Core Connections Integrated 3
Core Connections Integrated 3
1st Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283939
Table of contents
Textbook solutions

All Solutions

Page 483: Closure Activity

Exercise 143
Step 1
1 of 2
$y=sin (x)$

$$
y=cos (x)
$$

We are given the functions:
Step 2
2 of 2
The graphs of the two functions are the same except from a $dfrac{pi}{2}$ shifting. The graph of $sin x$ starts in $(0,0)$, while the graph of $cos x$ starts in $(0,1)$.
Exercise 144
Step 1
1 of 6
We convert the following angles from degrees to radians, using the formula:

$dfrac{pi}{180text{textdegree}}cdot xtext{textdegree}=y$ radians.

Step 2
2 of 6
$$
theta=225text{textdegree}=dfrac{pi}{180text{textdegree}}cdot 225text{textdegree}=dfrac{5pi}{4}
$$
a) $theta=225text{textdegree}$
Step 3
3 of 6
$$
theta=75text{textdegree}=dfrac{pi}{180text{textdegree}}cdot 75text{textdegree}=dfrac{5pi}{12}
$$
b) $theta=75text{textdegree}$
Step 4
4 of 6
$$
theta=-15text{textdegree}=-dfrac{pi}{180text{textdegree}}cdot 15text{textdegree}=-dfrac{pi}{12}
$$
c) $theta=-15text{textdegree}$
Step 5
5 of 6
$$
theta=330text{textdegree}=dfrac{pi}{180text{textdegree}}cdot 330text{textdegree}=dfrac{11pi}{6}
$$
d) $theta=330text{textdegree}$
Result
6 of 6
a) $dfrac{5pi}{4}$; b) $dfrac{5pi}{12}$; c) $-dfrac{pi}{12}$; d) $dfrac{11pi}{6}$;
Exercise 145
Step 1
1 of 4
a) The coordinates of the point $M$ are

$$
M(x,y) = M( cos theta , sin theta )
$$

For $theta = 110^{text{textdegree}}$ we have

$$
M( cos 110^{text{textdegree}} , sin 110^{text{textdegree}})
$$

Step 2
2 of 4
b) The exact coordinates of the point $M$

$$
M( cos 110^{text{textdegree}}, sin 110^{text{textdegree}}) = ( -0.34, 0.94)
$$

Step 3
3 of 4
c) We will examine if it is true

$$
begin{align*}
sin^2 theta + cos^2 theta &= 1\
sin^2 110^{text{textdegree}} + cos 110^{text{textdegree}} &= 1\
(0.94)^2 + 0-0.34)^2 &= 1\
0.8836 + 0.1156 &= 1\
0.99 &approx 1
end{align*}
$$

The Pythagorean identity is valid.

Result
4 of 4
a) $M( cos 110^{text{textdegree}} , sin 110^{text{textdegree}})$

b) $( -0.34, 0.94)$

c) The Pythagorean identity is valid.

Exercise 146
Step 1
1 of 13
$$
sin (60text{textdegree})
$$
a) We are given the expression:
Step 2
2 of 13
$$
sin (60text{textdegree})=dfrac{sqrt 3}{2}
$$
We give the exact value of the expression:
Step 3
3 of 13
$$
cos (180text{textdegree})
$$
b) We are given the expression:
Step 4
4 of 13
$$
cos(180text{textdegree})=-1
$$
We give the exact value of the expression:
Step 5
5 of 13
$$
tan (225text{textdegree})
$$
c) We are given the expression:
Step 6
6 of 13
$$
tan (225text{textdegree})=tan(225text{textdegree}-180text{textdegree})=tan (45text{textdegree})=1
$$
We give the exact value of the expression:
Step 7
7 of 13
$$
sinleft(dfrac{pi}{4}right)
$$
d) We are given the expression:
Step 8
8 of 13
$$
tan (225text{textdegree})=dfrac{sqrt 2}{2}
$$
We give the exact value of the expression:
Step 9
9 of 13
$$
cosleft(dfrac{2pi}{3}right)
$$
e) We are given the expression:
Step 10
10 of 13
$$
cosleft(dfrac{2pi}{3}right)=-cos left(pi-dfrac{2pi}{3}right)=-cosleft(dfrac{pi}{3}right)=-dfrac{1}{2}
$$
We give the exact value of the expression:
Step 11
11 of 13
$$
tanleft(dfrac{3pi}{2}right)
$$
f) We are given the expression:
Step 12
12 of 13
The tangent function is undefined in $x=dfrac{(2k+1)pi}{2}$.
Result
13 of 13
a) $dfrac{sqrt 3}{2}$; b) $-1$; c) $1$; d) $dfrac{sqrt 2}{2}$; e) $-dfrac{1}{2}$; f) undefined;
Exercise 147
Step 1
1 of 7
Exercise scan
a) We are given the right triangle:
Step 2
2 of 7
$$
x=y
$$
The triangle is isosceles, thus we have:
Step 3
3 of 7
$x^2+y^2=10^2$

$2x^2=2y^2=100$

$x^2=y^2=dfrac{100}{2}=50$

$$
x=y=sqrt{50}=5sqrt 2
$$

We determine $x$ and $y$ by using the Pythagorean Theorem:
Step 4
4 of 7
Exercise scan
b) We are given the right triangle:
Step 5
5 of 7
$sin x=dfrac{5sqrt 3}{10}$

$sin x=dfrac{sqrt 3}{2}$

$$
x=60text{textdegree}
$$

We determine $x$ using the sine function:
Step 6
6 of 7
$x+y=90text{textdegree}$

$$
y=90text{textdegree}-60text{textdegree}=30text{textdegree}
$$

We determine $y$:
Result
7 of 7
a) $x=y=5sqrt 2$

b) $x=60text{textdegree}; y=30text{textdegree}$

Exercise 148
Solution 1
Solution 2
Step 1
1 of 5
a) The solution of equation:

$$
5^x = 72
$$

We can use the $ln$ function

$$
ln 5^x = ln 72
$$

Using the formula

$$
begin{align*}
color{#c34632}{ln a^b = b ln a} tag {$*$}
end{align*}
$$

We have

$$
begin{align*}
x ln 5 &= ln 72\
x &= frac {ln 72}{ln 5}\
x &= frac {4.27}{1.61}\
x &= 2.65
end{align*}
$$

The solution of equation is

$$
x = 2.65
$$

Step 2
2 of 5
b) The solution of equation:

$$
2^{3x} =7
$$

We can use the $ln$ function

$$
ln 2^{3x} = ln 7
$$

Using the formula $(*)$

$$
begin{align*}
3x cdot ln 2 &= ln 7\
3x &= frac {ln 7}{ln 2}\
3x &= frac {1.94}{0.69}\
3x &= 2.81\
x &= 0.93
end{align*}
$$

The solution of equation is

$$
x = 0.93
$$

Step 3
3 of 5
c) The solution of equation

$$
3^{(2x+4)} = 17
$$

We can use the $ln$ formula

$$
ln 3^{(2x+4)} = ln 17
$$

According to $(*)$

$$
begin{align*}
(2x+4) ln 3 &= ln 17\
2x + 4 &= frac {ln 17}{ln 3}\
2x + 4 &= frac {2.83}{1.09}\
2x + 4 &= 2.59\
2x &= -1.4\
x &= -0.7
end{align*}
$$

The solution of equation is

$$
x=-0.7
$$

Step 4
4 of 5
d) The solution of equation:

$$
begin{align*}
3x^4 &= 150\
x^4 &= 50\
x &= sqrt[4]{50}\
x &=pm 2.66
end{align*}
$$

The solution of equation is

$$
x=pm 2.66
$$

Result
5 of 5
a) $x = 2.65$

b) $x = 0.93$

c) $x=-0.7$

d) $x=pm 2.66$

Step 1
1 of 9
$$
5^x=72
$$
a) We are given the equation:
Step 2
2 of 9
$log (5^x)=log (72)$

$xlog (5)=log (72)$

$x=dfrac{log (72)}{log (5)}$

$$
xapprox 2.657
$$

We apply the logarithm:
Step 3
3 of 9
$$
2^{3x}=7
$$
b) We are given the equation:
Step 4
4 of 9
$log (2^{3x})=log (7)$

$3xlog (2)=log (7)$

$x=dfrac{log (7)}{3log (2)}$

$$
xapprox 0.936
$$

We apply the logarithm:
Step 5
5 of 9
$$
3^{2x+4}=17
$$
c) We are given the equation:
Step 6
6 of 9
$log (3^{2x+4})=log (17)$

$(2x+4)log (3)=log (17)$

$2x+4=dfrac{log (17)}{log (3)}$

$2x=dfrac{log (17)}{log (3)}-4$

$x=dfrac{dfrac{log (17)}{log (3)}-4}{2}$

$$
xapprox -0.711
$$

We apply the logarithm:
Step 7
7 of 9
$$
3x^4=150
$$
d) We are given the equation:
Step 8
8 of 9
$x^4=dfrac{150}{3}$

$x^4=50$

$x=pmsqrt[4]{50}$

$$
x=pm 2.659
$$

We divide by 3 and find the solutions:
Result
9 of 9
a) $2.657$; b) $0.936$; c) $-0.711$; d) $pm 2.659$
Exercise 149
Solution 1
Solution 2
Step 1
1 of 5
a) In this exercise we can use the following formula

$$
color{#c34632}{ log_ca โ€“ log_cb = log_c {ab}}
$$

Therefore

$$
begin{align*}
log_8 {(9)} + log_8 {(x)} &= 1\
log_8 {(9x)} &= 1
end{align*}
$$

We can use the formula

$$
begin{align*}
color{#c34632}{log_ca =b} tag{$*$}\
color{#c34632}{a = c^b}
end{align*}
$$

Then

$$
begin{align*}
9x &= 8^1\
x &= frac 89\
x &= 0.88
end{align*}
$$

Step 2
2 of 5
b) In this exercise we can use the formula

$$
begin{align*}
color{#c34632}{ log_ca โ€“ log_cb = log_c {frac ab}} tag{**}\
end{align*}
$$

Therefore

$$
begin{align*}
log_x {(8)} โ€“ log_x {(19)} &= -1\
log_x {left( frac {8}{19} right) } &= -1
end{align*}
$$

Using the $(*)$

$$
begin{align*}
frac {8}{19} &= x^{-1}\
frac 1x &= frac {8}{19}\
x &= frac {19}{8}\
x &= 2.37
end{align*}
$$

Step 3
3 of 5
c) The solution of equation:

$$
begin{align*}
log_5 {(17+6x)} &= log_5 {(35)}\
17 + 6x &= 35\
6x &= 18\
x &= 3
end{align*}
$$

Step 4
4 of 5
d) In this exercise we can use $(**)$

$$
begin{align*}
log {(18x)} โ€“ log {(9)} &= log {(3)}\
log { left( frac {18x}{9} right) } &= log {(3)}\
log {(2x)} &= log {(3)}\
2x &= 3\
x &= frac 32\
x &= 1.5
end{align*}
$$

Result
5 of 5
a) $x = 0.88$

b) $x = 2.37$

c) $x = 3$

d) $x = 1.5$

Step 1
1 of 9
$$
log_8 (9)+log_8 (x)=1
$$
a) We are given the equation:
Step 2
2 of 9
$log_8 (9x)=1$

$9x=8^1$

$9x=8$

$$
x=dfrac{8}{9}
$$

We apply the Product Property of Logarithms:
Step 3
3 of 9
$$
log_x (8)-log_x (19)=-1
$$
b) We are given the equation:
Step 4
4 of 9
$log_x left(dfrac{8}{19}right)=-1$

$x^{-1}=dfrac{8}{19}$

$dfrac{1}{x}=dfrac{8}{19}$

$8x=19$

$$
x=dfrac{19}{8}
$$

We apply the Quotient Property of Logarithms:
Step 5
5 of 9
$$
log_5 (17+6x)=log_5 (35)
$$
c) We are given the equation:
Step 6
6 of 9
$17+6x=35$

$6x=35-17$

$6x=18$

$x=dfrac{18}{6}$

$$
x=3
$$

We solve the equation:
Step 7
7 of 9
$$
log (18x)-log (9)=log (3)
$$
d) We are given the equation:
Step 8
8 of 9
$log left(dfrac{18x}{9}right)=log (3)$

$log (2x)=log (3)$

$2x=3$

$$
x=dfrac{3}{2}
$$

We apply the Quotient Property of Logarithms:
Result
9 of 9
a) $dfrac{8}{9}$; b) $dfrac{19}{8}$; c) $3$; d) $dfrac{3}{2}$
Exercise 150
Solution 1
Solution 2
Solution 3
Step 1
1 of 3
We can write the given expression in the following form

$$
begin{align*}
(2x^3 + x^2 โ€“ 19x + 36) div (x+4) &= frac {2x^3 + x^2 โ€“ 19x + 36}{x+4}\
&= frac{2x^3 + 8x^2 +7x^2 -28x +9x + 36}{x+4} && text{ ($x^2=8x^2 +7x^2$)}\
&text{} && text{ ($- 19x=-28x +9x$)}\
&= frac{(2x^3 + 8x^2) +(7x^2 -28x) + (9x + 36)}{x+4}\
&= frac{ 2x^2 (x+4) -7x (x +4) + 9(x+4)}{x+4}\
&= frac{(x+4)(2x^2 -7x +9)}{x+4}\
&= 2x^2 -7x+9
end{align*}
$$

Step 2
2 of 3
Therefore

$$
(2x^3 + x^2 โ€“ 19x + 36) div (x+4) = 2x^2 -7x+9
$$

Result
3 of 3
$$
(2x^3 + x^2 โ€“ 19x + 36) div (x+4) = 2x^2 -7x+9
$$
Step 1
1 of 2
noindent
Solution to this example is given below\
begin{align*}
&frac{2x^3+x^2-19x+36}{x+4}&&boxed{text{Given proportion}}\
&2x^2+frac{-7x^2-19x+36}{x+4}&&boxed{text{Simplify}}\
&2x^2-7x+frac{9x+36}{x+4}&&boxed{text{Simplify}}\
&2x^2-7x+9&&boxed{text{Simplify}}\\
&boxed{{color{Maroon}2x^2-7x+9} }&&boxed{text{Final solution}}\
end{align*}
Result
2 of 2
$$
color{#4257b2} text{ } 2x^2-7x+9
$$
Step 1
1 of 2
$$
polylongdiv{2x^3+x^2-19x+36}{x+4}
$$
Result
2 of 2
$$
2x^2-7x+9
$$
Exercise 151
Step 1
1 of 8
a) We can write a given polynomial in the following form

$$
begin{align*}
P(x) &=x^3+8\
P(x) &= x^3 + 2^3
end{align*}
$$

Step 2
2 of 8
According to the formula

$$
color{#c34632}{ a^3 + b^3 = (a+b)(a^2 -ab + b^2)}
$$

Step 3
3 of 8
we obtain

$$
P(x) = (x + 2)(x^2 -2x +4)
$$

Step 4
4 of 8
The solution of a square equation $ax^2 + bx+c=0$ are shape

$$
x = frac {-b pm sqrt {b^2 -4ac}}{2a}
$$

Step 5
5 of 8
Now we have

$$
begin{align*}
x &= frac {2 pm sqrt {4-16}}{2}\
x &= frac {2 pm sqrt {-12}}{2}\
x &= frac {2 pm i 2 sqrt 3}{2}\
x &= 1 pm i sqrt 3
end{align*}
$$

Step 6
6 of 8
Therefore, the polynomial is

$$
begin{align*}
P(x) &= (x+2)(x -( 1 + i sqrt 3)) (x- ( 1 โ€“ i sqrt 3))\
&= (x+2) (x-1 โ€“ i sqrt 3)(x-1+ i sqrt 3)
end{align*}
$$

Step 7
7 of 8
b) Since

$$
P(x) = (x+2)(x^2 -2x+4)
$$

we can see that the factor of this polynomial is

$$
(x+2)
$$

Result
8 of 8
a) $P(x) = (x+2) (x-1 โ€“ i sqrt 3)(x-1+ i sqrt 3)$

b) $(x+2)$

Exercise 152
Step 1
1 of 7
The polynomial $P(x)$ can be represented as follows

$$
begin{align*}
P(x) &= x^4 โ€“ x^3 -2x -4\
&= x^4 -2x^3 + x^3 +2x^2 -2x^2 -4x + 2x -4\
&= x^4 + x^3 -2x^3 -2x^2 +2x^3 + 2x -4x -4\
&= x^3(x+1) โ€“ 2x^2 (x+1) + 2x (x+1) -4 (x+1)\
&= (x+1) (x^3 โ€“ 2x^2 +2x-4)
end{align*}
$$

Step 2
2 of 7
The polynomial $P_1(x) = x^3 -2x^2 +2x-4$ can be represented as follows

$$
begin{align*}
P_1 (x) &= x^3 -2x^2 + 2x -4\
&= x^2 (x-2) + 2 (x-2)\
&= (x-2)(x^2 +2)
end{align*}
$$

Step 3
3 of 7
Now, we have

$$
P(x) = (x+1)(x-2)(x^2 +2)
$$

Step 4
4 of 7
The roots of the polynomial $P(x) = (x+1)(x-2)(x^2 +2)$ are

$$
begin{align*}
x+1 &= 0\
x -2 &=0\
x^2 + 2 &= 0
end{align*}
$$

Step 5
5 of 7
Then

$$
begin{align*}
x &= -1\
x &= 2\
x^2 &= -2
end{align*}
$$

Step 6
6 of 7
and

$$
begin{align*}
x &= -1\
x &= 2\
x &=pm sqrt { -2} =pm i sqrt 2
end{align*}
$$

Result
7 of 7
$$
begin{align*}
x &= -1\
x &= 2\
x & =pm i sqrt 2
end{align*}
$$
Exercise 153
Step 1
1 of 2
The easiest problems seem to be the ones where we need to find the length of the missing side of a right triangle and converting degrees into radians because we have the formula for that.
Step 2
2 of 2
Solving equations with logarithms seems to give people the most trouble.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Investigations and Functions
Chapter 2: Transformations of Parent Graphs
Page 53: Questions
Page 100: Closure Activity
Chapter 3: Solving and Inequalities
Page 107: Questions
Page 151: Closure Activity
Chapter 4: Normal Distributions and Geometric Modeling
Page 157: Questions
Page 217: Closure Activity
Chapter 7: Logarithms and Triangles
Page 321: Questions
Page 368: Closure Activity
Chapter 8: Polynomials
Page 373: Questions
Page 425: Closure Activity
Chapter 9: Trigonometric Functions
Page 431: Questions
Page 483: Closure Activity
Chapter 10: Series
Page 489: Questions
Page 557: Closure Activity
Chapter 11: Rational Expressions and Three-Variable Systems
Page 563: Questions
Page 605: Closure Activity
Chapter 12: Analytic Trigonometry
Page 611: Questions
Page 643: Closure Activity