmic function: qquad $y=log x$
end{enumerate}
Result
2 of 2
Linear function:          $y=mx+b$.

Quadratic function:          $y=ax^2+bx+c$.

Cubic function:          $y=ax^3+bx^2+cx+d$

Exponential function:          $y=a^x$

Logarithmic function:          $y=log x$

Exercise 53
Step 1
1 of 1
To apply this exercise,
1. Invite your team.
2. Collect Different graphs of family functions.
3. Write in your Learning Log all of the parent functions you have studied.
Exercise 54
Step 1
1 of 4
The equation of the parent graph of a line is $y=x$
Step 2
2 of 4
a-

The general equation is:          $y=mx+b$

$9=dfrac {4}{5} times 3+b$          (Substitute for $m=dfrac {4}{5}$ and the point $(3, 9)$ fro $(x, y)$

$b=9-dfrac {12}{5}$

$b=dfrac {33}{5}$

The general equation is:

$$
y=dfrac {4}{5}x+dfrac {33}{5}
$$

Step 3
3 of 4
b-

$5=m(-1)+b$          (Substitute for the point $(-1, 5)$ in the general equation)

$b=5+m$          (Add $m$ to each side)

$-2=m(8)+b$          (Substitute for the point $(8, -2)$ in the general equation)

$-2=8m+5+m$          (Substitute for $b$ from the first equation)

$-2=9m+5$

$9m=-7$

$$
m=dfrac {-7}{9}
$$

This is not the way we found the slope in the past.

We were calculating the slope from the formula $m=dfrac {y_{2}-y_{1}}{x_{2}-x_{1}}$

$m=dfrac {-2–(-5)}{8-(-1)}=-dfrac {7}{9}$

$y=mx+b$

$5=-dfrac {7}{9}(-1)+b$

$5=dfrac {7}{9}+b$

$b=dfrac {45}{9}-dfrac {7}{9}$

$b=dfrac {38}{9}$

The equation is:

$$
y=-dfrac {7}{9} x+dfrac {38}{9}
$$

Result
4 of 4
a-          $y=dfrac {4}{5}x+dfrac {33}{5}$

b-          $m=-dfrac {7}{9}$ and the equation is:          $y=-dfrac {7}{9}x+dfrac {38}{9}$

Exercise 55
Step 1
1 of 7
The point $(h,k)$ called $textcolor{#4257b2}{vertex}$ or $textcolor{#4257b2}{locator}$ shows the minimum of the function (in case the leading coefficient is positive) or maximum of the function (in case the leading coefficient is negative).
Step 2
2 of 7
$$
y=a(x-h)^2+k
$$
The point $(h,k)$ gives us 2 of the 3 parameters in the function’s equation:
Step 3
3 of 7
When given the point $(h,k)$, we only need one more point on the parabola’s graph so that we can determine the third parameter $a$ and have the equation fully determined.
Step 4
4 of 7
$(h,k)=(1,2)$

$P(-1,3)$ is a point on the parabola’s graph

For example:

Given:

Step 5
5 of 7
$$
y=a(x-1)^2+2
$$
The equation of the parabola can be written using $(h,k)$:
Step 6
6 of 7
$3=a(-1-1)^2+2$

$3=4a+2$

$4a=3-2$

$4a=1$

$$
a=dfrac{1}{4}
$$

We now use point $P$:
Step 7
7 of 7
$$
y=dfrac{1}{4}(x-1)^2+2
$$
The function’s equation is:
Exercise 56
Step 1
1 of 4
a-

$y=a(x-h)^2+k$          (General form of the quadratic equation)

The point $(2, 3)$ represents $(h, k)$

The graph passes the point $(3,4)$

$4=a(3-2)^2+3$          (Substituting in the general form of the equation)

$4=a+3$

$a=1$

The general equation is:

$$
y=(x-2)^2+3
$$

Step 2
2 of 4
b-

$y=a(x-h)^3+k$          (General form of the quadratic equation)

The point $(2, 3)$ represents $(h, k)$

The graph passes the point $(1, 2)$

$2=a(1-2)^3+3$          (Substituting in the general form of the equation)

$2=-a+3$

$a=3-2$

$$
a=1
$$

The general equation is:

$$
y=(x-2)^3+3
$$

Step 3
3 of 4
c-

$y=a(x-h)^2+k$          (General form of the quadratic equation)

The point $(-6, 0)$ represents $(h, k)$

The graph passes the point $(-5, -2)$

$-2=a(-5+6)^2+0$          (Substituting in the general form of the equation)

$a=-2$

The general equation is:

$$
y=-2(x+6)^2
$$

Result
4 of 4
a-          $y=(x-2)^2+3$

b-          $y=(x-2)^3+3$

c-          $y=-2(x+6)^2$

Exercise 57
Step 1
1 of 2
a-          $y=(x-2)^2+3$

Domain: $(0 leq x leq infty)$          Range $(y geq 3)$

b-          $y=(x-2)^3+3$

Domain: $(0 leq x leq infty)$          Range $(0 leq y leq infty)$

b-          $y=-2(x+6)^2$

Domain: $(0 leq x leq infty)$          Range $(y leq 0)$

Result
2 of 2
a-          Domain: $(0 leq x leq infty)$          Range $(y leq 3)$

b-          Domain: $(0 leq x leq infty)$          Range $(0 leq y leq infty)$

b-          Domain: $(0 leq x leq infty)$          Range $(y leq 0)$

Exercise 58
Step 1
1 of 5
a. We are given that five years from now a bond appreciating at 4% per year will be worth $146 and we have to find its initial value.

Now if we take the initial value of the bond as x.

We will have,

$$xleft(1+dfrac{4}{100}right)^5 = $146$$

Because after one year the value of the bond would have been
$x + x(4%)$ or $x(1+0.04)$
And after two years the value of the bond would have been
$x(1+0.04) (1+0.04)$ or $x(1+0.04)^2$ and so on…

Step 2
2 of 5
Now we will solve the equation

$$begin{aligned}
xleft(1+dfrac{4}{100}right)^5 &= 146 \\
x(1+0.04)^5 &= 146 \
x(1.04)^5 &= 146 \
x(1.2167) &= 146 \\
x&=dfrac{146}{1.2167} \\
x&approx 120
end{aligned}$$

Therefore, the value of the bond worth $120 will be $146 five years from now appreciating at 4% per year.

Step 3
3 of 5
b. We are given that seventeen years from now Ms. Speedi’s car will be worth $500 depreciating at 20% per year. We have to find its initial value.

Now if we take the initial value of the car as y.

We will have,

$$yleft(1-dfrac{20}{100}right)^{17} = $500$$

Because after one year the value of the car would have been
$y – y(20%)$ or $y(1-0.2)$
And after two years the value of the car would have been
$y(1-0.2) (1-0.2)$ or $y(1+0.2)^2$ and so on…

Step 4
4 of 5
Now we will solve the equation

$$begin{aligned}
yleft(1-dfrac{20}{100}right)^{17} &= 500 \\
y(1-0.2)^{17} &= 500 \
y(0.8)^{17} &= 500 \
y(0.0225) &= 500 \\
y&=dfrac{500}{0.0225} \\
y&approx 22,222
end{aligned}$$

Therefore, the value of Ms. Speedi’s car worth $22,222 will be $500 seventeen years from now depreciating at 20% per year.

Result
5 of 5
a. $120
b. $22,222
Exercise 59
Step 1
1 of 3
a-

$2=a cdot b^0 qquad rightarrow qquad a=dfrac {2}{b^0}$          (Solving for $a$)

$dfrac {1}{2}=a cdot b^2$

$dfrac {1}{2}=dfrac {2}{b^0} cdot b^2$

$dfrac {1}{2}=2 cdot b^{2-0}$

$b^2=dfrac {1}{4}$

$b=pm sqrt {dfrac {1}{4}}$

$b=pm dfrac {1}{2}$

For $b=dfrac {1}{2}$

$dfrac {1}{2}=a cdot left(dfrac {1}{2} right)^2$

$dfrac {1}{2}=dfrac {1}{4} cdot a$

$a=2$

For $b=-dfrac {1}{2}$

$dfrac {1}{2}=a cdot left(-dfrac {1}{2} right)^2$

$dfrac {1}{2}=dfrac {1}{4} cdot a$

$$
a=2
$$

Step 2
2 of 3
b-

$dfrac {1}{2}=a cdot b^0$

$2=a cdot b^2 qquad rightarrow qquad a=dfrac {2}{b^2}$          (Solving for $a$)

$dfrac {1}{2}=dfrac {2}{b^2} cdot b^0$

$dfrac {1}{2}=2 cdot b^{0-2}$

$b^-2=dfrac {1}{4}$

$dfrac {1}{b^2}=dfrac {1}{2^2}$

$b=pm 2$

For $b=2$

$2=a cdot 2^2$

$a=dfrac {1}{2}$

For $b=-2$

$2=a cdot (-2)^2$

$$
a=dfrac {1}{2}
$$

Result
3 of 3
a-          $b=pm dfrac {1}{2}$                   $a=2$

b-          $b=pm 2$                   $a=dfrac {1}{2}$

Exercise 60
Step 1
1 of 7
When solving multiplications under the square root we can separate each multiplier under its own square root and simplify it separately.
Step 2
2 of 7
a)

$$
sqrt{4x^2y^4}=sqrt{4}cdotsqrt{x^2}cdotsqrt{y^4}= 2 cdot x cdot y^2 = 2xy^2
$$

$$
(a) sqrt{4x^2y^4} = 2xy^2 (3)
$$

Step 3
3 of 7
b)

$$
sqrt{8x^2y} = sqrt{8} cdot sqrt{x^2} cdot sqrt{y} = sqrt{2^3} cdot x cdot sqrt{y} = sqrt{2^2cdot2} cdot x cdot sqrt{y}
$$

$$
sqrt{2^2} cdot sqrt{2} cdot x cdot sqrt{y} = 2 cdot sqrt{2} cdot x cdot sqrt{y} = 2xsqrt{2y}
$$

$$
(b)sqrt{8x^2y} =2xsqrt{2y}(4)
$$

Step 4
4 of 7
c)

$$
sqrt{4x^2y} = sqrt{4} cdot sqrt{x^2} cdot sqrt{y} = 2 cdot x cdot sqrt{y} = 2xsqrt{y}
$$

$$
(c)sqrt{4x^2y} = 2xsqrt{y}(1)
$$

Step 5
5 of 7
d)

$$
sqrt{16xy^2} = sqrt{16} cdot sqrt{x} cdot sqrt{y^2} = 4 cdot sqrt{x} cdot y = 4ysqrt{x}
$$

$$
(d)sqrt{16xy^2} =4ysqrt{x}(5)
$$

Step 6
6 of 7
e)

$$
sqrt{8xy^2} =sqrt{8} cdot sqrt{x} cdot sqrt{y^2} = sqrt{2^3} cdot sqrt{x}cdot y= sqrt{2^2 cdot 2} cdot sqrt{x}cdot y
$$

$$
sqrt{2^2} cdot sqrt{2} cdot sqrt{x} cdot y = 2cdot sqrt{2} cdot sqrt{x} cdot y = 2ysqrt{2x}
$$

$$
(e)sqrt{8xy^2} = 2ysqrt{2x}(2)
$$

Result
7 of 7
$$
a – 3
$$

$$
b – 4
$$

$$
c – 1
$$

$$
d – 5
$$

$$
e – 2
$$

Exercise 61
Step 1
1 of 3
a.

Let us rewrite the following expression by using the definition of $i$.

$$
sqrt{-25} = sqrt{25 cdot (-1)} = sqrt{25i^2} = sqrt{(5i)^2} = 5i.
$$

Therefore, we conclude
$$
color{#c34632} sqrt{-25} = 5i.
$$

b.

Let us rewrite the following expression by using the definition of $i$.

$$
begin{align*}
sqrt{-32} &= sqrt{32 cdot (-1)} = sqrt{32i^2} = sqrt{2 cdot 16i^2} \ &=sqrt{2 cdot (4i)^2} = sqrt{2} cdot 4i = 4sqrt{2}i. end{align*}
$$

Therefore, we conclude
$$
color{#c34632} sqrt{-32} = 4sqrt{2}i.
$$

Step 2
2 of 3
c.

Let us rewrite the following expression by using the definition of $i$. First we multiply

$$
begin{align*}
(3+2i)(5-3i) &= 3 cdot 5 +3 cdot (-3i) +2i cdot 5 +2i cdot (-3i) \
&=15-9i+10i-6i^2 \ &= 15+i -6 cdot (-1) \ &=15+i+6 \ &= 21+i. end{align*}
$$

Therefore, we conclude
$$
color{#c34632} (3+2i)(5-3i) = 21+i.
$$

d.

Let us sum the following expression.

$$
begin{align*}
(3+2i)+(5-3i) &= 3 +5 +2i -3i \
&= 8-i. end{align*}
$$

Therefore, we conclude
$$
color{#c34632} (3+2i)+(5-3i) = 8-i.
$$

Result
3 of 3
a. $sqrt{-25} = 5i$

b. $sqrt{-32} = 4sqrt{2}i$

c. $(3+2i)(5-3i) = 21+i$

d. $(3+2i)+(5-3i) = 8-i$

Exercise 62
Step 1
1 of 3
Let us consider the function defined by inputs that are lengths of the radii of circles and outputs that are the areas of those circles. The function is given with $$color{red} A(r)=r^2 pi, hspace{4mm} r geq 0.$$
We can now make the table of the function.
begin{center}
begin{tabular}{ |c|c|c|c|c|c|c|c|c|c|c|c|c| }
hline
x & 0 & 1 & 2 & 3 \
hline
y & 0 & 3.14 & 12,56 & 28,26 \
hline
end{tabular}
end{center}
And now we can draw the graph.\

Exercise scan

Step 2
2 of 3
Now we can completely describe the graph.

The domain of the function are all positive real numbers including $0$, we can write $x in [0, infty)$.

The range of the function are all positive real numbers, so we can write $y in [0, infty)$.

The $x$-intercept is the point $x=0$.

The $y$-intercept is the point $y=0$.

The function is not symmetric.

The function does not have asymptotes.

The function is increasing for $x in [0, infty).$

The function has a minimum point $(0, 0)$.

The function is continuous.

Result
3 of 3
The function defined by inputs that are lengths of the radii of circles and outputs that are the areas of those circles

$$
A(r)=r^2 pi, hspace{4mm} r geq 0
$$
is graphed and described.

Exercise 63
Step 1
1 of 2
The area of the circle equation is:

$A(r)=pi r^2$          ($r$ is the radius of the circle)

The reasonable domain of the equation is:          $(r geq 0)$

The following is the graph of the function.

Exercise scan

Result
2 of 2
$$
A(r)= pi r^2
$$
Exercise 64
Step 1
1 of 3
Compare given function the general quadratic function
$$f(x)=a(x-h)^2+k$$
where the vertex is $(h,k)$
Therefore, the **vertex** is
$$(-3,-8)$$
Step 2
2 of 3
Now, calculate the $x-$intercept and $y-$intercept
$$begin{aligned}
because y&=2left(x+3right)^{2}-8\
therefore 0&=2left(x+3right)^{2}-8\
2left(x+3right)^{2}&=8\
left(x+3right)^{2}&=4\
x+3&=pm 2\
x+3&= 2hspace{1cm}textrm{Or}hspace{1cm}x+3=-2\
x&=-1hspace{1cm}textrm{Or}hspace{1cm}x=-5\
end{aligned}$$
$$begin{aligned}
because y&=2left(x+3right)^{2}-8\
therefore y&=2left(0+3right)^{2}-8\
y&=18-8\
y&=10\
end{aligned}$$
Step 3
3 of 3
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/10030adf-16bd-467f-8b30-f1f28fde5a89-1635197543025620.png)
Exercise 65
Step 1
1 of 6
a.

Let us solve the following equation
$$
color{#4257b2} 2x^2-6x=-5.
$$
First we transform the equation a little bit and get

$$
2x^2-6x+5=0.
$$

Since the expression of the left is a quadratic function we can use the quadratic formula

$$
x = frac{-b pm sqrt{b^2-4ac}}{2a}.
$$
We have

$$
a=2 hspace{12mm} b=-6 hspace{12mm} c=5.
$$

Hence, we have

$$
begin{align*}
x &= frac{-(-6) pm sqrt{(-6)^2-4 cdot 2 cdot 5}}{2 cdot 2} \
x &= frac{6 pm sqrt{36-40}}{4} \
x &= frac{6 pm sqrt{-4}}{4} \
x &= frac{6 pm sqrt{4i^2}}{4} \
x &= frac{6 pm 2sqrt{i^2}}{4} \
x &= frac{6 pm 2i}{4} \
x &= frac{6 + 2i}{4} hspace{3mm} text{or} hspace{3mm} frac{6 – 2i}{4} \
x &= frac{2(3 + i)}{4} hspace{3mm} text{or} hspace{3mm} frac{2(3 – i)}{4} \
x &= frac{3 + i}{2} hspace{3mm} text{or} hspace{3mm} frac{3 – i}{2}.
end{align*}
$$

Therefore, the solutions are
$$
color{#c34632} x=frac{3 +i}{2} hspace{3mm} text{color{default}or} hspace{3mm} x=frac{3 – i}{2}.
$$

Step 2
2 of 6
Let us check the solutions. First we substitute $x=frac{3 +i}{2}$ in the given equation and get

$$
begin{align*}
2(frac{3 + i}{2})^2-6 cdot frac{3 + i}{2} &= 2 cdot frac{(3 + i)^2}{4}- frac{18 + 6i}{2} \ &= frac{3^2+2 cdot 3 cdot i +i^2}{2}- frac{18 + 6i}{2} \ &= frac{9+6i-1-18-6i}{2} = frac{-10}{2} = -5.
end{align*}
$$

Step 3
3 of 6
Now we substitute $x=frac{3 -i}{2}$ in the given equation and get

$$
begin{align*}
2(frac{3 – i}{2})^2-6 cdot frac{3 – i}{2} &= 2 cdot frac{(3 – i)^2}{4}- frac{18 – 6i}{2} \ &= frac{3^2-2 cdot 3 cdot i +i^2}{2}- frac{18 – 6i}{2} \ &= frac{9-6i-1-18+6i}{2} = frac{-10}{2} = -5.
end{align*}
$$

Finally, we can conclude that both solutions are correct.

Step 4
4 of 6
b. Let us solve the following equation
$$
color{#4257b2} frac{5}{9} – frac{x}{3} = frac{4}{9}.
$$

Now we solve for $x$.

$$
begin{align*}
frac{5}{9} – frac{x}{3} = frac{4}{9} implies frac{x}{3} &= frac{5}{9} – frac{4}{9} \ frac{x}{3} &= frac{1}{9} \
9 cdot x &=3 cdot 1 \ 9x&=3 \ x&=frac{3}{9} = frac{1}{3}.
end{align*}
$$

Therefore, the solution is
$$
color{#c34632} x=frac{1}{3}.
$$

Step 5
5 of 6
Let us check the solution, We substitute $x=frac{1}{3}$ in the given solution and get

$$
frac{5}{9} – frac{frac{1}{3}}{3} = frac{5}{9} – frac{1}{9} = frac{4}{9}.
$$
Hence, the solution is correct.

Result
6 of 6
$$
begin{align*}
&text{a.} hspace{3mm} x=frac{3 +i}{2} hspace{3mm} text{color{default}or} hspace{3mm} x=frac{3 – i}{2} \
&text{b.} hspace{3mm} x=frac{1}{3} \
end{align*}
$$
Exercise 66
Step 1
1 of 3
a.

Let us find the possible exponential function in
$$
color{#4257b2} y=a cdot b^x
$$
form that has a $y$-intercept of $(0,3)$ and passes through the point $(2, 48)$. First, we will use the fact that the function has a $y$-intercept of $(0,3)$. We substitute $x=0$ and $y=3$ in the given exponential function form and get

$$
3=a cdot b^0 implies 3=a cdot 1 implies color{#4257b2} a=3.
$$

Now we will use the fact that the function passes through the point $(2, 48)$. We substitute $a=3$, $x=2$ and $y=48$ in the given exponential function form and get

$$
48=3 cdot b^2 implies b^2 = frac{48}{3} implies b^2=16 implies color{#4257b2} b=4.
$$

Therefore, the exponential function that has a $y$-intercept of $(0,3)$ and passes through the point $(2, 48)$ is
$$
color{#c34632} y=3cdot 4^x.
$$

Step 2
2 of 3
b.

Let us find the possible exponential function in
$$
color{#4257b2} y=a cdot b^x
$$
form that has a $y$-intercept of $(0,2)$ and passes through the point $(3, 0.25)$. First, we will use the fact that the function has a $y$-intercept of $(0,2)$. We substitute $x=0$ and $y=2$ in the given exponential function form and get

$$
2=a cdot b^0 implies 2=a cdot 1 implies color{#4257b2} a=2.
$$

Now we will use the fact that the function passes through the point $(3, 0.25)$. We substitute $a=2$, $x=3$ and $y=0.25$ in the given exponential function form and get

$$
0.25=2 cdot b^3 implies b^3 = frac{0.25}{2} implies b^2=0.125 implies color{#4257b2} b=0.5.
$$

Therefore, the exponential function that has a $y$-intercept of $(0,2)$ and passes through the point $(3, 0.25)$ is
$$
color{#c34632} y=2 cdot 0.5^x.
$$

Result
3 of 3
a. $y=3 cdot 4^x$

b. $y=2 cdot 0.5^x$

Exercise 67
Step 1
1 of 2
a-

$2x^2(3x+4x^2y)$

$=2x^2 cdot 3x+2x^2 cdot 4x^2y$          (Distributive property)

$=6x^3+8x^4y$          (Power of product property)

b-

$(x^3y^2)^4(x^2y)$

$=(x^{12}y^8)(x^2y)$          (Power of power property)

$=x^{14}y^9$          (Power of product property)

Result
2 of 2
a-          $2x^2(3x+4x^2y)=6x^3+8x^4y$

b-          $(x^3y^2)^4(x^2y)=x^{14}y^9$

Exercise 68
Step 1
1 of 3
a-          No, the sides of a parabola never curve back. Because a parabola is always open, the domain of the parabola is $(-infty<x<infty)$
Step 2
2 of 3
b-          No a parabola does not have asymptotes. Because the domain of a parabola is $-infty<x< infty$
Result
3 of 3
a-          The sides of a parabola never curve back.

b-          A parabola does not have asymptotes.

Exercise 69
Step 1
1 of 3
Consider the given points
$$
color{#4257b2} (-2,5) hspace{3mm} text{color{default} and} hspace{3mm} (5, 2).
$$

a.

Let us calculate the distance between the points $(-2,5)$ and $(5, 2)$. Let

$$
(-2,5)=(x_1, y_1) hspace{3mm} text{color{default} and} hspace{3mm} (5, 2)=(x_2, y_2).
$$

Now we calculate the length

$$
begin{align*}
d &=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}= sqrt{(5-(-2))^2+(2-5)^2} \
&= sqrt{(7)^2+(-3)^2} = sqrt{49+9} = sqrt{56} = sqrt{4 cdot 14} = 2sqrt{14} approx 7,5. end{align*}
$$

Therefore, the distance between the points $(-2,5)$ and $(5, 2)$ is
$$
color{#c34632} d= 2sqrt{14} approx 7,5.
$$

Step 2
2 of 3
b.

Let us calculate the slope of the line that goes through the two points. Let

$$
(-2, 5)=(x_1, y_1) hspace{3mm} text{color{default} and} hspace{3mm} (5,2)=(x_2, y_2).
$$

Now we calculate the slope

$$
m=frac{y_2-y_1}{x_2-x_1} = frac{2-5}{5-(-2)} = frac{-3}{7} = -frac{3}{7}.
$$

Therefore, the slope of the line that goes through the two points is
$$
color{#c34632} m= -frac{3}{7}.
$$

Result
3 of 3
a. The distance between the points $(-2,5)$ and $(5, 2)$ is
$$
d= 2sqrt{14} approx 7,5.
$$

b. the slope of the line that goes through the two points is
$$
m= -frac{3}{7}.
$$

Exercise 70
Step 1
1 of 6
a. We have the parent functions i.e. $f(x)$

$$x^2, x^3, dfrac{1}{x}, 2^x$$

We have to find the $f(-x)$ equivalent functions of the above parent functions.

Thus for $f(x) = x^2$ we have $f(-x) = (-x)^2 = x^2$

And for $f(x) = x^3$ we have $f(-x) = (-x)^3 = -x^3$

Similarly for $f(x) = dfrac{1}{x}$ we have $f(-x) = dfrac{1}{-x} = -dfrac{1}{x}$

Finally for $f(x) = 2^x$ we have $f(-x) = 2^{-x} = dfrac{1}{2^x}$

Step 2
2 of 6
b. We have to draw the graphs of the parent functions above.
Firstly for $f(x) = x^2$ and $f(-x) = x^2$
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/74facfe7-1698-4e3a-9b9e-d9b9b7a76d38-1622833196360755.png)
Step 3
3 of 6
Secondly for
$f(x) = x^3$ (Green Color) and
$f(-x) = -x^3$ (Blue Color)
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/1640cc52-6fcd-481c-99fd-97895c649961-1622833294447545.png)
Step 4
4 of 6
Thirdly for
$f(x) = dfrac{1}{x}$ (Blue Color) and

$f(-x) = -dfrac{1}{x}$ (Green Color)
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/fa0e6570-2cb0-4f86-b9d8-f7e79e81d546-1622833410208609.png)

Step 5
5 of 6
Finally for
$f(x) =2^x$ (Blue Color) and

$f(-x) = dfrac{1}{2^x}$ (Green Color)
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/ce2d1e8a-3509-4eb6-a1f5-06a6ba3e7a20-1622833496875729.png)

Step 6
6 of 6
c. As we can see the graphs have mirror images. In the first case, there is no change in the function so there is no change reflected in the graph. In all the other graphs we can observe that both the functions are reflections of each other i.e. the graph has flipped over the y-axis. In the first case, there is a flip too but since it is symmetrical over the y-axis we cannot observe any change
Exercise 71
Step 1
1 of 3
a. We have the parent functions i.e. $f(x)$

$$x^2, x^3, dfrac{1}{x}, 2^x$$

We have to find the $f(-x)$ and $-f(x)$ equivalent functions of the above parent functions.

Thus for $f(x) = x^2$ we have

$f(-x) = (-x)^2 = x^2$ and

$-f(x) = -x^2$

And for $f(x) = x^3$ we have

$f(-x) = (-x)^3 = -x^3$ and

$-f(x) = -x^3$

Similarly for $f(x) = dfrac{1}{x}$ we have

$f(-x) = dfrac{1}{-x} = -dfrac{1}{x}$ and

$-f(x) = -dfrac{1}{x}$

Finally for $f(x) = 2^x$ we have

$f(-x) = 2^{-x} = dfrac{1}{2^x}$ and

$-f(x) = -2^{x}$

Step 2
2 of 3
b. Even functions are those where $f(-x) = f(x)$ and Odd functions are those where $f(-x) = -f(x)$.

From above we can clearly make out that $f(x) = x^2$ and
$f(-x) = x^2$ i.e. $f(-x) = f(x)$. Therefore, $f(x) = x^2$ is an even function.

Further, for $f(x) = x^3$ we have $f(-x) = -x^3$ and
$-f(x) = -x^3$ i.e. $f(-x) =- f(x)$. Therefore, $f(x) = x^3$ is an odd function.

Similarly for $f(x) = dfrac{1}{x}$ we have $f(-x)= -dfrac{1}{x}$ and

$-f(x) = -dfrac{1}{x}$ i.e. $f(-x) =- f(x)$. Therefore, $f(x) = dfrac{1}{x}$ is an odd function.

Step 3
3 of 3
c. We can determine whether a function is an odd one or an even one by looking at the symmetry. The graph of an even function is symmetrical over the y-axis. This implies even if you put a positive integer, say, 3 or its negative counterpart i.e. $-3$ in an even function, say, $f(x) = x^2$ the output will be the same i.e. 9.

In case of an odd function the graph will be symmetrical about the origin. This implies even if you put a positive integer, say, 2 or its negative counterpart i.e. $-2$ in an odd function, say, $f(x) = x^3$ the output will be 8 and $-8$ respectively. Thus, the line above the origin and below the origin will be opposite to each other.

Exercise 72
Step 1
1 of 7
The graphs of Even Functions:Exercise scan
Step 2
2 of 7
The graphs of Odd Functions:Exercise scan
Step 3
3 of 7
The graphs of neither even nor odd functions:Exercise scan
Step 4
4 of 7
b-

The even functions are:          $f(x)=x^2$          and          $f(x)=x^2+5$

The odd functions are:          $f(x)=x^3$,          $f(x)=dfrac {1}{x}$          and          $f(x)=-2.5x$

The neither even nor odd functions are: $f(x)=(x+5)^2$, $f(x)=(x+5)^3$ and $f(x)=x^3+5$

From the graphing calculator,

The even functions are the functions that y-axis is the line of symmetry for their graphs.

The odd function are the functions that can rotate around the origin 180$text{textdegree}$ and keep their shape.

The other functions are neither even nor odd.

Step 5
5 of 7
c-

By looking at the graph, If the graph has the y-axis a line of symmetry, then the function is even. If the graph can rotate around the origin without changing its shape, then the function is odd, otherwise the function is neither even nor odd.

Step 6
6 of 7
d-

The graph of the function can rotate 180$text{textdegree}$ around the origin without changing its shape. So, the function is odd.

Result
7 of 7
By looking at the graph, If the graph has the y-axis a line of symmetry, then the function is even. If the graph can rotate around the origin without changing its shape, then the function is odd, otherwise the function is neither even nor odd.
Exercise 73
Step 1
1 of 3
a. An even function is the one where $f(-x)=f(x)$.

Let’s consider a function $f(x) = x^4 – x^2 +23$

Now, we will determine the function $f(-x)$

$$begin{aligned}
f(-x) &= (-x)^4 – (-x)^2 +23 \
&=x^4 – x^2 +23 \
&=f(x)
end{aligned}$$

Since, $f(-x)=f(x)$, $f(x) = x^4 – x^2 +23$ is an even function.

Step 2
2 of 3
b. An odd function is the one where $f(-x)=-f(x)$.

Let’s consider a function $f(x) = 2x^5 – x^3 +7x$

Now, we will determine the function $f(-x)$

$$begin{aligned}
f(-x) &= 2(-x)^5 – (-x)^3 +7(-x) \
&=-2x^5 + x^3 -7x \
&=-(2x^5 – x^3 +7x) \
&=-f(x)
end{aligned}$$

Since, $f(-x)=-f(x)$, $f(x) = 2x^5 – x^3 +7x$ is an odd function.

Step 3
3 of 3
c. Let’s consider a function $f(x) = 2x^3 – x^2 +8$

Now, we will determine the function $f(-x)$

$$begin{aligned}
f(-x) &= 2(-x)^3 – (-x)^2 +8 \
&=-2x^3 – x^2 +8 \
end{aligned}$$

Since, neither $f(-x)=f(x)$ nor $f(-x)=-f(x)$,

$f(x) = 2x^3 – x^2 +8$ is neither even function nor an odd function.

Exercise 74
Step 1
1 of 2
The next table demonstrates the change of the graph and the function When $-x$ replaces $x$ in the function $f(x)$\
begin{center}
renewcommand{arraystretch}{2}
begin{tabular}{|l|l|l|l|}
hline
$y(x)$ & Graphs & Function $f(-x)$ & Type \
hline
$y=x^2$ & Coincident & $f(-x)=y$ & Even \
hline
$y=x^3$ & Reflection & $f(-x)=-y$ & Odd \
hline
$y=dfrac {1}{x}$ & Reflection & $f(-x)=-y$ & Odd \
hline
$y=a^x$ & Reflection over y-axis & $f(-x)$ & Neither \
hline
end{tabular}
end{center}
Result
2 of 2
begin{center}
renewcommand{arraystretch}{2}
begin{tabular}{|l|l|l|l|}
hline
$y(x)$ & Graphs & Function $f(-x)$ & Type \
hline
$y=x^2$ & Coincident & $f(-x)=y$ & Even \
hline
$y=x^3$ & Reflection & $f(-x)=-y$ & Odd \
hline
$y=dfrac {1}{x}$ & Reflection & $f(-x)=-y$ & Odd \
hline
$y=a^x$ & Reflection over y-axis & $f(-x)$ & Neither \
hline
end{tabular}
end{center}
Exercise 75
Step 1
1 of 3
a.

The line with a slope $5$ passes through the point $(3, -2)$. Let us write its equation in point-slope form. We use the given formula
$$
color{#4257b2} y-k=a(x-h).
$$

We have
$$
a=5, hspace{5mm} h=3 hspace{5mm} text{and} hspace{5mm} k=-2.
$$

Now we substitute all this in the given formula and get

$$
y-(-2)=5(x-3) implies y+2=5(x-3).
$$

Therefore, the equation of the line with a slope $5$ that passes through the point $(3, -2)$ in point-slope form is

$$
color{#c34632} y+2=5(x-3).
$$

Step 2
2 of 3
b.

Let us find the intercepts of the line from part (a)
$$
y+2=5(x-3).
$$

In order to find $x$-intercept, we substitute $y=0$ in the given equation. This yields

$$
begin{align*}
0+2=5(x-3) implies 2&=5x-15 \ 5x &= 15+2 \ 5x&=17 \ x&= frac{17}{5}.
end{align*}
$$

Therefore, the $x$-intercept point is
$$
color{#c34632} x= frac{17}{5}.
$$

In order to find $y$-intercept, we substitute $x=0$ in the given equation. This yields

$$
begin{align*}
y+2=5(0-3) implies y+2 &=-15 \ y &= -15-2 \ 5x&=17 \ y&= -17.
end{align*}
$$

Therefore, the $y$-intercept point is
$$
color{#c34632} y=-17.
$$

Result
3 of 3
a. The equation of the line with a slope $5$ that passes through the point $(3, -2)$ in point-slope form is

$$
y+2=5(x-3).
$$

b. The $x$-intercept point is $x= frac{17}{5}$ and the $y$-intercept point is $y=-17$.

Exercise 76
Step 1
1 of 3
Let $x$ be height of tree then, below is given arrangement:

Exercise scan

Step 2
2 of 3
We know, $dfrac{textrm{Perpendicular}}{textrm{Base}}=tan theta$, therefore:

$$
begin{align*}
tan 29 text{textdegree}&=dfrac{x}{32}\
x&=32 cdot tan 29 text{textdegree}\
x&= 32 cdot 0.5543\
x&=17.7376\
x&approx 17.7 textrm{ft}\
end{align*}
$$

Result
3 of 3
Height of tree is $17.7 textrm{ft}$
Exercise 77
Step 1
1 of 5
a-          $sqrt {75}+sqrt {27}$          (Given)

$=sqrt {5^2 times 3}+sqrt {3^2 times 3}$

$=5 sqrt {3}+3 sqrt {3}$

$$
=8sqrt {3}
$$

Step 2
2 of 5
b-          $sqrt x+2 sqrt x$          (Given)

$$
3 sqrt x
$$

Step 3
3 of 5
c-          $(sqrt {12})^2$          (Given)

$$
=12
$$

Step 4
4 of 5
d-          $(3 sqrt {12})^2$          (Given)

$=3^2 times (sqrt {12})^2$

$=9 times 12$

$$
=108
$$

Result
5 of 5
a-          $sqrt {75}+sqrt {27}=8sqrt {3}$

b-          $sqrt x+2 sqrt x=3 sqrt x$

c-          $(sqrt {12})^2=12$

d-          $(3 sqrt {12})^2=108$

Exercise 78
Step 1
1 of 2
$3x+8=2$          (1)

$7x+3y=1$          (2)

Solving equation (1):

$3x=2-8$

$3x=-6$

$$
x=-2
$$

Substituting in equation (2)

$7(-2)+3y=1$

$3y=15$

$$
y=5
$$

Result
2 of 2
The system solution is:          $(-2, 5)$
Exercise 79
Step 1
1 of 4
Firstly, we have to define the formula with the given parameters for a geometric sequence. The general geometric sequence formula is $A_n = A_1 cdot r^n$. For this case $A_1 = 1500$, $r = 1.047$ and $n=3$. Now we input the parameters in the formula.

$$
A_n = A_1 cdot r^n
$$

$$
1500 cdot 1.047^{3} = 1722
$$

Now there are 1722 students in the school.

Step 2
2 of 4
In this case we need to find the $A_1$. The other parameters are $A_3 = 1500$, $r = 1.047$ and $n = 2$.

$$
1500 = A_1 cdot 1.047^2
$$

$$
1500 div 1.047^2= A_1 cdot 1.047^2div 1.047^2
$$

$$
A_1 = 1500 div 1.047^2
$$

$$
A_1 = 1368
$$

Five years ago there were 1368 students in the school.

Step 3
3 of 4
We know how many students there are now and we know the increase rate so the only thing missing is the number of years.

The start with the default formula:

$$
A_n = A_1 cdot r^n
$$

We input the values we know.

$$
A_n = 1722 cdot 1.047^n
$$

And we have the answer.

Result
4 of 4
a) 1722 b)1368 c) $A_n =A_1 cdot 1.047^n$
Exercise 80
Step 1
1 of 3
Given ,
Domain $rightarrow (-infty, 10]$.
Range $rightarrow [-4, 6]$.
Step 2
2 of 3
An example of a function is given as follows:
$$begin{aligned}
f(x) &= dfrac{4x-1}{-x + 11}, x < 0\\
&= x – 4, 0 leq x leq 10\
end{aligned}$$
Step 3
3 of 3
Sketching the graph of the given example:
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/5c3962e2-2a10-411d-bbf0-72dd1925886a-1623517102504422.png)
Exercise 81
Step 1
1 of 3
(a)
**Histogram** of the calorie data
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/54cffab0-6475-4b4c-8694-e250c66a414a-1634866316733542.png)
Step 2
2 of 3
(b)
The inspector tested 30 wings even it would have been much easier and less expensive to test just one, because as the number of wings in the sample increases the accuracy of result will increase.
Step 3
3 of 3
(c)
Mean and median values set of measures best describes the calories in a typical Pollo Genio batter-fried chicken wing, because it gives us a approximate indicate about the number of calories.
Exercise 82
Step 1
1 of 2
a-

$f(x)=dfrac {2}{3}x+1$

$-f(x)=-dfrac {2}{3}-1$

$f(-x)=dfrac {2}{3}(-x)+1 neq f(x)$ and $f(-x) neq -f(x)$          (Neither even nor odd)

b-

$f(x)=(x+2)^2=x^2+4x+4$

$-f(x)=-x^2-4x-4$

$f(-x)=x^2-4x+4 neq f(x)$ and $f(-x) neq -f(x)$          (Neither even nor odd)

c-

$f(x)=|x|-x^2$

$-f(x)=|-x|+x^2$

$f(-x)=|-x|-(-x)^2=|-x|-x^2=f(x)$          (Even Function)

Result
2 of 2
a-          Neither even nor odd

b-          (Neither even nor odd)

c-         (Even Function)

Exercise 83
Step 1
1 of 7
The given function is:
$$begin{aligned}
y &= x^{2} + 6 text{x}\\
end{aligned}$$
Expand the equation by using the completing the square.
Step 2
2 of 7
$$begin{aligned}
text {y} &= (x^{2} + 6text{x} + left(dfrac{6}{2}right)^{2}) – left(dfrac{6}{2}right)^{2}\\
text {y} &= (x^{2} + 6text{x} + (3)^{2}) – (3)^{2}\\
text {y} &= (x^{2} + 6text{x} + 9) -9\\
end{aligned}$$
Using,
$$begin{aligned}
(a+b)^{2} &= a^{2}+2ab+b^{2}\
end{aligned}$$
Step 3
3 of 7
$$begin{aligned}

text {y} &= (x+3)^{2} – 9\\
end{aligned}$$
We graph the parent function $text {y} = x^{2}$,

then we shifts it $6 text {units}$ to the left to get $text {y} = (x + 3)^{2}$ and

finally $9 text {units}$ down to get $text {y} = (x + 3)^{2} -9$.

Step 4
4 of 7
Sketch the graph.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/a790aced-633a-4e4e-9ca7-a9c40e814f68-1622908513946092.png)

Step 5
5 of 7
Now determine the $x$ – intercepts;

Put $text {y} = 0$
$$begin{aligned}
text {y} &= text {x}^{2} + 6 text{x}\
0 &= text {x}(text {x}+ 6)\\
&boxed {text{x}_{1} = 0 text{ and } text{x}_{2} = -6}\
end{aligned}$$

Step 6
6 of 7
Now determine the $y$ – intercepts;

Put $x = 0$
$$begin{aligned}
y &= 0^{2} + 6 cdot 0\\
&boxed {text{y}= 0}\
end{aligned}$$

Step 7
7 of 7
Now determine the vertex $V(h, k)$;

$$begin{aligned}
text {y} &= text{a}(text {x} – text {h})^{2} + text {k}\
text {h} &= -3\
text {k} &= -9\
end{aligned}$$
$$V(h, k) = (-3, -9)$$

Exercise 84
Step 1
1 of 3
Simplify each expression as shown below, follow the steps:

a) $5^{-2}cdot 4^{1/2}$

$color{#c34632} text{$bigg[$apply the negative exponents property: $,,,a^{-b}=dfrac{1}{a^b}bigg]$}$

$=dfrac{1}{5^2}cdot 4^{1/2}=$

$color{#c34632} text{$bigg[$rewrite $4^{1/2}$ as $sqrt{4}bigg]$ }$

$=dfrac{1}{25}cdot sqrt{4}=$

$=color{#4257b2} text{$dfrac{2}{25}$}$

b) $dfrac{3xy^2z^{-2}}{(xy)^{-1}z^2}=$

$color{#c34632} text{$bigg[$apply the negative exponents property: $,,,a^{-b}=dfrac{1}{a^b},,,,,,,,,dfrac{1}{a^{-b}}=a^bbigg]$}$

$=dfrac{3xy^2(xy)}{z^2z^2}=$

$color{#c34632} text{$bigg[$apply the product of powers property: $,,,a^bcdot a^c=a^{b+c}bigg]$}$

$=dfrac{3x^{(1+1)}y^{(2+1)}}{z^{(2+2)}}=$

$$
=color{#4257b2} text{$dfrac{3x^2y^3}{z^4}$}
$$

Step 2
2 of 3
c) $(3m^2)^3(2mn)^{-1}(8n^3)^{2/3}=$

$color{#c34632} text{$bigg[$apply the power of a product property: $,,,(ab)^c=a^bcdot b^cbigg]$}$

$=3^3cdot (m^2)^3 cdot (2mn)^{-1}cdot 8^{2/3}(n^3)^{2/3}=$

$color{#c34632} text{$bigg[$apply the power of a power property: $,,,(a^b)^c=a^{bc}bigg]$}$

$=27cdot m^{(2cdot 3)}cdot (2mn)^{-1}cdot (2^3)^{2/3}cdot n^{3(2/3)}=$

$=27m^6cdot (2mn)^{-1}cdot 2^{6/3}cdot n^{6/3}=$

$=27m^6cdot (2mn)^{-1}cdot 2^2cdot n^2=$

$=27m^6cdot(2mn)^{-1}cdot 4n^2=$

$color{#c34632} text{$bigg[$apply the negative exponents property: $,,,a^{-b}=dfrac{1}{a^b}bigg]$}$

$=dfrac{108m^6n^2}{2mn}=$

$color{#c34632} text{$bigg[$apply the quotient of powers property: $,,,dfrac{a^b}{a^c}=a^{b-c}bigg]$}$

$=54m^{(6-1)}n^{(2-1)}=$

$$
=color{#4257b2} text{$54m^5n$}
$$

Step 3
3 of 3
d) $(5x^2y^3z)^{1/3}=$

$color{#c34632} text{$bigg[$apply the power of a product property: $,,,(ab)^c=a^bcdot b^cbigg]$}$

$=5^{1/3}cdot (x^2)^{1/3}cdot (y^3)^{1/3}cdot z^{1/3}=$

$color{#c34632} text{$bigg[$apply the power of a power property: $,,,(a^b)^c=a^{bc}bigg]$}$

$=5^{1/3}cdot x^{2/3}cdot y^{3/3}cdot z^{1/3}=$

$color{#c34632} text{$bigg[$recall: $,,,x^{m/n}=sqrt[n]{x^m}bigg]$}$

$=sqrt[3]{5}cdot sqrt[3]{x^2}cdot ycdot sqrt[3]{z}=$

$color{#c34632} text{$bigg[$recall: $,,, sqrt[n]{a}cdot sqrt[n]{b}=sqrt[n]{ab}bigg]$}$

$$
=color{#4257b2} text{$ysqrt[3]{5x^2z}$}
$$

Exercise 85
Step 1
1 of 5
It is given that,
$$begin{aligned}
text{Height of a “fire safe zone”}, h &= 100 text{ metres}\
h&= dfrac{100}{2}\\
&boxed{h=50 text{ metres}}\\
text{ Expected height of the firework}, k&= 30 text{ metres}\
end{aligned}$$
Step 2
2 of 5
Since, the path of the fire-work is always of a parabola. Thus, from the given values we can say that,

Vertex of the parabola $rightarrow(50, 30)$.

Step 3
3 of 5
Using the vertex form of the parabola in order to determine the value of $a$ using the point $(x, y)$ as $(0, 0).$
$$begin{aligned}
y&= a (x – h)^2 + k \
end{aligned}$$
Substituting the values,
$$begin{aligned}
0&=a(0-50)^2 + 30\
&= 2500a + 30\
-30&= 2500a\
dfrac{-30}{2500}&= a\\
&boxed{-0.012=a}
end{aligned}$$
Step 4
4 of 5
Thus, the function is given as follows.
Substituting the value of $a$,
$$begin{aligned}
&boxed{y=-0.012(x-50)^2 + 30}\
end{aligned}$$
Result
5 of 5
$$y=-0.012(x-50)^2 + 30$$
Exercise 86
Step 1
1 of 2
$sqrt {x+2}=8$          (Given)

$(sqrt {x+2})^2=8^2$          (Square each side)

$x+2=64$          (Simplify)

$x=62$          (Solve for $x$)

Checking solution:

$sqrt {62+2}=sqrt {64}=8 qquad checkmark$

Result
2 of 2
$x=62$
Exercise 87
Step 1
1 of 2
Let us consider the given equation
$$
x^2 = -16.
$$
Let us determine the solutions. We solve for $x$ and get

$$
x^2 = -16 implies x = pm sqrt{-16} =pm sqrt{16i^2} =pm sqrt{(4i)^2} = pm 4i.
$$

Therefore, the solutions are
$$
color{#c34632} x=4i hspace{3mm} text{color{default} and} hspace{3mm} x=-4i.
$$

Result
2 of 2
$$
x=4i hspace{3mm} text{color{default} and} hspace{3mm} x=-4i
$$
Exercise 88
Step 1
1 of 6
$ABCD$ rectangle

Exercise scan

We are given:
Step 2
2 of 6
We draw $XYperp CD$.
Step 3
3 of 6
$P(triangle XCD)=dfrac{A_{triangle XCD}}{A_{ABCD}}$

$=dfrac{dfrac{CDcdot XY}{2}}{CDcdot AD}$

$$
=dfrac{XY}{2AD}
$$

We determine the probability that a dart lands inside $triangle XCD$:
Step 4
4 of 6
$$
P(triangle XCD)=dfrac{1}{2}
$$
$XY=AD$:
Step 5
5 of 6
The probability is the same no matter where $X$ is placed on $AB$.
Result
6 of 6
$$
P(triangle XCD)=dfrac{1}{2}
$$
Exercise 89
Step 1
1 of 8
The given functiuon:
$$begin{aligned}
text {x} &= text{y}^{2} rightarrow(1)\\
text {x}^{2} + text{y}^{2} &= 25 rightarrow(2)\\

end{aligned}$$

Step 2
2 of 8
(a.) Sketch the graph of equation (1).

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/4e5e51c5-4944-4114-aabc-0a38dd794772-1622909698446135.png)

Step 3
3 of 8
Sketch the graph of equation (2).

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/972d2cdc-1c2a-4776-b953-08ad48378727-1622909798957730.png)

Step 4
4 of 8
(b) Yes, there are more points we can add. Each $x$ has two corresponding $y$ values positive and negative.
| y | $x = y^{2}$ |
|:–:| :–: |
|-3 |9|
|-2 |4|
|-1 |1|
|0 |0|
|1 |1|
|2 |4|
|3 |9|
Step 5
5 of 8
(c.) For Equation (1);

The graph $x = y^{2}$ is symmetrical with respect to the $x$- axis.

The domain is $(0, infty)$, the range is the set of all real numbers. It is not a function as it doesn’t as the Vertical Line Test.

Step 6
6 of 8
For Equation (2);

The graph $x^{2}+y^{2} = 25$ is symmetrical with respect to both $x$- axis and $y$-axis..

The domain and range are $(-5, 5)$. It is not a function as it doesn’t as the Vertical Line Test.

Step 7
7 of 8
(d.) Both relationships are not functions. They both are symmetrical with respect to at least one axis.
Step 8
8 of 8
(e.) The second equation seems similar to the Pythagorean Theorem. Each of the points $(x, y)$ of the graph is a vertex of a right triangle, whose legs are the $x$ and $y$ coordinates ant the hypotenuse is 5.
Exercise 90
Step 1
1 of 3
(a)

$$begin{aligned}
x^2+y^2&=25hspace{2cm}textrm{Given}\
(x-3)^2+y^2&=25hspace{2cm}textrm{If translate the graph of the function horizontally}\
x^2+(y+1)^2&=25hspace{2cm}textrm{If translate the graph of the function vertically}\
(x-h)^2+(y-k)^2&=r^2hspace{2cm}textrm{We write the equation in graphing form for the family of circles}\
end{aligned}$$

Step 2
2 of 3
(b)
The radius of the circle $r$. To make the circle larger we increase the radius
$$x^2+y^2=36$$
Step 3
3 of 3
(c)
Write the equation of the circle with center $(5,-7)$ and radius $10$
$$(x-5)^2+(y-(-7))^2=10^2$$
$$Rightarrow (x-5)^2+(y+7)^2=100$$
Write the equation of the circle with center $(5,-7)$ and radius $12$
$$(x-5)^2+(y-(-7))^2=12^2$$
$$Rightarrow (x-5)^2+(y+7)^2=144$$
Exercise 91
Step 1
1 of 7
$a$.
Given equation ,
$$begin{aligned}
x^2 + y^2&= 25rightarrow(1)
end{aligned}$$
Step 2
2 of 7
Using the values in the table, sketching the graph of equation (1) :
|$x_!$ |$y_1$ |
|–|–|
| 0|0 |
|-5 |0 |
| 5|0 |
| 5|0 |
| 0|-5 |
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/d55112af-694b-4c0a-85db-3117a821fb19-1624251042928099.png)
Step 3
3 of 7
In order to translate the above- sketched graph we will increase or decrease the value of the center of the circle and fixing the radius to be 5 units.
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/f8e2bbeb-0a56-4e8d-b2f5-3556dfe758b1-1623430563696580.png)
Step 4
4 of 7
$b$.
We can make the circle larger by increasing the radius and smaller by decreasing the radius.
The radius of the given equation is 5 units.
The radius is a parameter of the circle, it connects the variable of the equation.

Step 5
5 of 7
$c$.
Given,
$$begin{aligned}
text{Centre}, (h,k)&= (5, -7)\
text{Radius}, r &= 10 text{units}\
end{aligned}$$

Step 6
6 of 7
The standard equation of the circle is :
$$begin{aligned}
(x-h)^2 + (y-k)^2&= r^2\
end{aligned}$$
Substituting the values.
$$begin{aligned}
(x-5)^2 + (y-(-7))^2&= 10^2\
&boxed{(x-5)^2 + (y+7)^2= 100}\
end{aligned}$$
Step 7
7 of 7
Similarly with radius $12$ units,
$$begin{aligned}
(x-5)^2 + (y-(-7))^2&= 12^2\
&boxed{(x-5)^2 + (y+7)^2= 144}\
end{aligned}$$
Exercise 92
Step 1
1 of 2
(a)
Given the coordinates of the center $C(h,k)$ and the radius $r$ of a circle

$$(x-h)^2+(y-k)^2=r^2$$

Step 2
2 of 2
(b)
Given that
$$(x-3)^2+(y+7)^2=169$$
Compare with the circle’s equation.
$$h=3,hspace{0.3cm}k=-7$$
$$r=sqrt{169}=13$$
Exercise 93
Step 1
1 of 5
Given equation
$$begin{aligned}
x & = y^{2} rightarrow(1)\
x^{2} + y^{2} &= 25 rightarrow(2)\
end{aligned}$$
Step 2
2 of 5
Rewrite the equation.
$$begin{aligned}
y & =sqrt {x^{2}}rightarrow(3)\
y &= sqrt{25-x^{2}}rightarrow(4)\
end{aligned}$$
Step 3
3 of 5
Sketching the graph of equation (1) and (3)

There are two functions in each case. The graphing calculator can draw them both (which are half-circles) but one by one.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/7351bcb3-f392-487b-a5f6-3632967cfc97-1623171923018985.jpeg)

Step 4
4 of 5
Sketching the graph of equations (2) and (4) in the same way.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/a0639433-479a-4916-9e38-69b66ea568d4-1623172475365019.jpeg)

Result
5 of 5
See the explanations
Exercise 94
Step 1
1 of 2
Although the concept of transforming functions can be generalized but the parent function affect how we will transform it.

We have to take into consideration what type of function (Linear, Quadratic, Exponential, Piecewise-defined. etc) we transform.

The piecewise defined function is the hardest one to transform. because it has different parts for different intervals.

Result
2 of 2
We have to take into consideration what type of function (Linear, Quadratic, Exponential, Piecewise-defined. etc) we transform.
Exercise 95
Step 1
1 of 4
a.
Consider the function
$$
color{#4257b2} y=3x^3.
$$

We rewrite it in the form
$$
f(x)=3x^3.
$$

Now we evaluate $f(-x)$. This gives

$$
f(-x) = 3(-x)^3 = 3cdot (-x^3) = -3x^3 = -f(x).
$$

Therefore,
$$
color{#c34632} f(-x) = -f(x)
$$
stands for every $x$. We can conclude that our given function is $text{color{#c34632} odd.}$

Step 2
2 of 4
b.
Consider the function
$$
color{#4257b2} y=x^2+16.
$$

We rewrite it in the form
$$
f(x)=x^2+16.
$$

Now we evaluate $f(-x)$. This gives

$$
f(-x) = (-x)^2+16 = x^2+16 = f(x).
$$

Therefore,
$$
color{#c34632} f(-x) = f(x)
$$
stands for every $x$. We can conclude that our given function is $text{color{#c34632} even.}$

Step 3
3 of 4
c.
Consider the function
$$
color{#4257b2} y=frac{x^4}{2}.
$$

We rewrite it in the form
$$
f(x)=frac{x^4}{2}.
$$

Now we evaluate $f(-x)$. This gives

$$
f(-x) = frac{(-x)^4}{2} = frac{x^4}{2} = f(x).
$$

Therefore,
$$
color{#c34632} f(-x) = f(x)
$$
stands for every $x$. We can conclude that our given function is $text{color{#c34632} even.}$

Result
4 of 4
a. The given function is odd.

b. The given function is even.

c. The given function is even.

Exercise 96
Step 1
1 of 3
Let us calculate the distance from the point $(4, 5)$ to the line
$$
color{#4257b2} y=2x +3.
$$
First, let us write the equation of the perpendicular line to the given line. We need to find the equation

$$
y=k cdot x+n.
$$

We can find the coefficient $k$ using the fact that the two lines are perpendicular. We have
$$
k=-frac{1}{2}.
$$

In order to find $n$ we use the fact that our wanted line passes through $(4, 5)$. We substitute $k=-1/2$, $x=4$ and $y=5$ and get

$$
5=-frac{1}{2} cdot 4 +n implies 5=-2+n implies n=5+2 = 7.
$$

Therefore, the equation of the perpendicular line to the line $y=2x +3$ which goes through $(4,5)$ is

$$
color{#c34632} y=-frac{1}{2}x +7.
$$

Step 2
2 of 3
We draw the lines

$$
y=2x +3 hspace{5mm} text{and} hspace{5mm} y=-frac{1}{2}x+7
$$

and on the graph given below see that the two lines intersect at point $(1.6, 6.2)$. The distance from the point $(4,5)$ to the line $y=2x+3$ is now the distance between the points $(1.6, 6.2)$ and $(4, 5)$. We use the formula

$$
d=sqrt{(x_2-x_1)^2+(y_2-y_1)^2}
$$
and get

$$
begin{align*}
d &=sqrt{(4-1,6)^2+(5-6,2)^2} = sqrt{2,4^2+(-1,2)^2} =sqrt{5,76+1,44} \ &= sqrt{7,2} approx 2,7.
end{align*}
$$

Therefore, the distance from the point $(4,5)$ to the line $y=2x+3$ is $color{#c34632} 2,7$.

Exercise scan

Result
3 of 3
The distance from the point $(4,5)$ to the line $y=2x+3$ is $2,7$.
Exercise 97
Step 1
1 of 3
Let us consider the given function $$color{blue} f(x)=sqrt{x-3}-5.$$
We can now make the table of the function.
begin{center}
begin{tabular}{ |c|c|c|c|c|c|c|c|c|c|c|c|c| }
hline
x & 3 & 4 & 7 & 12 & 19 & 28 & 39 \
hline
y & -5 & -4 & -3 & -2 & -1 & 0 & 1 \
hline
end{tabular}
end{center}
And now we can draw the graph.\

Exercise scan

Step 2
2 of 3
Now we can completely describe the graph.

The domain of the function are all real numbers larger than $3$ including $3$, we can write $x in [3, infty)$.

The range of the function are all real numbers larger than $-5$ including $-5$, so we can write $y in [-5, infty)$.

The $y$-intercept does not exist.

The $x$-intercept is the point $x=28$.

The function is not symmetric.

The function does not have asymptotes.

The function is increasing for $x in [3, infty).$

The function has a minimum point $(3, -5)$.

The function is continuous.

Result
3 of 3
The function $f(x)=sqrt{x-3}-5$ is graphed and described.
Exercise 98
Step 1
1 of 5
The following is the data table obtained from the machine.\
\
begin{center}
begin{tabular}{|r|r|r|r|r|}
hline
x & 2 & 3 & 5 & 10 \
hline
F(x) & 5 & 10 & 26 & 101 \
hline
end{tabular}
end{center}
Firs we check if it is a linear equation,\
The slope is calculated by the equation $m=dfrac {y2-y1}{x2-x1}$\
$dfrac {101-26}{10-5}=dfrac {75}{5}=5$\
$dfrac {26-10}{5-3}=dfrac {16}{2}=8$\
So, there is no a constant slope and the function is not linear.\
\
Checking if it is a quadratic:\
$y=ax^2+bx+c$\
$101=a(10)^2+b(10)+c qquad rightarrow qquad 100a+10b+c=101$ qquad (1)\
$26=a(5)^2+b(5)+c qquad rightarrow qquad 25a+5b+c=26$ qquad (2)\
$10=a(3)^2+b(3)+c qquad rightarrow qquad 9a+3b+c=10$ qquad (3)\
\
Step 2
2 of 5
$a=dfrac {101-10b-c}{100}$          (Solving equation (1) for $a$)

$25 times dfrac {101-10b-c}{100}+5b+c=26$          (Substituting for $a$ in equation (2))

$dfrac {101-10b-c}{4}+5b+c=26$

$101-10b-c+20b+4c=104$

$10b+3c=3$          (4)

$9 times dfrac {101-10b-c}{100}+3b+c=10$          (Substituting for $a$ in equation (3))

$909-90b-9c+300b+100c=1000$         (Multiply each side by 100)

$210b+91c=91$          (5)

Step 3
3 of 5
Solving both equations (4) and (5)

$b=dfrac {3-3c}{10}$          (Solving equation (4) for $b$)

$210 times dfrac {3-3c}{10}+91c=91$          (Substituting for $b$ in equation (5)

$21(3-3c)+91c=91$

$63-63c+91c=91$

$91c-63c=91-63$

$28c=28$

$$
c=1
$$

Substituting for $c$ in equation (4)

$10b+3 (1)=3$

$10b=3-3$

$10b=0$

$$
b=0
$$

Step 4
4 of 5
Substituting for $b=0$ and $c=1$ in equation (1)
$100a+10(0)+1=101$

$100a=100$

$$
a=1
$$

The function of the machine is:

$$
y=x^2+1
$$

Checking for the function:

$f(2)=2^2+1=5$ checkmark

$f(3)=3^2+1=10$ checkmark

$f(5)=5^2+1=26$ checkmark

$f(2)=(10)^2+1=101$ checkmark

Result
5 of 5
The function of the machine is:          $y=x^2+1$
Exercise 99
Step 1
1 of 5
a.

Consider the given equation
$$
color{#4257b2} x-3(y+2) = 6.
$$

We solve for $y$ and get

$$
begin{align*}
x-3(y+2) &= 6 \ x-3y-6 &=6 \ -3y &= 6+6-x \ -3y &= 12-x \ y&=frac{12-x}{-3} = frac{-(12-x)}{3} = frac{x-12}{3}.
end{align*}
$$

Therefore, the solution is
$$
color{#c34632} y=frac{x-12}{3}.
$$

Step 2
2 of 5
b.

Consider the given equation
$$
color{#4257b2} frac{6x-1}{y}-3=2.
$$

We solve for $y$ and get

$$
begin{align*}
frac{6x-1}{y}-3 &=2 \ frac{6x-1}{y} &=2+3 \ frac{6x-1}{y} &= 5 \ frac{6x-1}{y} &= frac{5}{1} \
5 cdot y &=(6x-1) cdot 1 \ 5y &= 6x-1 \ y &= frac{6x-1}{5}.
end{align*}
$$

Therefore, the solution is
$$
color{#c34632} y=frac{6x-1}{5}.
$$

Step 3
3 of 5
c.

Consider the given equation
$$
color{#4257b2} sqrt{y-4} = x+1.
$$
First we square both sides of the equation. Thus yields

$$
(sqrt{y-4})^2 = (x+1)^2 implies y-4 = (x+1)^2.
$$

We solve for $y$ and get

$$
begin{align*}
y-4 &= (x+1)^2 \ y-4 &= x^2+2cdot x cdot 1 +1^2 \ y-4 &= x^2+2x +1 \ y &= x^2+2x +1+4 \
y &= x^2+2x +5.
end{align*}
$$

Therefore, the solution is
$$
color{#c34632} y=x^2+2x +5.
$$

Step 4
4 of 5
d.

Consider the given equation
$$
color{#4257b2} sqrt{y+4} = x+2.
$$
First we square both sides of the equation. Thus yields

$$
(sqrt{y+4})^2 = (x+2)^2 implies y-4 = (x+2)^2.
$$

We solve for $y$ and get

$$
begin{align*}
y+4 &= (x+2)^2 \ y+4 &= x^2+2cdot x cdot 2 +2^2 \ y+4 &= x^2+4x +4 \ y &= x^2+4x +4-4 \
y &= x^2+4x.
end{align*}
$$

Therefore, the solution is
$$
color{#c34632} y=x^2+4x.
$$

Result
5 of 5
$$
begin{align*}
&text{a.} hspace{5mm} y=frac{x-12}{3} \
&text{b.} hspace{5mm} y=frac{6x-1}{5} \
&text{c.} hspace{5mm} y=x^2+2x+5 \
&text{d.} hspace{5mm} y=x^2+4x \
end{align*}
$$
Exercise 100
Step 1
1 of 2
Algebraically, we know $(x+y)^2=x^2+2xy+y^2$.

Therefore, $(a+b)^2=a^2+2ab+b^2$

Hence, Paul is missing $2ab$.

Also using diagram below it can be observed Paul is missing $2ab$:

Exercise scan

Result
2 of 2
Paul is missing $2ab$
Exercise 101
Step 1
1 of 2
Use that $sqrt{-1}=i$:

a. $-18-sqrt{-25}=-18-5sqrt{-1}=-18-5i$

b. $dfrac{2pm sqrt{-16}}{2}=dfrac{2pm 4sqrt{-1}}{2}=1pm 2sqrt{-1}=1pm 2i$

c. $5+sqrt{-6}=5+sqrt{6}sqrt{-1}=5+sqrt{6}i$

Result
2 of 2
a. $-18-5i$

b. $1pm 2i$

c. $5+sqrt{6}i$

Exercise 102
Step 1
1 of 4
a-

The graph of the equation $(x-4)^2+(y+1)^2=16$ is a circle with the center $(4,-1)$ and the radius $r=sqrt {16}=4$

The general form of the radius equation is $r=sqrt {(x-h)^2+(y-k)^2}$
$r=sqrt {(x-4)^2+(y+1)^2}=sqrt {16}=4$

Step 2
2 of 4
b-

The information that we learn about the graph just by looking at the equation are the center $(h, k)$ and the radius $r$ of the circle.

Step 3
3 of 4
c-

The graph of the function $(x-4)^2+(y+1)^2=16$

Exercise scan

Result
4 of 4
a-          The graph of the equation $(x-4)^2+(y+1)^2=16$ is a circle with the center $(4,-1)$ and the radius $r=sqrt {16}=4$

b-          The information that we learn about the graph just by looking at the equation are the center $(h, k)$ and the radius $r$ of the circle.

Exercise 103
Step 1
1 of 3
a-

If the parabola is a function, then the general equation is:          $y=a(x-h)^3+k$

$0=a(0-3)^2+5$          (Substituting for the vertex and the point $(0, 0)$)

$0=9a+5$

$9a=-5$

$a=dfrac {-5}{9}$

The equation is:

$$
y=-dfrac {5}{9}(x-3)^2+5
$$

Step 2
2 of 3
b-

If the parabola is not a function “Sleeping ” parabola, then the general equation is:          $x=dfrac {(y-k)^2}{a^2}+h$

$0=dfrac {(0-5)^2}{a^2}+3$          (Substituting for the vertex and the point $(0, 0)$)

$0=dfrac {25}{a^2}+3$

$pm dfrac {5}{a}=3$

$a=pm dfrac {5}{3}$

The equation is:

$$
x=dfrac {9(y-5)^2}{25}+3
$$

Result
3 of 3
a-          Parabola is a function, The equation is:          $y=-dfrac {5}{9}(x-3)^2+5$

b-          Parabola is not a function, The equation is:          $x=dfrac {9(y-5)^2}{25}+3$

Exercise 104
Step 1
1 of 3
a-

The function that represents this relation is the rectangular hyperbola

Assuming the distance is $x$ and loudness is $y$, the function that represents this relation is:

$y=dfrac {1}{x}$

Exercise scan

Step 2
2 of 3
b-

The dependent variable is the loudness of the music $y$,

The independent variable is the distance $x$,

Result
3 of 3
a-          $y=dfrac {1}{x}$

b-          The dependent variable is the loudness of the music $y$,

The independent variable is the distance $x$,

Exercise 105
Step 1
1 of 3
a.

Let us solve the following equation
$$
color{#4257b2} -5x^-2x-6=-2.
$$
First we transform the equation a little bit and get

$$
5x^2+2x+6-2=0 implies 5x^2+2x+4=0.
$$

Since the expression of the left is a quadratic function we can use the quadratic formula

$$
x = frac{-b pm sqrt{b^2-4ac}}{2a}.
$$
We have

$$
a=5 hspace{12mm} b=2 hspace{12mm} c=4.
$$

Hence, we have

$$
begin{align*}
x &= frac{-2 pm sqrt{(2^2-4 cdot 5 cdot 4}}{2 cdot 5} \
x &= frac{-2 pm sqrt{4-80}}{10} \
x &= frac{-2 pm sqrt{-76}}{10} \
x &= frac{-2 pm sqrt{76i^2}}{10} \
x &= frac{-2 pm sqrt{19 cdot 4i^2}}{10} \
x &= frac{-2 pm 2sqrt{19}i}{10} \
x &= frac{-2 + 2sqrt{19}i}{10} hspace{3mm} text{or} hspace{3mm} frac{-2 – 2sqrt{19}i}{10} \
x &= frac{2(-1 + sqrt{19}i)}{10} hspace{3mm} text{or} hspace{3mm} frac{2(-1 – sqrt{19}i)}{5} \
x &= frac{-1 + sqrt{19}i}{5} hspace{3mm} text{or} hspace{3mm} frac{-1 – sqrt{19}i}{5}.
end{align*}
$$

Therefore, the solutions are
$$
color{#c34632} x=frac{-1 + sqrt{19}i}{5} hspace{3mm} text{color{default}or} hspace{3mm} x=frac{-1 – sqrt{19}i}{5}.
$$

Step 2
2 of 3
b.

Let us solve the following equation
$$
color{#4257b2} -2x^2=-x-9.
$$
First we transform the equation a little bit and get

$$
2x^2-x-9=0.
$$

Since the expression of the left is a quadratic function we can use the quadratic formula

$$
x = frac{-b pm sqrt{b^2-4ac}}{2a}.
$$
We have

$$
a=2 hspace{12mm} b=-1 hspace{12mm} c=-9.
$$

Hence, we have

$$
begin{align*}
x &= frac{-(-1) pm sqrt{(-1)^2-4 cdot 2 cdot (-9)}}{2 cdot 2} \
x &= frac{1 pm sqrt{1+72}}{4} \
x &= frac{1 pm sqrt{73}}{4} \
x &= frac{1 + sqrt{73}}{4} approx 2,39 hspace{3mm} text{or} hspace{3mm} frac{1 – sqrt{73}}{4} approx -1,89.
end{align*}
$$

Therefore, the solutions are
$$
color{#c34632} x=frac{1 + sqrt{73}}{4} approx 2,39 hspace{3mm} text{color{default}or} hspace{3mm} x=frac{1 – sqrt{73}}{4} approx -1,89.
$$

Result
3 of 3
$$
begin{align*}
&text{a.} hspace{3mm} x=frac{-1 + sqrt{19}i}{5} hspace{3mm} text{color{default}or} hspace{3mm} x=frac{-1 – sqrt{19}i}{5} \
&text{b.} hspace{3mm} x=frac{1 + sqrt{73}}{4} approx 2,39 hspace{3mm} text{color{default}or} hspace{3mm} x=frac{1 – sqrt{73}}{4} approx -1,89 \
end{align*}
$$
Exercise 106
Step 1
1 of 5
a-

$25x^2-1$          (Given)

$=(5x+1)(5x-1)$          (Difference of two squares property)

Step 2
2 of 5
b-

$5x^3-125x$          (Given)

$5x(x^2-25)$          (Factor out 5x)

$=5x(x+5)(x-5)$          (Difference of two squares property)

Step 3
3 of 5
c-

$x^2+x-72$          (Given)

$x^2+9x-8x-72$          ($9x-8x=x$ and $9 cdot 8=72$)

$(x+9)(x-8)$          (Factoring)

Step 4
4 of 5
d-

$x^3-3x^2-18x$          (Given)

$x(x^2-3x-18)$          (Factor out $x$)

$x(x^2+3x-6x-18$          ($3x-6x=-3x$ and $3 cdot -6=-18$)

$x(x+3)(x-6)$          (Factoring)

Result
5 of 5
a-          $25x^2-1=(5x+1)(5x-1)$

b-          $5x^3-125x=5x(x+5)(x-5)$

c-          $x^2+x-72=(x+9)(x-8)$

d-          $x^3-3x^2-18x=x(x+3)(x-6)$

Exercise 107
Step 1
1 of 3
a.

As seen on the picture below angles $70^{circ}$ and $x$ are interior angles and as such they are congruent. Therefore, we conclude
$$
color{#c34632} x=70^{circ}.
$$

Similarly, angles $50^{circ}$ and $y$ are corresponding angles and as such they are congruent. Therefore, we conclude
$$
color{#c34632}y=50^{circ}.
$$

Exercise scan

Step 2
2 of 3
b.

The angles in a triangle sum up to $180^{circ}$. Therefore the missing interior angle is

$$
180^{circ} – (80^{circ}+25^{circ}) = 180^{circ}-105^{circ} = 75^{circ}.
$$

And now since angles $75^{circ}$ and $x$ sum up to a straight angle we have

$$
x+75^{circ} = 180^{circ} implies x= 180^{circ}-75^{circ} = 105^{circ}.
$$

Therefore we finally conclude that
$$
color{#c34632} x=105^{circ}.
$$

Exercise scan

Result
3 of 3
a. $x=70^{circ}$ and $y=50^{circ}$

b. $x=105^{circ}$

Exercise 108
Step 1
1 of 3
a-

$39^2=15^2+x^2$          (Pythagorean theorem)

$x^2=1521-225=1269$

$$
x=36
$$

Step 2
2 of 3
b-

$30^2=10^2+x^2$          (Pythagorean theorem)

$x^2=900-100=800$

$$
x=20 sqrt 2
$$

Result
3 of 3
a-          $x=36$

b-          $x=20 sqrt 2$

Exercise 109
Step 1
1 of 4
It is given that the average cost to rent a car is $$ 39$ for the first time and an additional cost of $$23$ for each additional day.
Let $x$ be the number of days. Thus the total cost of renting a car i.e. $f(x)$ can be mathematically with the help of a table given below:

|No, of days, $x$ |$f(x)$ |
|–|–|
| 1|39 |
| 2|39+23= 62 |
| 3|62+ 23= 85 |
| 4|85+ 23= 108 |
| 5|131+ 23= 131 |

Step 2
2 of 4
Sketching the graph using the table computed above.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/e6879074-da2d-4ab7-871b-23a5cf9a8d84-1623426995084570.png)

Step 3
3 of 4
$b$.
The graph of this function is a step-function/ integer- function.
Domain $rightarrow [0, n]$, where $n$ is an integer number of days.
Range $rightarrow (39, 39+23, 39+ 2(23)+…..)$
Step 4
4 of 4
$c$.
Equation to model the relationship is as follows:
Let $y$ be the total cost then mathematically it is given as follows:
$$begin{aligned}
&boxed{y= 39 + 23(x)}
end{aligned}$$
where $x$ is the number of days.
Exercise 110
Step 1
1 of 2
If the average cost of renting a car increases to $$50$ for the first day.
In order to describe the transformation in the graph we will first make a new table.
|No, of days, $x$ |$f(x)$ |
|–|–|
| 1|50 |
| 2|50+23= 73 |
| 3|73+ 23= 96 |
| 4|96+ 23= 119 |
| 5|119+ 23= 142 |
Step 2
2 of 2
Increasing the current average cost of the renting of a car for the first day by 50. So, we will shift the graph by 11 units upwards $(i.e. 50- 39 = 11)$.
Sketching the graph using the information described above.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/b5dfa4ff-07bb-436e-90f6-528c15f865c9-1623427972816763.png)

Exercise 111
Step 1
1 of 6
$a$. Sketching the graph of the data given in the two tables :

Graph of downloads of free apps.
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/83959c66-6852-4ed7-af5f-d40aa37ca941-1623424311407081.png)

Step 2
2 of 6
Graph of downloads of paid apps.
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/0949b089-6be0-4ba6-9da7-231e0977f9d2-1623424451285657.png)
Step 3
3 of 6
$b$.
Average rate of change for each type of app from 2010 to 2015.
$$begin{aligned}
text{Average rate}&= dfrac{text{Highest frequency}- text{Lowest frequency}}{text{Highest frequency}- text{Lowest frequency}}\
end{aligned}$$
Thus,

$$begin{aligned}
text{Average rate of free apps}&=dfrac{288-22}{5-0}\\
&= dfrac{266}{5}\\
&= 53.2\\
end{aligned}$$
And,
$$begin{aligned}
text{Average rate of paid apps}&=dfrac{22-3}{5-0}\\
&= dfrac{19}{5}\\
&= 3.8\\
end{aligned}$$

Step 4
4 of 6
$c$. In order to determine the average rate of change to predict the number of apps that will be downloaded in 2020. We have to determine the equation of the line using the data given in the table using the formula stated below.
$$begin{aligned}
y- y_1&= m (x – x_1)\
end{aligned}$$
where, $y_1 = 288$, $m (text{average} = 53.2)$, and $x_1 = 5$.
Substituting the values:
$$begin{aligned}
y – 288&= 53.2 (x- 5)\
y&=53.2 (x- 5)+ 288\
end{aligned}$$
At $x = 10$.
$$begin{aligned}
y&= 53.2(5)+ 288\
y&= 266 + 288\
y&= 544\
end{aligned}

Step 5
5 of 6
Similarly, for the paid apps in 2020.
$y_1 = 22$, $m (text{average} = 3.8)$, and $x_1 = 5$.
Substituting the values:
$$begin{aligned}
y – 22&= 3.8 (x- 5)\
y&=3.8 (x- 5)+ 22\
end{aligned}$$
At $x = 10$.
$$begin{aligned}
y&= 3.8(5)+ 22\
y&= 19 + 22\
y&= 41\
end{aligned}

Step 6
6 of 6
From the above calculations we can say that the number of paid apps seems reasonable, but the number of free apps might seem high.
Exercise 112
Step 1
1 of 5
(a)
The function to model the number of free apps downloaded based on the year
$$y-y_1=m(x-x_1)$$
Graph of downloads of free apps.
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/de71eb80-347a-4725-9b91-7339598b5753-1634868143310175.png)
Step 2
2 of 5
(b)
The function to model the number of paid apps downloaded based on the year
$$y-y_1=m(x-x_1)$$
Graph of downloads of paid apps.
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/76110039-e550-4520-a3fc-0fd60ae4ddc8-1634868196030139.png)
Step 3
3 of 5
(c)
The average rate of free app $=53.2$
The average rate of paid app $=2.8$
Step 4
4 of 5
(d)
The number of free apps will be downloaded in 2020
$$y =53.2(2020-2010)=532$$
The number of paid apps will be downloaded in 2020
$$y =2.8(2020-2010)=28$$
No, this predictions are not reasonable.
Step 5
5 of 5
(e)
Ms. LaCarre needs more information and data to get the correct function for making an informed decision.
Exercise 113
Step 1
1 of 2
(a)
A function to model the total number of apps downloaded based on the year.
$$y=(x-h)^2+k$$
Step 2
2 of 2
(b)
A reasonable domain for the model of the total number of apps downloaded is
$$D=[2015,infty)$$
Exercise 114
Step 1
1 of 3
(a)
The percentage of the apps downloaded each year are free

| Year|Percentage |
|–|–|
|2010 |$3%$ |
|2011 | $5.53%$|
|2012 |$10%$ |
|2013 | $16.4%$|
|2014 |$25.8%$ |
|2015 |$39.3%$ |

Step 2
2 of 3
(b)
The average rate of change in percentage of free apps downloaded from 2010 to 2015
$$Avg=dfrac{39.3-3%}{2015-2010}=7.26$$
Step 3
3 of 3
(c)
The function for the percentage of free apps (out of all apps) that are downloaded each year.
$$p=dfrac{textrm{The number of apps downloaded each year are free}}{textrm{Total number of apps downloaded free}}times 100%$$
Exercise 115
Step 1
1 of 1
To apply this exercise
1. Study the case carefully.
2. Prepare a report for Ms. LaCarre detailing your findings and your recommendations.
3. Prediction for what app sales in 2020
Exercise 116
Step 1
1 of 1
To apply this exercise
1. Prepare your Learning Log.
2. Open a new page with title “Developing a Mathematical Model” .
3. Write an entry addressing the steps involved in creating a mathematical model, including examples for each step.
Exercise 117
Step 1
1 of 2
It is given that an average school bus can hold 45 people. Representing the given data into a table from which we will sketch the graph.

|Number of people |Number of Bus|
|–|–|
|45|1|
|90|2|
|135|3|

Step 2
2 of 2
Sketching the data into a histogram :
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/4593c064-23bf-44f8-bf91-9c255278eaf0-1623423978181937.png)
Exercise 118
Step 1
1 of 3
$$
t(1)=10.25times1.03=10.5575=$10.56
$$
(a) We have a geometric series here, with multiplier $r=1+3% =1.03$. The first term t(1) of the sequence is the ticket price after n=1 year;
Step 2
2 of 3
$$
t(n)=t(1)r^{n-1}=10.5575(1.03)^{n-1}
$$
(b) The ticket price after n years is given by the n’th term in the sequence$;$
Step 3
3 of 3
$$
t(10)=10.5575(1.03)^{10-1}=$13.78
$$
(c) after 10 years$;$
Exercise 119
Step 1
1 of 3
a-          The equation is a circle with the center at the point $(5, 8)$ and the radius $r=sqrt 49=7$
Step 2
2 of 3
b-

The graph of the function:          $(x-5)^2+(y-8)^2=49$

Exercise scan

Result
3 of 3
The equation is a circle with the center at the point $(5, 8)$ and the radius $r=sqrt 49=7$
Exercise 120
Step 1
1 of 6
The graph of the function:          $y=2(x-1)^2+4$

Exercise scan

Step 2
2 of 6
a-

$y=2(x-1)^2+4$

$y=2(x^2-2x+1)+4$

$y=2x^2-4x+6$

Step 3
3 of 6
b-

There will never be any difference between the graph, they are coincident. Because it the same equation in a different form.

Step 4
4 of 6
c-

The parent function of $y=2(x-1)^2+4$ is $y=x^2$

Step 5
5 of 6
d-

The parent function of $y=2x^2-4x+6$ is $y=x^2$

Result
6 of 6
a-          $y=2(x-1)^2+4 qquad rightarrow qquad y=2x^2-4x+6$

b-          There will never be any difference between the graphs

c-          The parent function of $y=2(x-1)^2+4$ is $y=x^2$

d-          The parent function of $y=2x^2-4x+6$ is $y=x^2$

Exercise 121
Solution 1
Solution 2
Step 1
1 of 4
From $textbf{Methods and Meanings}$ after 1-58 in chapter 1, we know that in a right triangle, we can calculate an angle $theta$ using the length of any two sides of the triangle:

$$
begin{align*}
tantheta &= mathrm{frac{opposite leg}{adjacent leg}} \
sintheta &= mathrm{frac{opposite leg}{hypotenuse}} \
costheta &= mathrm{frac{adjacent leg}{hypotenuse}}
end{align*}
$$

Step 2
2 of 4
$providecommand{redcancel}$[1]

$$
{color{#c34632}cancel{color{Black}#1}color{Black}}
$$

#### (a)

Using this we can see that the cosine of $angle C$ is given by

$$
cos(mangle C) = frac{redcancel 8 sqrt{3}}{color{#c34632}_{2,,}redcancel{16}} = frac{sqrt{3}}{2}
$$

Putting $arccos(sqrt{3}/2)$ in a calculator, we then find that $mangle C = 30text{textdegree}$.

Step 3
3 of 4
$providecommand{redcancel}$[1]

$$
{color{#c34632}cancel{color{Black}#1}color{Black}}
$$

#### (b)

Again, we are given the adjacent leg and hypotenuse, so we can use the cosine of $angle C$ and a calculator to find $mangle C$. This time

$$
cos(mangle C) = frac{12}{13}
$$

Putting $arccos(12/13)$ in a calculator, we then find that $mangle C approx 22.62text{textdegree}$.

Result
4 of 4
(a) 30$text{textdegree}$

(b) 22.62$text{textdegree}$

Step 1
1 of 3
a-

$cos C=dfrac {8 cdot sqrt {3}}{16}=dfrac {sqrt {3}}{2}$

$$
mangle C=30text{textdegree}
$$

Step 2
2 of 3
b-

$cos C=dfrac {12}{13}=0.9231$

$$
mangle C=22.62text{textdegree}
$$

Result
3 of 3
a-          $mangle C=30text{textdegree}$

b-          $mangle C=22.62text{textdegree}$

Exercise 122
Step 1
1 of 4
The function $f(x)=x^3$ is an odd function.

By graphing $f(x)$ and $f(-x)$ it is noted that the graph of $f(-x)$ a reflection over the x-axis for the function $f(x)$

So. the function is odd.

Exercise scan

Step 2
2 of 4
The next is the data table for the function $f(x)=x^3$ and $f(-x)$\
The table shows that for each value of $x$ and $-x$,\
$$f(-x)=-f(x)$$
So, the function is odd.\
begin{center}
renewcommand{arraystretch}{1.5}
begin{tabular}{|r|r|r|r|}
hline
x & $f(x)$ & $f(-x)$ & \
hline
-5 & -125 & 125 & \
hline
-4 & -64 & 64 & \
hline
-3 & -27 & 27 & \
hline
-2 & -8 & 8 & \
hline
-1 & -1 & 1 & \
hline
0 & 0 & 0 & \
hline
1 & 1 & -1 & \
hline
2 & 8 & -8 & \
hline
3 & 27 & -27 & \
hline
4 & 64 & -64 & \
hline
8 & 512 & -512 & \
hline
end{tabular}
end{center}
Step 3
3 of 4
From the equation $f(x)=x^3$

$f(-x)=(-x)^3=-x^3=-f(x)$

So, the function is odd.

Result
4 of 4
By graphing $f(x)$ and $f(-x)$ it is noted that the graph of $f(-x)$ a reflection over the x-axis for the function $f(x)$

From the table, we notice that $f(-x)=-f(x)$

Exercise 123
Step 1
1 of 6
a.

Let us solve the following equation
$$
color{#4257b2} sqrt{3x-6}+6=12.
$$

First we subtract $6$ from both sides of the equation and get

$$
sqrt{3x-6}+6-6=12-6 implies sqrt{3x-6}=6.
$$

Now we square both sides of the equation. This yields

$$
begin{align*}
(sqrt{3x-6})^2 &=6^2 \
3x-6 &=36 \
3x &= 36+6 \
3x &=42 \
x&= frac{42}{3} = 14.
end{align*}
$$

Therefore, the solution of the given equation is
$$
color{#c34632} x=14.
$$

Step 2
2 of 6
Let us check this solution. We substitute $x=14$ in the given equation. This gives

$$
sqrt{3 cdot 14 -6} +6 = sqrt{42-6}+6=sqrt{36}+6=6+6=12.
$$

Therefore, the solution is correct.

Step 3
3 of 6
b.

Let us solve the following equation
$$
color{#4257b2} 11x^2=-10x-11.
$$
First we transform the equation a little bit and get

$$
11x^2+10x+11=0.
$$

Since the expression of the left is a quadratic function we can use the quadratic formula

$$
x = frac{-b pm sqrt{b^2-4ac}}{2a}.
$$
We have

$$
a=11 hspace{12mm} b=10 hspace{12mm} c=11.
$$

Hence, we have

$$
begin{align*}
x &= frac{-10 pm sqrt{10^2-4 cdot 11 cdot 11}}{2 cdot 11} \
x &= frac{-10 pm sqrt{100-484}}{22} \
x &= frac{-10 pm sqrt{-384}}{22} \
x &= frac{-10 pm sqrt{384i^2}}{22} \
x &= frac{-10 pm sqrt{6 cdot 64i^2}}{22} \
x &= frac{-10pm 8sqrt{6}i}{22} \
x &= frac{-10 + 8sqrt{6}i}{22} hspace{3mm} text{or} hspace{3mm} frac{-10 – 8sqrt{6}i}{22}\
x &= frac{2(-5 + 4sqrt{6}i)}{22} hspace{3mm} text{or} hspace{3mm} frac{2(-5 – 4sqrt{6}i)}{22}\
x &= frac{-5 + 4sqrt{6}i}{11} hspace{3mm} text{or} hspace{3mm} frac{-5 – 4sqrt{6}i}{11}.
end{align*}
$$

Therefore, the solutions are
$$
color{#c34632} x=frac{-5 + 4sqrt{6}i}{11} hspace{3mm} text{color{default}or} hspace{3mm} x=frac{-5 – 4sqrt{6}i}{11}.
$$

Step 4
4 of 6
Let us check the solutions. First we substitute $x=frac{-5 + 4sqrt{6}i}{11}$ in the given equation and get

$$
begin{align*}
11(frac{-5 + 4sqrt{6}i}{11})^2 &=-10 cdot frac{-5 + 4sqrt{6}i}{11} -11 \
11 cdot frac{(-5)^2+2 cdot (-5) cdot 4sqrt{6}i +16 cdot 6i^2}{121} &=frac{50 -40sqrt{6}i}{11} – frac{121}{11} \
frac{25-40sqrt{6}i -96}{11} &=frac{50 -40sqrt{6}i-121}{11} \
frac{-71-40sqrt{6}i }{11} &=frac{-71 -40sqrt{6}i}{11}
end{align*}
$$

Therefore, $x=frac{-5 + 4sqrt{6}i}{11}$ is a correct solution.

Step 5
5 of 6
Now we substitute $x=frac{-5 – 4sqrt{6}i}{11}$ in the given equation and get

$$
begin{align*}
11(frac{-5 – 4sqrt{6}i}{11})^2 &=-10 cdot frac{-5 – 4sqrt{6}i}{11} -11 \
11 cdot frac{(-5)^2-2 cdot (-5) cdot 4sqrt{6}i +16 cdot 6i^2}{121} &=frac{50+40sqrt{6}i}{11} – frac{121}{11} \
frac{25+40sqrt{6}i -96}{11} &=frac{50 +40sqrt{6}i-121}{11} \
frac{-71+40sqrt{6}i }{11} &=frac{-71 +40sqrt{6}i}{11}
end{align*}
$$

Finally, we can conclude that both solutions are correct.

Result
6 of 6
$$
begin{align*}
&text{a.} hspace{2mm} x=6 \
&text{b.} hspace{2mm} x=frac{-5 + 4sqrt{6}i}{11} hspace{3mm} text{or} hspace{3mm} x=frac{-5 – 4sqrt{6}i}{11}
end{align*}
$$
Exercise 124
Step 1
1 of 2
(a) The average rate of change is given by the slope of a secant connecting two points on the population curve $P’=dfrac{26.3-13.6}{1950-1900}=0.254$ millions/year (b) $P’=dfrac{113.7-35}{2010-1960}=1.574$ millions/year . (c) The population growth was higher after 1960.
Result
2 of 2
(a) $0.254$ millions/year (b) $1.574$ millions/year (c) Population growth is higher for $1960-2010$
Exercise 125
Step 1
1 of 5
The given equations are: $y_{1}=3(x-1)^2-5$ and $y_{2}=3x^2-6x-2$
Step 2
2 of 5
a-

By graphing both equations, we find that both graphs are coincident.

So, both equations are equivalent.Exercise scan

Step 3
3 of 5
b-

Starting with the first equation:

$y_{1}=3(x-1)^2-5$

$y_{1}=3(x^2-2x+1)-5$

$y_{1}=3x^2-6x+3-5$

$$
y_{1}=3x^2-6x-2=y_{2}
$$

Step 4
4 of 5
c-

The value for $a$ would be the same number on both forms of the equation because it is the factor of stretch or compress.

If $|a|>1$ the graph is stretching.

If $|a|0$ the parabola opens up.

If $a<0$ the parabola opens down.

Result
5 of 5
a-          Both graphs are coincident. So, both equations are equivalent.

b-          Starting with the first equation: $y_{1}=3x^2-6x-2=y_{2}$

c-          The value for $a$ would be the same number on both forms of the equation because it is the factor of stretch or compress. and the sign of the factor $a$ determines the open direction of the parabola.

Exercise 126
Step 1
1 of 1
Simplify each expression as shown below, follow the steps:

a) $sqrt{x}+sqrt{y}+5sqrt{x}+2sqrt{y}=qquadqquadqquad$ $color{#c34632} text{[combine like terms]}$

$=big(sqrt{x}+5sqrt{x}big)+big(sqrt{y}+2sqrt{y}big)=$

$=color{#4257b2} text{$6sqrt{x}+3sqrt{y}$}$

b) $big(2sqrt{8}big)^2=qquadqquadqquadqquad$

$color{#c34632} text{[apply the power of a product property: $,,,(acdot b)^c=a^ccdot b^c$]}$

$=2^2cdot big(sqrt{8}big)^2=$

$=4cdot 8=$

$=color{#4257b2} text{$32$}$

c) $dfrac{sqrt{50}}{sqrt{2}}=qquadqquadqquadqquadqquad$ $color{#c34632} text{[rewrite $50$ as $2sqrt{25}$]}$

$=dfrac{sqrt{2cdot 25}}{sqrt{2}}=qquadqquadqquadqquad$ $color{#c34632} text{[recall: $,,,sqrt{acdot b}=sqrt{a}sqrt{b}$]}$

$=dfrac{cancel{sqrt{2}}sqrt{25}}{cancel{sqrt{2}}}=$

$=color{#4257b2} text{$5$}$

d) $sqrt{dfrac{3}{4}}=qquadqquadqquadqquadqquad$ $color{#c34632} text{$Bigg[$recall: $,,,sqrt{dfrac{a}{b}}=dfrac{sqrt{a}}{sqrt{b}}Bigg]$}$

$=dfrac{sqrt{3}}{sqrt{4}}=$

$$
=color{#4257b2} text{$dfrac{sqrt{3}}{2}$}
$$

Exercise 127
Step 1
1 of 3
$y=3+0.25 cdot x$          (Where $x$ is the tenth of mile)

The domain of the function is:          $(0 leq x)$

The range of the function is:          $(3 leq y)$

Step 2
2 of 3
Exercise scan
Result
3 of 3
The domain of the function is:          $(0 leq x)$

The range of the function is:          $(3 leq y)$

Exercise 128
Step 1
1 of 5
a.

Let us solve the following equation
$$
color{#4257b2} x^2-x-6=0.
$$

Since the expression of the left is a quadratic function we can use the quadratic formula

$$
x = frac{-b pm sqrt{b^2-4ac}}{2a}.
$$
We have

$$
a=1 hspace{12mm} b=-1 hspace{12mm} c=-6.
$$

Hence, we have

$$
begin{align*}
x &= frac{-(-1) pm sqrt{(-1)^2-4 cdot 1 cdot (-6)}}{2 cdot 1} \
x &= frac{1 pm sqrt{1+24}}{2} \
x &= frac{1 pm sqrt{25}}{2} \
x &= frac{1 pm 5}{2} \
x &= frac{1 + 5}{2} hspace{3mm} text{or} hspace{3mm} frac{1-5}{2} \
x &= frac{6}{2} hspace{3mm} text{or} hspace{3mm} frac{-4}{2} \
x &= 3 hspace{3mm} text{or} hspace{3mm} -2.
end{align*}
$$

Therefore, the solutions are
$$
color{#c34632} x=3 hspace{3mm} text{color{default}or} hspace{3mm} x=-2.
$$

Step 2
2 of 5
b.

Let us solve the following equation
$$
color{#4257b2} 5x^2-8=12x.
$$
First we transform the equation a little bit and get

$$
5x^2-12x-8=0.
$$

Since the expression of the left is a quadratic function we can use the quadratic formula

$$
x = frac{-b pm sqrt{b^2-4ac}}{2a}.
$$
We have

$$
a=5 hspace{12mm} b=-12 hspace{12mm} c=-8.
$$

Hence, we have

$$
begin{align*}
x &= frac{-(-12) pm sqrt{(-12)^2-4 cdot 5 cdot (-8)}}{2 cdot 5} \
x &= frac{12 pm sqrt{144+160}}{10} \
x &= frac{12 pm sqrt{304}}{10} \
x &= frac{12 pm sqrt{16 cdot 19}}{10} \
x &= frac{12 pm 4sqrt{19}}{10} \
x &= frac{12 + 4sqrt{19}}{10} hspace{3mm} text{or} hspace{3mm} frac{12 – 4sqrt{19}}{10} \
x &= frac{2(6 + 2sqrt{19})}{10} hspace{3mm} text{or} hspace{3mm} frac{2(6 – 2sqrt{19})}{10} \
x &= frac{6 + 2sqrt{19}}{5} hspace{3mm} text{or} hspace{3mm} frac{6 – 2sqrt{19}}{5}.
end{align*}
$$

Therefore, the solutions are
$$
color{#c34632} x=frac{6 + 2sqrt{19}}{5} hspace{3mm} text{color{default}or} hspace{3mm} x=frac{6 – 2sqrt{19}}{5}.
$$

Step 3
3 of 5
c.

Let us solve the following equation
$$
color{#4257b2} x^2+8x+20=0.
$$

Since the expression of the left is a quadratic function we can use the quadratic formula

$$
x = frac{-b pm sqrt{b^2-4ac}}{2a}.
$$
We have

$$
a=1 hspace{12mm} b=8 hspace{12mm} c=20.
$$

Hence, we have

$$
begin{align*}
x &= frac{-8 pm sqrt{8^2-4 cdot 1 cdot 20}}{2 cdot 1} \
x &= frac{-8 pm sqrt{16-80}}{2} \
x &= frac{-8 pm sqrt{-64}}{2} \
x &= frac{-8 pm sqrt{64i^2}}{2} \
x &= frac{-8 pm 8i}{2} \
x &= frac{-8+8i}{2} hspace{3mm} text{or} hspace{3mm} frac{-8-8i}{2} \
x &= frac{2(-4+4i)}{2} hspace{3mm} text{or} hspace{3mm} frac{2(-4-4i)}{2} \
x &= -4+4i hspace{3mm} text{or} hspace{3mm} -4-4i.
end{align*}
$$

Therefore, the solutions are
$$
color{#c34632} x=-4+4i hspace{3mm} text{color{default}or} hspace{3mm} x=-4-4i.
$$

Step 4
4 of 5
d.

Let us solve the following equation
$$
color{#4257b2} 2y^2-5y=12.
$$
First we transform the equation a little bit and get

$$
2y^2-5y-12=0.
$$

Since the expression of the left is a quadratic function we can use the quadratic formula

$$
y = frac{-b pm sqrt{b^2-4ac}}{2a}.
$$
We have

$$
a=2 hspace{12mm} b=-5 hspace{12mm} c=-12.
$$

Hence, we have

$$
begin{align*}
y &= frac{-(-5) pm sqrt{(-5)^2-4 cdot 2 cdot (-12)}}{2 cdot 2} \
y &= frac{5 pm sqrt{25+96}}{4} \
y &= frac{5 pm sqrt{121}}{4} \
y &= frac{5 pm 11}{4} \
y &= frac{5 + 11}{4} hspace{3mm} text{or} hspace{3mm} frac{5-11}{4} \
y &= frac{16}{4} hspace{3mm} text{or} hspace{3mm} frac{-6}{4} \
y &= 4 hspace{3mm} text{or} hspace{3mm} -frac{3}{2}.
end{align*}
$$

Therefore, the solutions are
$$
color{#c34632} y=4 hspace{3mm} text{color{default}or} hspace{3mm} y=-frac{3}{2}.
$$

Result
5 of 5
$$
begin{align*}
&text{a.} hspace{2mm} x=3 hspace{3mm} text{color{default}or} hspace{3mm} x=-2 \
&text{b.} hspace{2mm} x=frac{6 + 2sqrt{19}}{5} hspace{3mm} text{color{default}or} hspace{3mm} x=frac{6 – 2sqrt{19}}{5} \
&text{c.} hspace{2mm} x=-4+4i hspace{3mm} text{color{default}or} hspace{3mm} x=-4-4i \
&text{d.} hspace{2mm} y=4 hspace{3mm} text{color{default}or} hspace{3mm} y=-frac{3}{2}
end{align*}
$$
Exercise 129
Step 1
1 of 5
$y=2x$          (Given)

$y=-dfrac {1}{2}x+6$          (Given)

Exercise scan

Step 2
2 of 5
a-

$y=2x$          (Given)

x-intercept is $(0, 0)$

y-intercept is $(0, 0)$

$y=-dfrac {1}{2}x+6$          (Given)

x-intercept is $(12, 0)$

y-intercept is $(0, 6)$

Step 3
3 of 5
c-

The domain of the shaded region is:          $(0 leq x leq 12)$

The range of the shaded region is:          $(0 leq y leq 4.8)$

Step 4
4 of 5
d-

The shaded area is a triangle.

The are of the triangle: $a=dfrac {1}{2}bh$

$b=moverline {AB}=12-0=12$

$h=4,8$          ($y$ coordinate of the point $C$)

$a=dfrac {1}{2} times 12 times 4.8$

$a=28.8$

Result
5 of 5
a-

$y=2x$

x-intercept and y-intercept is $(0, 0)$

$y=-dfrac {1}{2}x+6$

x-intercept is $(12, 0)$          y-intercept is $(0, 6)$

c-          Shaded region domain:          $(0 leq x leq 12)$          Range is:          $(0 leq y leq 4.8)$

d-          The are of the shaded region $=28.8$ Square units.

Exercise 130
Step 1
1 of 6
Given equation:
$$begin{aligned}
h(x) &= -3x^{2}-11x+4\
end{aligned}$$

(a) Put the value of $x=0$,
$$begin{aligned}
h(0) &= -3(0)^{2}-11(0)+4\
&boxed {h(0) = 4}\
end{aligned}$$

Step 2
2 of 6
Given equation:
$$begin{aligned}
h(x) &= -3x^{2}-11x+4\
end{aligned}$$

(a) Put the value of $x=0$,
$$begin{aligned}
h(0) &= -3(0)^{2}-11(0)+4\
&boxed {h(0) = 4}\
end{aligned}$$

Step 3
3 of 6
(b) Put the value of $x=2$,
$$begin{aligned}
h(2) &= -3(2)^{2}-11(2)+4\
h(2) &= -12-22+4\
&boxed {h(2) = -30}\
end{aligned}$$
Step 4
4 of 6
(d) Put the value of $x= dfrac{1}{2}$,
$$begin{aligned}
h(dfrac{1}{2}) &= -3(dfrac{1}{2})^{2}-11(dfrac{1}{2})+4\\
h(dfrac{1}{2}) &= -3(dfrac{1}{4})-11(dfrac{1}{2})+4\\
h(dfrac{1}{2}) &= -dfrac{3}{4} – dfrac{11}{2} + 4\\
&boxed {h(dfrac{1}{2}) = -2.25}\
end{aligned}$$
Step 5
5 of 6
(e) If we put $h(x) = 0$. Then,
$$begin{aligned}
-3x^{2} – 11x + 4 &= 0\
3x^{2} + 11x – 4 &= 0\
end{aligned}$$

By using the splitting middle term, we get

$$begin{aligned}
3x^{2} + 12x – x- 4 &= 0\
3x(x + 4) – (x- 4) &= 0\
(3x-1) (x-4) &= 0\
rightarrow 3x-1 &= 0\
3x &= 1\
boxed {x = dfrac{1}{3}}\\
rightarrow x-4 &= 0\
boxed {x =4} \
end{aligned}$$
The value of $x$ for which $h(x)=0$ is $-4, -dfrac{1}{3}$.

Result
6 of 6
$(a.)$ 4
$(b.)$ -30
$(c.)$ 12
$(d.)$ -2.25
$(e.)$ -4 ; $dfrac{1}{3}$
Exercise 131
Step 1
1 of 5
(a.) Given equation:

$$y = x^{2} – 2x – 15$$

Now, bring the equation of the parabola by using the Completing of the square.

Step 2
2 of 5
$$begin{aligned}
y = x^{2} – 2x + left(dfrac {2}{2}right)^{2} – left(dfrac {2}{2}right)^{2} – 15\
y = x^{2} – 2x +(1)^{2} – (1)^{2} – 15\\
boxed {y = (x-1)^{2} – 16}\
end{aligned}$$
Thus, this is an equation of the parabola.
Step 3
3 of 5
(b.) Given equation:

$$y = x^{2} + 8x +10$$

Now, bring the equation of the parabola by using the Completing of the square.

Step 4
4 of 5
$$begin{aligned}
y = x^{2}+ 8x + left(dfrac {8}{2}right)^{2} – left(dfrac {8}{2}right)^{2} +10\
y = x^{2} +8x +(4)^{2} – (4)^{2} + 10\
y = x^{2} + 8x +(16) – (16) + 10\
boxed {y = (x+4)^{2} – 6}\
end{aligned}$$
Thus, this is an equation of the parabola.
Result
5 of 5
$$y = (x-1)^{2} – 16$$
$$y = (x+4)^{2} – 6$$
Exercise 132
Step 1
1 of 7
We have to simplify the given algebraic expression $x^{2}+8x+10$ using tiles. We know that $x^{2}$ can be written as the area of the square of side length $x$ and $x$ can be written as the area of a rectangle with length $x$ and width 1 and further 1 can be written as the area of a square with unit side length.

Now just looking at the expression $x^{2}+8x+10$.

We can say that $x^{2}+8x+10$ is the sum of the area of a square with side length $x$, area of eight rectangular tiles with dimension $x$ by 1, and area of ten square tiles with unit side length.

Step 2
2 of 7
Sketching algebra tiles for $x^{2}+8x+10$

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/ecd5fbc3-5206-4304-a890-7948c7bebb4e-1623157838637827.jpeg)

Step 3
3 of 7
Now, we have to arrange all these tiles so that the square can be formed of maximum dimensions. Since we have four rectangular tiles so the combination can be made as shown in the following figure.

By using one square tile of side length $x$, all the right rectangular tiles, and four out of nine square tiles of unit length, we get a square of side length $x+4$ and $6$ square of unit side length will be left.

Thus, we can write
$$begin{aligned}
y &= x^{2}+8x+10\
y &= x^{2}+8x+left (dfrac{8}{2}right)^{2} – left (dfrac{8}{2}right)^{2} + 10\\
y &= x^{2}+8x+(4)^{2} – (4)^{2} + 10\
y &= x^{2}+8x+16 -16 + 10\
y &= (x+4)^{2} – 6\
end{aligned}$$

Step 4
4 of 7
Sketching algebra tiles for $(x+4)^{2} – 6$

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/e56e36e2-1ec4-4827-8833-7718f7ae7358-1623161518793723.jpeg)

Step 5
5 of 7
This time she has too many unit tiles.

From the equation $y = (x+4)^{2} – 6$

On comparing the given equation to the standard form of a parabola.
$$begin{aligned}
(y-k) &= a(x-h)^{2}\
y &= a(x-h)^{2} + k\
end{aligned}$$

where, $(h,k)$ is the vertex of the parabola.
$$boxed {text{Vertex }(-4, -6)}$$

Step 6
6 of 7
Sketching the graph of the equation.
|$x_1$ |$y_1$ |
|–|–|
| -4| -6|
|-6.499 |0 |
|-1.551 |0 |

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/34746ee0-6cfa-4027-bd9a-6eb4bd9f9258-1624251903108147.png)

Result
7 of 7
$$y = (x+4)^{2} – 6$$
Exercise 133
Step 1
1 of 7
We have to simplify the given algebraic expression $x^{2}+4x+9$ using tiles. We know that $x^{2}$ can be written as the area of the square of side length $x$ and $x$ can be written as the area of a rectangle with length $x$ and width 1 and further 1 can be written as the area of a square with unit side length.

Now just looking at the expression $x^{2}+4x+9$, we can say that $x^{2}+4x+9$ is the sum of the area of a square with side length $x$, area of four rectangular tiles with dimension $x$ by 1 and area of nine square tiles with unit side length.

Step 2
2 of 7
Sketching algebra tiles for $x^{2}+4x+9$

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/fc247935-5900-4014-989f-76a077350b66-1623147006383348.jpeg)

Step 3
3 of 7
Now, we have to arrange all these tiles so that the square can be formed of maximum dimensions. Since we have four rectangular tiles so the combination can be made as shown in the following figure.

By using one square tile of side length $x$, all the four rectangular tiles and four out of nine square tiles of unit length, we get a square of side length $x+2$ and $5$ square of unit side length will be left.

Thus, we can write
$$begin{aligned}
y &= x^{2}+4x+9\
y &= x^{2}+4x+left (dfrac{4}{2}right)^{2} – left (dfrac{4}{2}right)^{2} + 9\\
y &= x^{2}+4x+(2)^{2} – (2)^{2} + 9\
y &= (x+2)^{2} – 4+ 9\
y &= (x+2)^{2} + 5\
end{aligned}$$

Step 4
4 of 7
Sketching algebra tiles for $(x+2)^{2} + 5$

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/f35238cb-ecbc-49de-b9f9-7c9680997b95-1623147924666871.jpeg)

Step 5
5 of 7
This time she has too many unit tiles.

From the equation $y = (x+2)^{2} + 5$

On comparing the given equation to the standard form of a parabola.
$$begin{aligned}
(y-k) &= a(x-h)^{2}\
y &= a(x-h)^{2} + k\
end{aligned}$$

where, $(h,k)$ is the vertex of the parabola.
$$boxed {text{Vertex }(-2, 5)}$$

Step 6
6 of 7
Sketching the graph of the equation.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/864929b9-f90f-4dcc-a361-6236727e17a9-1623148657135689.jpeg)

Result
7 of 7
$$(x+2)^{2} + 5$$
Exercise 134
Step 1
1 of 3
(a)
We have to simplify the given algebraic expression
$$begin{aligned}
x^2+y^2+4x-8y+11&=0\
(x^2+4x+4)+(y^2-8y+16)-9&=0
end{aligned}$$

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/efd44cec-016c-4d88-9532-9400d9621f96-1635198477794507.png)
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/9e60aff1-7ccc-4318-b495-5a12bb55b1cc-1635198665617167.png)

Step 2
2 of 3
(b)
To complete the two squares 20 unit tiles are needed.
(c)
We write the equation in graphing form:
$$(x^2+2)+(y^2-4)=9$$
Step 3
3 of 3
(d)
The graph of the equation is

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/40f4cf6c-7cb8-471a-8a5a-006e643d93c2-1635198980141230.png)

Exercise 135
Step 1
1 of 7
Given,

$text{ a)} y = x^{2}+6x+7$

$text{ b)} f(x) = 3x^{2}+12x+11$

$text{ c)} x^{2}+y^{2}+2x-4y=4$

$text{ d)} f(x)=x^{2}+7x+2$

$text{ e)} y=2x^{2}+16x$

$text{ f)} x^{2}+y^{2}+y+2=8$

Step 2
2 of 7
$a$. Now we bring the given equation in the graphing form,

$$
begin{align*}
y&=x^{2}+6x+7\
y&=(x^{2}+6x+9)-9+7\
y&=(x+3)^{2}-2\
end{align*}
$$

Thus, the vertex of the equation from the graph mentioned below is $(-3,-2)$.

Exercise scan

Step 3
3 of 7
$b$. Now we bring the given equation in the graphing form,

$$
begin{align*}
f(x)&=3x^{2}+12x+11\
f(x)&=3(x^{2}+4x+4)-12+11\
f(x)&=3(x+2)^{2}-1\
end{align*}
$$

Thus, the vertex of the equation from the graph mentioned below is $(-2,-1)$.

Exercise scan

Step 4
4 of 7
$c$. Now we bring the given equation in the graphing form,

$$
begin{align*}
x^{2}+y^{2}-4y&=4 \
(x^{2}+2x+1)+(y^{2}-4y+4)-1-4&=4 \
(x+1)^{2}+(y+2)^{2}-5&=4 \
(x+1)^{2}+(y+2)^{2}&=4+5\
(x+1)^{2}+(y+2)^{2}&=9\
end{align*}
$$

Thus, the centre and the radius of the equation from the graph mentioned below is $(-1,2)$ and radius$= sqrt{9} = 3$ respectively.

Exercise scan

Step 5
5 of 7
$d$. Now we bring the given equation in the graphing form,

$$
begin{align*}
f(x)&=x^{2}+7x+2\
f(x)&=(x^{2}+2dfrac{7}{2}x+dfrac{49}{4})-dfrac{49}{4}+2 \
f(x)&=(x+dfrac{7}{2})^{2}-dfrac{41}{4} \
f(x)&=(x+3.5)^{2}-10.25 \
end{align*}
$$

Thus, the vertex of the equation from the graph mentioned below is $(-3.5,-10.25)$.

Exercise scan

Step 6
6 of 7
$d$. Now we bring the given equation in the graphing form,

$$
begin{align*}
y&=2x^{2}+16x \
y&=2(x^{2}+8x+16)-32 \
y&=2(x+4)^{2}-32 \
end{align*}
$$

Thus, the vertex of the equation from the graph mentioned below is $(-4,-32)$.

Exercise scan

Step 7
7 of 7
$c$. Now we bring the given equation in the graphing form,

$$
begin{align*}
x^{2}+y^{2}+y+2&=8 \
x^{2}+(y^{2}+y+dfrac{1}{4})-dfrac{1}{4}+2&=8 \
x^{2}+(y+dfrac{1}{2})^{2}&=8+dfrac{1}{4}-2 \
x^{2}+(y+dfrac{1}{2})^{2}&=dfrac{25}{4}\
x^{2}+(y+0.5)^{2}&=6.25\
end{align*}
$$

Thus, the center and the radius of the equation from the graph mentioned below is $(0,-0.5)$ and radius$= sqrt{dfrac{25}{4}} = dfrac{5}{2} = 2.5$ respectively.

Exercise scan

Exercise 136
Step 1
1 of 3
Given,

Steps by Raymond and Hannah,

$$
begin{align*}
(1) y&=4x^{2}-24x+7 \
(2) y-7&=4x^{2}-24x \
(3) y-7&=4(x^{2}-6x) \
(4) y-7+4(3^{2})&=4(x^{2}-6x+3^{2})\
(5) y+29&=4(x-3)^{2} \
(6) y&=4(x-3)^{2}-29\
end{align*}
$$

Steps by Aidan and Sarah,

$$
begin{align*}
(1) y&=4x^{2}-24x+7\
(2) y-7&=4x^{2}-24x\
(3) y-7&=4(x^{2}-6x)\
(4) y-7+9&=4(x^{2}-6x+9)\
(5) y+2&=4(x-3)^{2}\
(6) y&=4(x-3)^{2}-2\
end{align*}
$$

In order to find who is correct among the two teams, we will first bring the given equation in the graphing form

Step 2
2 of 3
Now, we bring the given equation in graphing form

$$
begin{align*}
y&=4x^{2}-24x+7\
y-7&=4x^{2}-24x \
y-7&=4(x^{2}-6x)\
y-7+4(3^{2})&=4(x^{2}-6x+3^{2})\
y+29&=4(x-3)^{2} \
y&=4(x-3)^{2}-29 \
end{align*}
$$

Thus Raymond and Hannah are correct as the graphing form is equivalent to the original equation.

Step 3
3 of 3
Therefore Raymond and Hannah are correct as in their fourth step in order to complete a square on the right side, it is necessary to have the term $(3)^{2} = 9$ inside the parentheses. But because the quadratic function is multiplied by four, we actually add $4times(3^{2})$ on the right side of the equation and we have to do the same on the left side.
Exercise 137
Step 1
1 of 4
Given,

$$
begin{align*}
text{ a.} y&=2x^{2}-8x+7 \
text{ b.} y&=5x^{2}-10x-7 \
end{align*}
$$

Step 2
2 of 4
$a.$First, we will bring the given equation to the graphing form

$$
begin{align*}
y&=2x^{2}-8x+7 \
y-7&=2x^{2}-8x \
y-7&=2(x^{2}-4x) \
y-7+2(2^{2})&=2(x^{2}-4x+2^{2})\
y+1&=2(x-2)^{2}\
y&=2(x-2)^{2}-1\
end{align*}
$$

So, the vertex of the given equation is $(2,-1)$ and the axis of symmetry is $x = 2$

Step 3
3 of 4
$b.$First, we will bring the given equation to the graphing form

$$
begin{align*}
y&=5x^{2}-10x-7 \
y+7&=5x^{2}-10x \
y+7&=5(x^{2}-2x) \
y-7+5(1^{2})&=5(x^{2}-2x+1^{2}) \
y+12&=5(x-1)^{2} \
y&=5(x-1)^{2}-12 \
end{align*}
$$

So, the vertex of the given equation is $(1,-12)$ and the axis of symmetry is $x = 1$

Result
4 of 4
$a$. $(2,-1)$ and $x = 2$

$b$. $(1,-12)$ and $x = 1$

Exercise 138
Step 1
1 of 4
First we create even equation,

$$
begin{align*}
f(x)&=x^{2}+1\
end{align*}
$$

And,

$$
begin{align*}
f(-x)&=f(x) tag{1}\
end{align*}
$$

Step 2
2 of 4
And then we put $x$ as $-x$ in the formed even equation to check $(1)$,

$$
begin{align*}
f(x)&=(-x)^{2}+1\
end{align*}
$$

So,

$$
begin{align*}
f(x)&=(-x)^{2}+1=(-x)^{2}+1=f(x)\
end{align*}
$$

Step 3
3 of 4
Now we recognize and even function $f(x)$by its graph if the graph is symmetrical across the $y$ – axis

Thus the graph of $f(x)$ is mentioned below,

So, the graph of $f(x)$ as it is symmetrical across the $y$- axis

Exercise scan

Step 4
4 of 4
Now we recognize and even function $f(x)$ by its table if it contains the pair $(x , y)$ and $(-x , y)$, \

setlength{tabcolsep}{10pt}
renewcommand{arraystretch}{1.5}
begin{center}
begin{tabular}{|c | c | c |}
hline
x & y=f(x) & (x,y) \
hline
-3 & 10 & (-3,10) \
hline
-2 & 5 & (-2,10) \
hline
-1& 2 & (-1,2) \
hline
-0 & 1 & (0,1) \
hline
1 & 2 & (1,2) \
hline
2 & 5 & (2,10) \
hline
3 & 10 & (3,10) \
hline
end{tabular}
end{center}

So, the function $f(x)$ is even as its table contains the pair $(x, y)$ and $(-x, y)$,\

Exercise 139
Step 1
1 of 3
Given,

$$
begin{align*}
P(s)&=-s^{2}+10s \
end{align*}
$$

In order to find the what is maximum profit the model predicts for each company and which company can sell their apps for less to make a maximum profit, we will first bring the given equation in the graphing form.

Step 2
2 of 3
Now, the function has the maximum in its vertex so we find the vertex by bringing the given equation in the graphing form,

$$
begin{align*}
P(s)&=-s^{2}+10s \
P(s)&=-(s^{2}-10s+25)+25 \
P(s)&=-(s^{2}-5)+25 \
end{align*}
$$

So, the vertex is $(5,25)$

Therefore the maximum profit for Math Starz is $25$ and the maximum profit for Comet Math is also $25$.

Step 3
3 of 3
Math Starz should sell for a price of dollar $5$, while Cometh Math should sell for a price of dollar $8$, so Math Starz would sell for a loss to make the maximum profit.
Exercise 140
Step 1
1 of 4
Given,

$$
begin{align*}
text{ A}(3,2) \
text{ B}(-2,0) \
text{ C}(-1,4) \
end{align*}
$$

Step 2
2 of 4
First, we determine $AB$ using the distance formula

$$
begin{align*}
text{ AB}&=sqrt{(-2-3)^{2}+(0-2)^{2}} \
text{ AB}&=sqrt{29}\
end{align*}
$$

Then, we determine $BC$ using the distance formula

$$
begin{align*}
text{ BC}&=sqrt{(-1-(-2))^{2}+(4-0)^{2}}\
text{ BC}&=sqrt{17}\
end{align*}
$$

Now, we determine $CA$ using the distance formula

$$
begin{align*}
text{ CA}&=sqrt{(3-(-1))^{2}+(2-4)^{2}}\
text{ CA}&=sqrt{20}\
end{align*}
$$

Step 3
3 of 4
Therefore $BC < CA < AB$, as all sides are unequal the triangle is scalene.

Now, we check if the triangle is a right-angle scalene triangle by using the Pythagorean theorem.

$$
begin{align*}
text{ AB}^{2}&=text{ BC}^{2}+text{ CA}^{2} \
(sqrt{29})^{2}&=(sqrt{17})^{2}+(sqrt{20})^{2} \
29&ne37\
end{align*}
$$

Thus the triangle is a scalene triangle.

Result
4 of 4
Scalene triangle.
Exercise 141
Step 1
1 of 3
Given,

$$
begin{align*}
y&=sqrt[3]{x}-2 \
end{align*}
$$

Step 2
2 of 3
Now we graph the given function starting with the parent function $y = sqrt[3]{x}$, which we shift two units down,

Thus the graph is mentioned below,

Exercise scan

Step 3
3 of 3
So, the domain and range of the function is $( -infty, infty)$.

There is no asymptote.

The left end goes down while the right end goes up.

The function is continuous and increasing, the intercept of is,

In the given function when $y$ is equals $0$

$$
begin{align*}
y&=sqrt[3]{x}-2 \
0&=sqrt[3]{x}-2\
2&=sqrt[3]{x}\
x&=(2)^{3}\
x&=8\
end{align*}
$$

In the given function when $x$ is equaled $0$

$$
begin{align*}
y&=sqrt[3]{x}-2\
y&=sqrt[3]{0}-2\
y&=-2\
end{align*}
$$

Thus the intercepts are $( 8, -2)$

Exercise 142
Step 1
1 of 5
We are given the triangles $triangle$MAX and $triangle$NJO.
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/1fc45c3f-1dab-429c-a99d-59e970363c99-1623084459777641.jpeg)

We can see in $triangle$MAX

$overline{MA}$ = 7 Units
$overline{AX}$ = 4 Units
$angle{MAX}$=100$degree$

and

We can see in $triangle$NJO

$overline{NJ}$ = 7 Units
$overline{JO}$ = 4 Units
$angle{NJO}$=100$degree$

Step 2
2 of 5
a. We have to find whether $triangle$MAX is congruent to $triangle$JON.

For this, we need three sides or either sides or angles in the combinations SAS (S represents corresponding Sides of the triangles and A represents the corresponding Angles of the triangles) or ASA or AAS of both these triangles to be equal or congruent. Since we are given 2 sides and 1 angle we will check the congruency by applying the SAS rule.

As we can observe from the diagrams,

$overline{MA}$ $ncong$ $overline{JO}$

$angle{MAX}$$ncong$$angle{JON}$

$overline{AX}$ $ncong$ $overline{ON}$

This implies

$triangle$MAX $ncong$ $triangle$JON

Thus the statement is incorrect.

Step 3
3 of 5
b. We have to find whether $triangle$MAX is congruent to $triangle$NJO.

As we can observe from the diagrams,

$overline{MA}$ $cong$ $overline{NJ}$ = 7 Units

$angle{MAX}$$cong$$angle{NJO}$ = 100$degree$

$overline{AX}$ $cong$ $overline{JO}$ = 4 Units

This implies

$triangle$MAX $cong$ $triangle$NJO

Thus the statement is correct.

Step 4
4 of 5
c. We have to find whether $triangle$JON is congruent to $triangle$AMX.

As we can observe from the diagrams,

$overline{JO}$ $ncong$$overline{AM}$

$angle{OJN}$$cong$$angle{MAX}$ = 100$degree$

$overline{JO}$ $ncong$ $overline{AM}$

Here although one angle is congruent, the sides are not congruent. This implies

$triangle$JON $ncong$ $triangle$AMX

Thus the statement is incorrect.

Step 5
5 of 5
d. from part b above we have the conclusion
$$triangle MAX cong triangle NJO$$

And when two triangles are congruent they will have congruent or equal corresponding angles and equal corresponding sides.

From this, we can say

$overline{MX}$ $cong$ $overline{NO}$

Thus, this statement is correct.

unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New