Core Connections Integrated 3
Core Connections Integrated 3
1st Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283939
Table of contents
Textbook solutions

All Solutions

Page 431: Questions

Exercise 1
Step 1
1 of 3
Since Nina walks in a straight line and the bags of blood oscilate, the blood will make a pattern similar to a since or a cosine function.
Step 2
2 of 3
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/221b5168-fce6-4781-8a59-ce77a018c877-1632829162721295.png)
Result
3 of 3
The blood will make a pattern similar to a sine or cosine function.
Exercise 2
Step 1
1 of 2
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/1f6a6fe9-cf3e-422f-a72b-10891d85f895-1632829459786389.png)
Step 2
2 of 2
If we want the peaks to be taller, we need to put the pendulum higher in the air and move it faster. If we want the shapes to be wider, we need to move the pendulum slower and if we want to get many more shapes, we need to move the pendulum faster.
Exercise 3
Step 1
1 of 5
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/55d8ba3d-1bb4-47a0-9d06-c419dcc04a4c-1632829725027776.png)
Step 2
2 of 5
If the bag was pulled out farther before it was let go, the shape of the curve would be vertically stretched because the bag and blood would have greater reach.
Step 3
3 of 5
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/556344e9-9d31-4a50-a38e-db696e7f37d3-1632829824789071.png)
Step 4
4 of 5
If the paper underneath the pendulum traveled faster, the shape of the curve would be horizontally stretched because the blood would drop at the same speed on the wider area.
Step 5
5 of 5
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/ac7b2be9-d852-4bae-9e39-ab386990a5e4-1632829968367217.png)
Exercise 4
Step 1
1 of 3
The opposite triangle is $(30 – 60 -90)$ triangle which side lengths are with the ratio $x$, $x sqrt {3}$ and $2x$

Since $overline {AC}=1$          (Given)

Then:

$overline {BC}=dfrac {1}{2}$

$overline {AB}=dfrac {sqrt {3}}{2}$

Exercise scan
Step 2
2 of 3
The opposite triangle is $(45 – 45 -90)$ triangle which side lengths are with the ratio $x$, $x$ and $x sqrt {2}$

Since $overline {AC}=1$          (Given)

Then:

$overline {BC}=dfrac {1}{sqrt {2}}$

$overline {AB}=dfrac {1}{sqrt {2}}$

Exercise scan
Result
3 of 3
The missing side lengths of the $(30 – 60 -90)$ triangle are:          $dfrac {1}{2}$ and $dfrac {sqrt {3}}{2}$

The missing side lengths of the $(45 – 45 -90)$ triangle are:          $dfrac {1}{sqrt {2}}$ and $dfrac {1}{sqrt {2}}$

Exercise 5
Step 1
1 of 2
The sum of logarithms is the logarithm of the product and the difference of the logarithm is the logarithm of the quotient:

a. $log_3{5m}$

b. $log_6{dfrac{p}{m}}$

c. $log_2{r}+3log_6{z}=log_2{r}+3dfrac{log_2{z}}{log_2{6}}=log_2{r}+dfrac{log_2{z}}{dfrac{1}{3}log_2{6}}=log_2{r}+dfrac{log_2{z}}{log_2{6^{1/3}}}=log_2{r}+dfrac{log_2{z}}{log_2{sqrt[3]{6}}}=log_2{r}+log_2{z^{1/log_2{sqrt[3]{6}}}}=log_2{rz^{1/log_2{sqrt[3]{6}}}}$

d. $log{dfrac{90cdot 4}{36}}=log{10}=1$

Result
2 of 2
a. $log_3{5m}$

b. $log_6{dfrac{p}{m}}$

c. $log_2{rz^{log_2{1/sqrt[3]{6}}}}$

d. $1$

Exercise 6
Step 1
1 of 2
In this exercise we can use the following formula

$$
color{#c34632}{(a+b)^2 = a^2 + 2ab + b^2}
$$

Now, we have

$$
begin{align*}
f(x) &= (x+4)(x+1)^2 (x-2)\
&= (x+4)(x^2 + 2x +1)(x-2)\
&= (x^3 + 2x^2 +x+4x^2 +8x +4) (x-2)\
&= (x^3 + 6x^2 +9x +4) (x-2)\
&= x^4 + 6x^3 +9x^2 +4x – 2x^3 – 12x^2 -18x-8\
&= x^4 + 4x^3 – 3x^2 – 14x-8
end{align*}
$$

This function is a fourth-degree.

Exercise scan

Result
2 of 2
$$
f(x) = x^4 + 4x^3 – 3x^2 – 14x-8
$$
Exercise 7
Step 1
1 of 5
Exercise scan
We are given:
Step 2
2 of 5
$$
CBD=A+ACB=90text{textdegree}+20text{textdegree}=110text{textdegree}
$$
We determine the angle $CBD$:
Step 3
3 of 5
$BCD=180text{textdegree}-CBD-D$

$=180text{textdegree}-110text{textdegree}-68text{textdegree}$

$$
=1text{textdegree}
$$

We determine the angle BCD$:
Step 4
4 of 5
$dfrac{sin BCD}{BD}=dfrac{sin D}{BC}$

$sin BCDcdot BC=BDsin D$

$BC=dfrac{125cdot sin 1text{textdegree}}{sin 68text{textdegree}}$

$=dfrac{125cdot 0.01745241}{0.92718385}$

$$
approx 2.35
$$

We determine the side $BD$, using the Law of Sines:
Result
5 of 5
$2.35$ feet
Exercise 8
Step 1
1 of 3
The next four terms are $t(3)=15,t(4)=21,t(5)=27,t(6)=33,$
(a) For an arithmetic sequence, each term is given by the sum of the previous term and the common difference or such that the n’th term can be expressed in terms of the first term and a summation of common differences up to the n’th term. Here, we have $d=9-3=6$ such that $t(n)=t(1)+(n-1)d$ eg t(6)=3+5d=33
Step 2
2 of 3
The next four terms are $t(3)=27,t(4)=81,t(5)=243,t(6)=729,$
(b) For a geometric sequence, each term is given by multiplying the previous term by a constant factor r where r is the ratio of successive elements or such that the n’th term can be expressed in terms of the first term factored by a power of r. Here, we have $r=dfrac{9}{3}=3$ such that $t(n)=t(1)r^{n-1}$ eg $t(6)=3times3^{5}=729$
Step 3
3 of 3
The next four terms are $t(2)=-9,t(3)=27,t(4)=-81,t(5)=243,$
(c) Define a series with alternating positive and negative terms by $t(n)=(-1)^{n+1}t(1)r^{n-1}$
Exercise 9
Solution 1
Solution 2
Step 1
1 of 7
$$
n^3=49
$$
a) We are given the equation:
Step 2
2 of 7
$$
n=sqrt[3]{49}approx 3.66
$$
We take the cubic root:
Step 3
3 of 7
$$
3^n=49
$$
b) We are given the equation:
Step 4
4 of 7
$log (3^n)=log (49)$

$nlog (3)=log (49)$

$$
n=dfrac{log (49)}{log (3)}approx 3.54
$$

We apply logarithm:
Step 5
5 of 7
$$
3^{n+1}=49
$$
c) We are given the equation:
Step 6
6 of 7
$log (3^{n+1})=log (49)$

$(n+1)log (3)=log (49)$

$n+1=dfrac{log (49)}{log (3)}$

$$
n=dfrac{log (49)}{log (3)}-1approx 2.54
$$

We apply logarithm:
Result
7 of 7
a) $sqrt[3]{49}approx 3.66$

b) $dfrac{log (49)}{log (3)}approx 3.54$

c) $dfrac{log (49)}{log (3)}-1approx 2.54$

Step 1
1 of 4
The solution of equation:

a)

$$
begin{align*}
n^3 &= 49\
n &= sqrt[3]{49}\
n &= 3.6593\
n &approx 3.66
end{align*}
$$

The solution of equation is

$$
n approx 3.66
$$

Step 2
2 of 4
b)

$$
3^n =49
$$

We can use the $ln$ function

$$
ln 3^n = ln 49
$$

According to the formula

$$
begin{align*}
color{#c34632}{ln a^b = b ln a} tag{$star$}
end{align*}
$$

we obtain

$$
begin{align*}
n cdot ln 3 &= ln 49\
n &= frac {ln 49}{ln 3}\
n &= frac {3.8918}{1.0986}\
n &= 3.5425\
n &approx 3.54
end{align*}
$$

The solution of equation is

$$
n approx 3.54
$$

Step 3
3 of 4
c)

$$
3^{n+1} = 49
$$

We can use the $ln$ function

$$
ln 3^{n+1} = ln 49
$$

According to the formula $(*)$ we obtain

$$
begin{align*}
(n+1) ln 3 &= ln 49\
n+1 &= frac {ln 49}{ln 3}\
n+1 &= 3.5425\
n &= 2.5425\
n &approx 2.54
end{align*}
$$

The solution of equation is

$$
n approx 2.54
$$

Result
4 of 4
a) $n approx 3.66$

b) $n approx 3.54$

c) $n approx 2.54$

Exercise 10
Step 1
1 of 4
Exercise scan
We determine the height for several positions:
Step 2
2 of 4
begin{center}
begin{tabular}{|| c|c| c||}
hline
Degree of rotation & Height & Actual height \ [0.5ex]
hline
0&0&0\
hline
30& 0.5 & 50\
hline
45& 0.7 & 71\
hline
60& 0.9 & 87\
hline
90& 1 & 100\
hline
120& 0.9 & 87\
hline
135& 0.7 & 71\
hline
150& 0.5 & 50\
hline
180& 0 & 0\
hline
210& -0.5 & -50\
hline
225& -0.7 & -71\
hline
240& -0.9 & -87\
hline
270& -1 & -100\
hline
300& -0.9 & -87\
hline
315& -0.7 & -71\
hline
330& -0.5 & -50\
hline
360& 0 & 0\[1ex]
hline
end{tabular}
end{center}
We place them in a table:
Step 3
3 of 4
Exercise scan
b) We graph the data:
Step 4
4 of 4
c) We notice that the function grows as the angle of rotation grows from $0text{textdegree}$ to $90text{textdegree}$ and from $270text{textdegree}$ to $360text{textdegree}$ and decreases on the other interval. So we can divide portions of intervals and use an average value.
Exercise 11
Step 1
1 of 9
Exercise scan
a) We are given the triangle:
Step 2
2 of 9
$sin 40text{textdegree}=dfrac{h}{1}$

$$
h=sin 40text{textdegree}
$$

We determine an equation for $h$:
Step 3
3 of 9
The height $h$ is similar to the heights we computed in Problem 9-10.
Step 4
4 of 9
$$
y=sintheta
$$
b) We write an equation for the escape height $y$ for any passenger, given the rotation angle $theta$:
Step 5
5 of 9
Exercise scan
c) We use the graphing calculator to graph the function:
Step 6
6 of 9
Exercise scan
d) We graph the equation for larger values of $theta$:
Step 7
7 of 9
We notice that the function repeats itself each $360text{textdegree}$, but this makes sense because the position of the seat in the Screamer wheel repeats after each rotation.
Step 8
8 of 9
begin{center}
begin{tabular}{|| c|c|c| c||}
hline
Degree of rotation,$x$ & Height & Actual height & $y=sin x$ \ [0.5ex]
hline
0&0&0 & 0\
hline
30& 0.5 & 50 & 0.50\
hline
45& 0.7 & 71 & 0.71\
hline
60& 0.9 & 87 & 0.87\
hline
90& 1 & 100 & 1\
hline
120& 0.9 & 87 & 0.87\
hline
135& 0.7 & 71 & 0.71\
hline
150& 0.5 & 50& 0.50\
hline
180& 0 & 0 & 0\
hline
210& -0.5 & -50 & -0.50\
hline
225& -0.7 & -71 & -0.71\
hline
240& -0.9 & -87 & -0.87\
hline
270& -1 & -100 & -1\
hline
300& -0.9 & -87 & -0.87\
hline
315& -0.7 & -71 & -0.71\
hline
330& -0.5 & -50 & -0.50\
hline
360& 0 & 0 & 0\[1ex]
hline
end{tabular}
end{center}
e) We place the new function’s values in the table:
Step 9
9 of 9
The columns in the last column are pretty close to the values we determined in the second column.
Exercise 12
Step 1
1 of 7
Exercise scan
a) We plot 5 triangles in Quadrant I:
Step 2
2 of 7
Exercise scan
We graph them:
Step 3
3 of 7
Exercise scan
b) We continue with Quadrant II:
Step 4
4 of 7
Exercise scan
We graph the points:
Step 5
5 of 7
Exercise scan
c) We continue with the Quadrants III and IV:
Step 6
6 of 7
Exercise scan
We graph the points:
Step 7
7 of 7
d) The angle of rotation from the circle are the $x$-coordinates in the graph. The heights of the triangles built in the circle are the $y$-coordinates from the graph.
Exercise 13
Step 1
1 of 4
a-

$30text{textdegree} – 60text{textdegree} – 90text{textdegree}$ triangle sides are with the ratio $1: sqrt {3}:2$

Exercise scan

Step 2
2 of 4
$45text{textdegree} – 45text{textdegree} – 90text{textdegree}$ triangle sides are with the ratio $1: 1: sqrt {2}$

Exercise scan

Step 3
3 of 4
b-

A $30text{textdegree} – 60text{textdegree} – 90text{textdegree}$ triangle is called a half-equilateral because when reflecting it around the long leg we obtain an equilateral.

Exercise scan

Result
4 of 4
a-          $30text{textdegree} – 60text{textdegree} – 90text{textdegree}$ triangle sides are with the ratio $1: sqrt {3}:2$

.          $45text{textdegree} – 45text{textdegree} – 90text{textdegree}$ triangle sides are with the ratio $1: 1: sqrt {2}$

b-          A $30text{textdegree} – 60text{textdegree} – 90text{textdegree}$ triangle is called a half-equilateral because when reflecting it around the long leg we obtain an equilateral.

Exercise 14
Step 1
1 of 2
$sin A=dfrac {0.3}{1}$

$mangle A=17.46$$text{textdegree}$

Exercise scan
Result
2 of 2
$mangle A=17.46$$text{textdegree}$
Exercise 15
Step 1
1 of 8
$$
y=a(x-h)^2+k
$$
a) We are given the function:
Step 2
2 of 8
$k=15$

$h=dfrac{250}{2}=125$

$$
Rightarrow y=a(x-125)^2+15
$$

We determine $h, k$:
Step 3
3 of 8
$0=a(0-125)^2+15$

$0=15,625a+15$

$$
a=-dfrac{15}{15,625}=-0.00096
$$

We determine $a$ using the point $(0,0)$:
Step 4
4 of 8
$$
y=-0.00096(x-125)^2+15
$$
The function is:
Step 5
5 of 8
$h=dfrac{240}{2}=120$

$$
y=a(x-120)^2+k
$$

b) The ball of Dwayne’s brother traveled $220+20=240$ meters. Therefore we have:
Step 6
6 of 8
$$
begin{cases}
a(0-120)^2+k=0\
a(20-120)^2+k=5.5
end{cases}
$$

$$
begin{cases}
14,400a+k=0\
10,000a+k=5.5
end{cases}
$$

$14,400a+k-10,000a-k=0-5.5$

$4400a=-5.5$

$a=-dfrac{5.5}{4400}=-0.00125$

$$
k=-14,400(-0.00125)=18
$$

We determine $a, k$ using two points from the graph:
Step 7
7 of 8
$$
y=-0.00125(x-120)^2+18
$$
The function is:
Step 8
8 of 8
Therefore David’s ball traveled farther horizontally ($250>240$), but Dwayne’s ball traveled higher ($18>15$).
Exercise 16
Step 1
1 of 2
The expression

$$
x^3 – 2x^2 + 25x -50
$$

we can write

$$
begin{align*}
x^3 – 2x^2 + 25x – 50 &= x^2 (x-2)+25 (x-2)\
&= (x-2)(x^2 + 25)
end{align*}
$$

Now, we have

$$
begin{align*}
frac {x^3 – 2x^2 + 25x – 50}{x-2} &= frac {(x-2)(x^2 +25)}{x-2}\
&= x^2 + 25
end{align*}
$$

Therefore

$$
frac {x^3 – 2x^2 + 25x – 50}{x-2} = x^2 + 25
$$

Result
2 of 2
$$
frac {x^3 – 2x^2 + 25x – 50}{x-2} = x^2 + 25
$$
Exercise 17
Step 1
1 of 2
Since

$$
x^3 – 2x^2 + 25x – 50 = (x-2)(x^2 + 25)
$$

we have

$$
begin{align*}
x^3 – 2x^2 + 25x – 50 &= 0\
(x-2)(x^2 + 25) &= 0\
x-2 = 0 qquad x^2 + 25 &= 0\
x=2 qquad x^2 &= -25\
x &= pm sqrt {-25}\
x &= pm 5_i
end{align*}
$$

The solutions of equation are

$$
x=2 qquad x=5_i qquad x=-5_i
$$

Result
2 of 2
$$
x=2 qquad x=5_i qquad x=-5_i
$$
Exercise 18
Step 1
1 of 6
Exercise scan
We are given:
Step 2
2 of 6
$$
m_{2-6}=dfrac{160-700}{6-2}=-dfrac{540}{4}=-135
$$
a) We determine the average rate of change (the slope) between weeks 2 and 6:
Step 3
3 of 6
$$
m_{10-13}=dfrac{80-50}{13-10}=dfrac{30}{3}=10
$$
We determine the average rate of change (the slope) between weeks 10 and 13:
Step 4
4 of 6
This means that between weeks 2 and 6 135 infections were neutralized, while between weeks 10 and 13 10 new infections per week appeared.
Step 5
5 of 6
b) The interventions were most effective between weeks 2 and 6 because 135 infections were solved per week.
Step 6
6 of 6
c) The period between weeks 10 and 13 are concerning because the infections grow.
Exercise 19
Step 1
1 of 4
$r=2$ feet$=2cdot 12=24$ inches
a) We are given the radius:
Step 2
2 of 4
$V=dfrac{4pi r^3}{3}=dfrac{4picdot 24^3}{3}approx 57,906$ cubic inches
We determine the volume of the sphere:
Step 3
3 of 4
$V=dfrac{4pi r^3}{3}cdot 12^3=dfrac{4cdot 12^3}{3}cdot picdot r^3$

$$
=2304pi r^3
$$

b) She should use the formula:
Result
4 of 4
a) $57,906$ cubic inches

b) $V=2304pi r^3$

Exercise 20
Step 1
1 of 2
The domain of the function

$$
y = sin theta
$$

is

$$
( – infty , + infty )
$$

Exercise scan

Result
2 of 2
$$
( – infty , + infty )
$$
Exercise 21
Step 1
1 of 4
Exercise scan
We are given:
Step 2
2 of 4
$sin AOB=dfrac{AB}{OA}=dfrac{65}{100}=0.65$

$sin^{-1} 0,65approx 40.5text{textdegree}$

$AOB=40.5text{textdegree}$ or $AOB=180text{textdegree}-40.5text{textdegree}=139.5text{textdegree}$

We determine the angle $AOB$ using the sine function:
Step 3
3 of 4
Exercise scan
There are two possibilities:
Result
4 of 4
$$
40.5text{textdegree}; 139.5text{textdegree}
$$
Exercise 22
Step 1
1 of 1
If the function equation contains a factor $(x-a)^2$ then $x=a$ is a double root:

Exercise scan

Exercise 23
Step 1
1 of 11
$t(n)=50-7n$

$h(n)=4cdot 3^n$

$$
q(n)=n^2-6n+17
$$

We are given the sequences:
Step 2
2 of 11
$t(n+1)-t(n)=[50-7(n+1)]-(50-7n)$

$=50-7n-7-50+7n$

$$
-7
$$

a) We check if the sequence $t(n)$ is arithmetic or geometric:
Step 3
3 of 11
$a_1=50-7(1)=43$

$$
d=-7
$$

The sequence $t(n)$ is arithmetic:
Step 4
4 of 11
$$
dfrac{h(n+1)}{h(n)}=dfrac{4cdot 3^{n+1}}{4cdot 3^n}=3
$$
We check if the sequence $h(n)$ is arithmetic or geometric:
Step 5
5 of 11
$h(1)=4cdot 3^1=12$

$$
q=3
$$

The sequence $h(n)$ is geometric:
Step 6
6 of 11
$q(n+1)-q(n)=(n+1)^2-6(n+1)+17-n^2+6n-17$

$=n^2+2n+1-6n-6+17-n^2+6n-17$

$=2n+1$

$dfrac{q(n+1)}{q(n)}=dfrac{(n+1)^2-6(n+1)+17}{n^2-6n+17}$

$q(n)=(n^2+6n+9)+8=(n+3)^2+8$

$$
q(1)=(1+3)^2+9=16+9=25
$$

We check if the sequence $q(n)$ is arithmetic or geometric:
Step 7
7 of 11
The sequence $q(n)$ is neither arithmetic, nor geometric.
Step 8
8 of 11
$$
43, 36, 29, 22, 15, 8….
$$
b) The first sequence is decreasing, while the second is increasing. The last sequence in decreasing for $nin {1, 2, 3}$ and increasing for $n>3$. We write the first terms of $t(n)$:
Step 9
9 of 11
This means the sequence $t(n)$ has no term in common with the other two,therefore there is no common term for the three sequences..
Step 10
10 of 11
$n=1$

$h(1)=12; h(2)=36; h(3)=108$

$q(1)=12$

$q(2)=9$

$q(3)=8$

$q(4)=9$

$$
q(5)=72
$$

c) The exponential grows faster than the quadratic from some point further. The only possibility that the two sequences share a term is among the small values of $n$:
Step 11
11 of 11
$$
h(1)=t(1)=12
$$
The only intersection is:
Exercise 24
Solution 1
Solution 2
Step 1
1 of 9
$$
2^{x-1}=64
$$
a) We are given the equation:
Step 2
2 of 9
$2^{x-1}=2^6$

$x-1=6$

$x=1+6$

$$
x=7
$$

We solve the equation:
Step 3
3 of 9
$$
9^3=17^{2x-1}
$$
b) We are given the equation:
Step 4
4 of 9
$(3^2)^3=(3^3)^{2x-1}$

$3^{2cdot 3}=3^{3(2x-1)}$

$3^6=3^{6x-3}$

$6=6x-3$

$6x=6+3$

$6x=9$

$x=dfrac{9}{6}$

$$
x=dfrac{3}{2}
$$

We solve the equation:
Step 5
5 of 9
$x^6=29$
c) We are given the equation:
Step 6
6 of 9
$x=sqrt[6]{29}approx 1.75$
We solve the equation:
Step 7
7 of 9
$6^x=29$

$ln 6^x=ln 29$

$xln 6=ln 29$

$x=dfrac{ln 29}{ln 6}$

$$
xapprox 1.88
$$

d) We are given the equation:
Step 8
8 of 9
We solve the equation:
Result
9 of 9
a) $x=7$

b) $x=dfrac{3}{2}$

c) $xapprox 1.75$
d) $xapprox 1.88$

Step 1
1 of 5
The solution of the equation:

a)

$$
2^{(x-1)} = 64
$$

We can use the $ln$ function

$$
ln 2^{(x-1)} = ln 64
$$

According to the formula

$$
color{#c34632}{ln a^b = b ln a}
$$

we obtain

$$
begin{align*}
(x-1) ln 2 &= ln 64\
x-1 &= frac {ln 64}{ln 2}\
x-1 &= frac {4.158}{0.693}\
x-1 &= 6\
x &= 7
end{align*}
$$

The solution of equation is

$$
x=7
$$

Step 2
2 of 5
b)

$$
9^3 = 27^{2x-1}
$$

Since

$$
9=3^2
$$

and

$$
27=3^3
$$

we obtain

$$
begin{align*}
3^{2 cdot 3} &= 3^{3(2x-1)}\
3^6 &= 3^{6x-3}
end{align*}
$$

According to the formula

$$
color{#c34632}{a^b=a^c}
$$

$$
color{#c34632}{b=c}
$$

we obtain

$$
begin{align*}
6 &= 6x-3\
6x &= 9\
x &= frac 96\
x &= frac 32
end{align*}
$$

The solution of equation is

$$
x = frac 32
$$

Step 3
3 of 5
c)

$$
begin{align*}
x^6 &= 29\
x &= sqrt[6]{29}\
x &= 1.75
end{align*}
$$

The solution of equation is

$$
x = 1.75
$$

Step 4
4 of 5
d)

$$
6^x = 29
$$

We can use the $ln$ function

$$
ln 6^x = ln 29
$$

According to the formula

$$
color{#c34632}{ ln a^b = b ln a}
$$

we obtain

$$
begin{align*}
x ln 6 &= ln 29\
x &= frac {ln 29}{ln 6}\
x &= frac {3.367}{1.791}\
x &= 1.88
end{align*}
$$

The solution of equation is

$$
x= 1.88
$$

Result
5 of 5
a) $x=7$

b) $x = frac 32$

c) $x = 1.75$

d) $x= 1.88$

Exercise 25
Step 1
1 of 3
a) In order to calculate $x$, we can use the sine function

$$
sin theta = frac ax
$$

where $a= frac 12$ and $theta = 30^{text{textdegree}}$. Then

$$
begin{align*}
sin 30^{text{textdegree}} &= frac {frac 12}{x}\
frac 12 &= frac {1}{2x}\
x cdot frac 12 &= frac 12\
x &= 1
end{align*}
$$

Step 2
2 of 3
b) In order to calculate $x$, we can use the cosine function

$$
cos theta = frac xa
$$

where $a=1$ and $theta = 45^{text{textdegree}}$. Then

$$
begin{align*}
cos 45^{text{textdegree}} &= frac x1\
frac {sqrt 2}{2} &= x
end{align*}
$$

Result
3 of 3
a) $x=1$

b) $frac {sqrt 2}{2} = x$

Exercise 26
Step 1
1 of 6
Considering the circular rugs have 5 feet diameter, it means on a horizontal side of the floor she needs $dfrac{20}{5}=8$ rugs, while on the other side she would need $dfrac{20}{5}=4$ rugs, which gives a total of $5cdot 4=20$ rugs.
Step 2
2 of 6
$A_{rugs}=20cdotpicdot left(dfrac{5}{2}right)^2approx392.7$ square feet
We determine the area of the 20 rugs:
Step 3
3 of 6
$A_{floor}=25cdot 20=500$ square feet
We determine the area of the floor:
Step 4
4 of 6
$$
dfrac{A_{rugs}}{A_{floor}}=dfrac{392.7}{500}=0.7854=78.54%
$$
We determine the percentage of the floor covered by rugs:
Step 5
5 of 6
Since $78.54<80$, she shouldn't buy the rugs as they don't cover $980%$ from the floor.
Result
6 of 6
She shouldn’t buy the rugs
Exercise 27
Step 1
1 of 3
Exercise scan
a) We are given:
Step 2
2 of 3
Exercise scan
b) There are another 3 seats from which the distance to the ground in the same: $C, D,E$:
Step 3
3 of 3
$AOD=180text{textdegree}-theta$

$AOB=180text{textdegree}+theta$

$AOE=360text{textdegree}-theta$.

c) $triangle OCNcongtriangle ODMcongtriangle OBMcongtriangle QEN$.

Let’s suppose we are given

$theta=AOC$.

We express the angles $AOD, AOB, AOE$ in terms of $theta$:

Exercise 28
Step 1
1 of 13
$$
sin 130text{textdegree}approx 0.77
$$
a) We can determine the height of a seat on Screamer using the sine function:
Step 2
2 of 13
This means the height of the chair rotated by $130text{textdegree}$ is 77 feet.
Step 3
3 of 13
Exercise scan
b) There is another seat at the same height:

$$
180text{textdegree}-130text{textdegree}=50text{textdegree}
$$

Step 4
4 of 13
Exercise scan
c) We can use the graph to determine angles for which the $y$-coordinates are the same: we plot the point corresponding to $x=130text{textdegree}$, then we draw a parallel to the $x$-axis. The point(s) in which the line intersects the graph give us the solution(s):
Step 5
5 of 13
$$
theta=80text{textdegree}
$$
d)i) We are given:
Step 6
6 of 13
$sintheta=sin 80text{textdegree}approx 0.98=100text{textdegree}$
We have:
Step 7
7 of 13
Exercise scan
We draw the two angles on the unit circle:
Step 8
8 of 13
$$
theta=200text{textdegree}
$$
ii) We are given:
Step 9
9 of 13
$$
sintheta=sin 200text{textdegree}approx -0.34=sin 340text{textdegree}
$$
We have:
Step 10
10 of 13
Exercise scan
We draw the two angles on the unit circle:
Step 11
11 of 13
$$
theta=310text{textdegree}
$$
iii) We are given:
Step 12
12 of 13
$$
sintheta=sin 310text{textdegree}approx -0.77=sin 230text{textdegree}
$$
We have:
Step 13
13 of 13
Exercise scan
We draw the two angles on the unit circle:
Exercise 29
Step 1
1 of 6
We can actually define $sin x$ and graph the function $y=sin x$ by using the unit circle.
Step 2
2 of 6
The point $P_x$ of the unit circle. It lies on the line that closes an angle that measures $x^{circ}$ with the $x$-axis.
Step 3
3 of 6
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/7cc95f66-0b33-44e5-ac78-756a623eb9a4-1632830936407418.png)
Step 4
4 of 6
The $y$-coordinate of the point $P_x$ (the height from the $x$-axis to the unit circle when the angle is $x^{circ}$) is actually $sin x$.
Step 5
5 of 6
By finding the heights (distances from the unit circle) we find the values of the function $sin x$ for various measures $x^{circ}$.
Step 6
6 of 6
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/1a097903-403b-4c1a-8d0d-39a0f94c7d70-1632831535757980.png)
Exercise 30
Step 1
1 of 5
Exercise scan
We sketch the first two cycles of $y=sin(theta)$.
Step 2
2 of 5
Exercise scan
a) We label the position of the passenger initially:
Step 3
3 of 5
Exercise scan
b) We label the position of the passenger when he reaches the bottom of the water pit:
Step 4
4 of 5
Exercise scan
c) We label the position of the passenger when he is halfway between the highest point and the ground level:
Result
5 of 5
See graphs
Exercise 31
Step 1
1 of 3
Exercise scan
We are given:
Step 2
2 of 3
Exercise scan
We draw a unit circle and mark each of the point $A, B, C$ on it:
Step 3
3 of 3
In $A$ the rider has just passed the highest point, in $B$ the rider has just starting the descent from the ground level to the water pit,while in $C$ the rider got back to the initial point on the ground.
Exercise 32
Step 1
1 of 2
Given equations :
$$y = log_2(x-1)rightarrow(1)$$
$$y = x^3 – 4xrightarrow(2)$$
Intersecting point : $(2, 0)$ and $(1.1187, -3.075)$.
Step 2
2 of 2
Putting, x = 2 in $log_2(x-1) = x^3 – 4x$.
$$begin{aligned}
log_2(2-1)&= (2)^3 – 4(2)\
log_2(1)&= 8 – 8\
log_2(1)&= 0 \
0 = 0\

end{aligned}$$

Exercise 33
Step 1
1 of 3
a) The expression

$$
begin{align*}
x^5 + 8x^2 y^3 &= x^2 ( x^3 + 8y^3)\
&= x^2 [ x^3 + (2y)^3]
end{align*}
$$

According to the formula

$$
begin{align*}
color{#c34632}{a^3 + b^3 = (a+b)(a^2 – 2ab + b^2)} tag {*}
end{align*}
$$

we obtain

$$
x^5 + 8x^2 y^3 = x^2 (x+2y)(x^2 – 2xy +4y^2)
$$

Step 2
2 of 3
b) The expression

$$
8y^6 – 125x^3 = (2y^2)^3 – (5x)^3
$$

According to the $(*)$ we have

$$
8y^6 – 125^3 = (2y^2 + 5x)(4y^4 – 10xy^2 + 25x^2)
$$

Result
3 of 3
a) $x^5 + 8x^2 y^3 = x^2 (x+2y)(x^2 – 2xy +4y^2)$

b) $8y^6 – 125^3 = (2y^2 + 5x)(4y^4 – 10xy^2 + 25x^2)$

Exercise 34
Step 1
1 of 2
In this exercise we can use the following formula

$$
color{#c34632}{c^2 = a^2 + b^2 – 2ab cos theta}
$$

where

$$
begin{align*}
a &= 620 text{ m }\
b &= 455 text{ m }\
theta &= 150^{text{textdegree}}
end{align*}
$$

Then we have

$$
begin{align*}
c^2 &= 620^2 + 455^2 – 2 cdot 620 cdot 450 cos 150^{text{textdegree}}\
c^2 &= 384400 + 207025 – 564200 cdot (-0.86)\
c^2 &= 591425 + 485 212\
c^2 &= 1076637\
c &= sqrt {1076637}\
c &= 1037.61
end{align*}
$$

The lake is $1037.61$ meters long.

Yee Ping can’t swim the lake.

Result
2 of 2
$$
c = 1037.61
$$
Exercise 35
Step 1
1 of 4
Let

$$
begin{align*}
a &= 2 +3 i\
b &= 1- i
end{align*}
$$

a) We will add $a$ and $b$

$$
begin{align*}
a+b &= (2+ 3 i) + (1- i)\
&= 2 + 3 i + 1 – i\
&= 3 + i (3 -1)\
&= 3 + 2 i
end{align*}
$$

Step 2
2 of 4
b) We subtract $a$ and $b$

$$
begin{align*}
a-b &= (2+ 3 i) – (1- i)\
&= 2 +3 i – 1 + i\
&= 1 + i (3+1)\
&= 1 + 4 i
end{align*}
$$

Step 3
3 of 4
c) We will multiply $a$ and $b$

$$
begin{align*}
a cdot b &= (2+3 i) (1- i)\
&= 2 – 2 i + 3 i – 3 i^2\
&= 2 + i – 3 i^2
end{align*}
$$

Since

$$
i^2 = -1
$$

we obtain

$$
begin{align*}
a cdot b &= 2 + i – 3 cdot (-1)\
&= 2 + i + 3\
&= 5 + i
end{align*}
$$

Result
4 of 4
a) $a+b = 3 + 2 i$

b) $a-b = 1 + 4_i$

c) $a cdot b = 5 + i$

Exercise 36
Step 1
1 of 5
Exercise scan
a) The smallest cube would be one having the sides equal to the ball’s diameter:
Step 2
2 of 5
$V=(2r)^3=(2cdot 2)^3=64$ cubic feet
We determine the volume of the box:
Step 3
3 of 5
$V=(2r)^3$

$13=8r^3$

$r^3=dfrac{13}{8}$

$r=sqrt[3]{dfrac{13}{8}}approx 1.176$ feet

b) We determine the radius of the pinatas which can fit in the Lucky 13 box:
Step 4
4 of 5
$v=(2r)^3$

$v=8r^3$

$$
r=dfrac{sqrt[3]{v}}{2}
$$

c) We determine the radius of the largest spherical pinata that a box with volume $v$ can hold:
Result
5 of 5
a) 4 ft, 4ft, 4ft, 64 cubic feet

b) 1.176 ft

c) $r=dfrac{sqrt[3]{v}}{2}$

Exercise 37
Step 1
1 of 6
Exercise scan
We are given:
Step 2
2 of 6
$x=OR$

$$
y=PR
$$

We draw $PRperp Ox$.

The coordinates $(x,y)$ of the point $P$ are:

Step 3
3 of 6
$cos 34text{textdegree}=dfrac{OR}{OP}$

$OR=OPcos 34text{textdegree}$

$OR=1cdot cos 34text{textdegree}$

$$
textcolor{#4257b2}{OR=cos 34text{textdegree}}
$$

We use the cosine function in $triangle OPR$:
Step 4
4 of 6
$sin 34text{textdegree}=dfrac{PR}{OP}$

$PR=OPsin 34text{textdegree}$

$PR=1cdot sin 34text{textdegree}$

$$
textcolor{#4257b2}{PR=sin 34text{textdegree}}
$$

We use the sine function in $triangle OPR$:
Step 5
5 of 6
$$
P(cos 34text{textdegree},sin 34text{textdegree})
$$
The coordinates of the point $P$ are:
Result
6 of 6
$$
P(cos 34text{textdegree},sin 34text{textdegree})
$$
Exercise 38
Step 1
1 of 6
Exercise scan
We are given:
Step 2
2 of 6
$x=OR$

$$
y=QR
$$

We draw $QRperp Ox$.

The coordinates $(x,y)$ of the point $Q$ are:

Step 3
3 of 6
$cos thetatext{textdegree}=dfrac{OR}{OQ}$

$OR=OQcos theta$

$OR=1cdot cos theta$

$$
textcolor{#4257b2}{OR=cos theta}
$$

We use the cosine function in $triangle OQR$:
Step 4
4 of 6
$sin theta=dfrac{QR}{OQ}$

$QR=OPsin theta$

$QR=1cdot sin theta$

$$
textcolor{#4257b2}{QR=sin theta}
$$

We use the sine function in $triangle OQR$:
Step 5
5 of 6
$$
Q(cos theta,sin theta)
$$
The coordinates of the point $Q$ are:
Result
6 of 6
$$
Q(cos theta,sin theta)
$$
Exercise 39
Step 1
1 of 2
If there is a point $B$ on a circle whereas the segment connecting $B$ with the origin is making an angle $theta$ with the x-axis,

Then $sin theta$ tells us the ratio between y-coordinate of $B$ and the radios of the circle.

$cos theta$ tells us the ratio between x-coordinate of $B$ and the radios of the circle

Exercise scan
Result
2 of 2
$sin theta$ tells us the ratio between y-coordinate of $B$ and the radios of the circle.

$cos theta$ tells us the ratio between x-coordinate of $B$ and the radios of the circle

Exercise 40
Step 1
1 of 2
If we know the sine of an angle in a unit circle, we can find its cosine.

The opposite graph is a unit circle with the point $B$ on the circle.

Since $sin theta$ is the y-coordinate of $B$

$cos theta$ is the x-coordinate of $B$

$1^2=x^2+y^2$          (Pythagorean theorem)

$x=sqrt {1^2-y^2}$

$cos theta=sqrt {1^2-y^2}$

$cos theta=sqrt {1^2-(sin theta)^2}$

Exercise scan
Result
2 of 2
$cos theta=sqrt {1^2-(sin theta)^2}$
Exercise 41
Step 1
1 of 4
a-

Since, $cos theta=$ x-coordinate

Then x-coordinate of the point on the unit circle is $dfrac {3}{4}$

$1^2=x^2+y^2$          (Pythagorean theorem)

$y=sqrt {1-x^2}$

$y=sqrt {1-dfrac {9}{16}}=sqrt {dfrac {7}{16}}$

$y=dfrac {sqrt 7}{4}$

The exact coordinates of point $Q$ are $(dfrac {3}{4}, qquad dfrac {sqrt 7}{4})$

Step 2
2 of 4
b-

$sin theta=$ y-coordinate of the point $Q$

$$
sin theta=dfrac {sqrt 7}{4}
$$

Step 3
3 of 4
c-

Since $(x, y)$ are the coordinates of the point $Q$ on the unit circle, then:

$1^2=x^2+y^2$          (Pythagorean theorem)

$sin theta=y$

$cos theta=x$

So,

$$
1^2=(sin theta)^2+(cos theta)^2
$$

Result
4 of 4
a-          The exact coordinates of point $Q$ are $(dfrac {3}{4}, qquad dfrac {sqrt 7}{4})$

b-          $sin theta=dfrac {sqrt 7}{4}$

c-          $1^2=(sin theta)^2+(cos theta)^2$

Exercise 42
Step 1
1 of 6
The idea is that the length of the base of a triangle is the value of $cos x$, where $x$ is the angle of a triangle next to the base.
Step 2
2 of 6
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/ad9e7b74-5522-4a0a-aab5-85aa78eb8849-1632835269923003.png)
Step 3
3 of 6
Let us draw $20$ triangles in a unit circle and plot the points with the angles as $x$-coordinates and the lengths of the bases of the triangles as the $y$-coordinates.
Step 4
4 of 6
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/23aa60e4-839f-4351-b2d5-a683bcdf6f9a-1632835298327842.png)
Step 5
5 of 6
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/2474893f-9b47-473e-b411-ec978882f31c-1632835713067509.png)
Step 6
6 of 6
The graphs of $sin x$ and $cos x$ are of the same shape, but the graph of $cos x$ is shifted $dfrac{pi}{2}$ to the right (or left, it does not matter since they are periodic).
Exercise 43
Step 1
1 of 4
Exercise scan
We are given:
Step 2
2 of 4
$cos AOB=dfrac{OB}{OA}=dfrac{27}{100}=0.27$

$cos^{-1} 0.27approx 74.3text{textdegree}$

$$
AOB=74.3text{textdegree}
$$

There are 4 possibilities: $A, C, E, F$. First we determine the angle $AOB$, using cosine:
Step 3
3 of 4
$COB=180text{textdegree}-74.3text{textdegree}=105.7text{textdegree}$

$EOB=180text{textdegree}+74.3text{textdegree}=254.3text{textdegree}$

$$
FOB=360text{textdegree}-74.3text{textdegree}=285.7text{textdegree}
$$

Then we determine all the 3 angles in the other quadrants which have the same reference angle of $58text{textdegree}$:
Result
4 of 4
$$
74.3text{textdegree}; 105.7text{textdegree}; 254.3text{textdegree}; 285.7text{textdegree}
$$
Exercise 44
Step 1
1 of 4
a-

The following is the graph of the function $y=cos(theta)$

From the graph:

$cos (130text{textdegree})=-0.6428$

Exercise scan

Step 2
2 of 4
b-

From the graph, the other angel that has the same base is $230$$text{textdegree}$

Step 3
3 of 4
c-

We can use the symmetry of the cosine-calculator graph to calculate the angle location by drawing the line $x=180$ and reflect the point $(130, -0.6428)$ about it to get the corresponding point as in the graph below.

Exercise scan

Result
4 of 4
a-          $cos (130text{textdegree})=-0.6428$

b-          The other angel that has the same base is $230$$text{textdegree}$

Exercise 45
Step 1
1 of 3
The point $P$ has an angle of $50$$text{textdegree}$

$sin 50=0.766$

$cos 50=0.6428$

The coordinates of $P$ are:          $(0.6428, qquad 0.766)$

Step 2
2 of 3
The point $Q$ has an angle of $110$$text{textdegree}$

$sin 110=0.9397$

$cos 110=-0.342$

The coordinates of $Q$ are:          $(-0.342, qquad 0.9397)$

Result
3 of 3
The coordinates of $P$ are:          $(0.6428, qquad 0.766)$

The coordinates of $Q$ are:          $(-0.342, qquad 0.9397)$

Exercise 46
Step 1
1 of 4
a-

$mangle ROS=60$$text{textdegree}$          (Given)

$overline {OR}$ rotation angle $=360-60=300$$text{textdegree}$

Step 2
2 of 4
b-

$cos {SOR}=dfrac {overline {OS}}{overline {OR}}=dfrac {overline {OS}}{1}=overline {OS}$

$cos 60=0.5$

$overline {OS}=0.5$ units

$sin {SOR}=dfrac {overline {SR}}{overline {OR}}=dfrac {overline {SR}}{1}=overline {SR}$

$sin 60=0.866$

$overline {SR}=0.866$ units

Step 3
3 of 4
c-

The exact coordinates of point $R$ are:          $(0.5, qquad -0.866)$

Result
4 of 4
a-          $overline {OR}$ rotation angle $=360-60=300$$text{textdegree}$

b-          $overline {OS}=0.5$ units          $overline {SR}=0.866$ units

c-          The exact coordinates of point $R$ are:          $(0.5, qquad -0.866)$

Exercise 47
Step 1
1 of 2
$sin theta=dfrac {1}{4}$          (Given)

$(sin theta)^2+(cos theta)^2=1$          (Pythagorean Identity)

$(cos theta)^2=1-left(dfrac {1}{4} right)^2$

$(cos theta)^2=dfrac {16}{16}-dfrac {1}{16}$

$(cos theta)^2=dfrac {15}{16}$

$cos theta=pm dfrac {sqrt {15}}{4}$

The exact coordinates of a point on the unit circle than has $sin theta=dfrac {1}{4}$ are:

$left(dfrac {sqrt {15}}{4}, qquad dfrac {1}{4} right)$

Result
2 of 2
$$
left(dfrac {sqrt {15}}{4}, qquad dfrac {1}{4} right)
$$
Exercise 48
Solution 1
Solution 2
Step 1
1 of 6
$P=1000$

$r=0.06$

$A=4000$

$$
n=12
$$

We are given:
Step 2
2 of 6
$4000=1000left(1+dfrac{0.06}{12}right)^{12t}$
In order to determine the number of years $t$ until the account is worth $4000$ we use the formula:

$A=Pleft(1+dfrac{r}{n}right)^{nt}$.

Step 3
3 of 6
$dfrac{4000}{1000}=left(1+dfrac{0.06}{12}right)^{12t}$

$4=left(1+dfrac{0.06}{12}right)^{12t}$

$$
4=(1.005)^{12t}
$$

We divide both sides by 1000:
Step 4
4 of 6
$ln 4=ln left(1.005right)^{12t}$

$ln 4=12tln 1.005$

We apply logarithm:
Step 5
5 of 6
$t=dfrac{ln 4}{12ln 1.005}$

$$
tapprox 23.16
$$

We divide both sides by $12ln 1.005$:
Result
6 of 6
$tapprox 23.16$ years
Step 1
1 of 2
According to the formula

$$
color{#c34632}{FV = P left( 1 + frac rn right)^{nt}}
$$

where

$$
begin{align*}
FV &= text{ future value of the deposit} = 4000\
P &= text{amount of money deposited} = 1000\
r &= text{annual interest rate} = 6 % = 0.06\
n &= text{number of times compounded per year} = 12\
t &= text{time in years}
end{align*}
$$

we obtain

$$
begin{align*}
4000 &= 1000 left( 1 + frac {0.06}{12} right)^{12 cdot t}\
4 &= (1 + 0.005 )^{12 cdot t}\
4 &= 1.005^{12t}
end{align*}
$$

We can use the $ln$ function

$$
color{#c34632}{ ln a^b = b ln a}
$$

we have

$$
begin{align*}
ln 4 &= 12t cdot ln 1.005\
12t &= frac {ln 4}{ln 1.005}\
12t &= frac {1.386}{0.005}\
12t &= 277.25\
t &= 23.1
end{align*}
$$

It takes $23.1$ years to account worth $$ 4000$.

Result
2 of 2
$23.1$ years to account worth $$ 4000$
Exercise 49
Step 1
1 of 2
a. The possible factors are of the form $(x-a)$ and $(x+a)$ with $a$ divisors of the constant term of the polynomial:

$$
(x-1),(x+1),(x-7),(x+7)
$$

b.
$$
polylongdiv{x^4-6x^3-6x^2+6x-7}{x+1}
$$

Since the remainder is nonzero, $(x+1)$ is not a factor.

$$
polylongdiv{x^4-6x^3-6x^2+6x-7}{x-1}
$$

Since the remainder is nonzero, $(x-1)$ is not a factor.

Result
2 of 2
a. $(x-1),(x+1),(x-7),(x+7)$

b. Neither are factors

Exercise 50
Solution 1
Solution 2
Step 1
1 of 4
Let

$$
begin{align*}
f(x) &= 2x^2 + 5x -3\
g(x) &= x^2 + 4x +3
end{align*}
$$

a) Therefore

$$
begin{align*}
f(x) &= g(x)\
2x^2 + 5x – 3 &= x^2 + 4x +3\
2x^2 + 5x -3 -x^2 -4x -3 &= 0\
x^2 + x -6 &=0
end{align*}
$$

The solutions of a square equation $ax^2 + bx + c =0$ are shape

$$
x= frac {-b pm sqrt {b^2 – 4ac}}{2a}
$$

Now we have

$$
begin{align*}
x &= frac {-1 pm sqrt {1+24}}{2}\
x &= frac {-1 pm sqrt {25}}{2}\
x &= frac {-1 pm 5}{2}\
x &= – 3 qquad x=2
end{align*}
$$

If $x=-3$ we get

$$
y=0
$$

Then

$$
(x,y) = (-3,0)
$$

If $x=2$ we get

$$
y=15
$$

Then

$$
(x,y)=(2,15)
$$

Step 2
2 of 4
$$
begin{align*}
f(x) &= 2x^2 + 5x -3- text{ blue}\
g(x) &= x^2 + 4x +3-text{ green}\
h(x) &=x^2+x-6-text{ red}
end{align*}
$$

Exercise scan

Step 3
3 of 4
b) Therefore

$$
begin{align*}
f(x) &> g(x)\
2x^2 + 5x – 3 &> x^2 + 4x + 3\
2x^2 + 5x – 3 &- x^2 – 4x – 3 > 0\
x^2 + x – 6 &> 0\
x2
end{align*}
$$

Exercise scan

Result
4 of 4
a) $(x,y)=(2,15)$

$(x,y) = (-3,0)$

b) $x2$

Step 1
1 of 5
$f(x)=2x^2+5x-3$

$g(x)=x^2+4x+3$

Exercise scan

We are given the functions:
Step 2
2 of 5
$(-3,0)$

$$
(2,15)
$$

a) The two functions intersect in two points:
Step 3
3 of 5
$x=-3$

$2(-3)^2+5(-3)-3stackrel{?}{=}(-3)^2+4(-3)+3$

$18-15-3stackrel{?}{=}9-12+3$

$0=0checkmark$

$x=2$

$2(2)^2+5(2)-3stackrel{?}{=}(2)^2+4(2)+3$

$8+10-3stackrel{?}{=}4+8+3$

$15=15checkmark$

We check the answer:
Step 4
4 of 5
$$
(-infty,-3)cup(2,infty)
$$
b) We determine the values of $x$ fr which $f(x)>g(x)$ by noticing when the graph of $f$ is above the graph of $g$:
Result
5 of 5
a) $(-3,0), (2,15)$

b) $(-infty,-3)cup(2,infty)$

Exercise 51
Solution 1
Solution 2
Step 1
1 of 15
$$
7=4.2^x
$$
a) We are given the equation:
Step 2
2 of 15
$ln 7=ln 4.2^x$

$$
ln 7=xln 4.2
$$

We apply logarithm:
Step 3
3 of 15
$x=dfrac{ln 7}{ln 4.2}$

$$
xapprox 1.356
$$

We divide by $ln 4.2$:
Step 4
4 of 15
$7stackrel{?}{=}4.2^{1.356}$

$7stackrel{?}{=}7.0004513$

$$
7approx7checkmark
$$

We check the answer:
Step 5
5 of 15
$$
3x^5=126
$$
b) We are given the equation:
Step 6
6 of 15
$x^5=dfrac{126}{3}$

$x^5=42$

We divide by 3:
Step 7
7 of 15
$x=sqrt[5]{42}$

$$
xapprox 2.112
$$

We have:
Step 8
8 of 15
$3(2.112)^5stackrel{?}{=}126$

$3(42.0213)stackrel{?}{=}126$

$$
126approx 126checkmark
$$

We check the result:
Step 9
9 of 15
$$
14=2cdot 4^x-10
$$
c) We are given the equation:
Step 10
10 of 15
$14+10=2cdot 4^x$

$24=2cdot 4^x$

We add 10 to both sides:
Step 11
11 of 15
$$
12=4^x
$$
We divide by 2:
Step 12
12 of 15
$ln 12=ln 4^x$

$$
ln 12=xln 4
$$

We apply logarithm:
Step 13
13 of 15
$x=dfrac{ln 12}{ln 4}$

$$
xapprox 1.792
$$

We divide by $ln 4$:
Step 14
14 of 15
$14stackrel{?}{=}2cdot 4^{1.792}-10$

$14stackrel{?}{=}2cdot 12-10$

$$
14=14checkmark
$$

We check the result:
Result
15 of 15
a) $xapprox 1.356$

b) $xapprox 2.112$

c) $xapprox 1.792$

Step 1
1 of 4
a) The solution of equation:

$$
7= 4,2^x
$$

We can use the $ln$ function

$$
ln 7 = ln 4,2^x
$$

Using the formula

$$
begin{align*}
color{#c34632}{ ln a^b = b ln a} tag{$*$}
end{align*}
$$

Now we have

$$
begin{align*}
ln 7 &= x ln 4,2\
x &= frac {ln 7}{ln 4,2}\
x &= frac {1.945}{1.435}\
x &= 1.355
end{align*}
$$

The solution of equation is:

$$
x = 1.355
$$

Step 2
2 of 4
b) The solution of equation:

$$
begin{align*}
3x^5 &= 126\
x^5 &= 42\
x &= sqrt[5]{42}\
x &= 2.112
end{align*}
$$

The solution of equation is

$$
x = 2.112
$$

Step 3
3 of 4
c) The solution of equation:

$$
begin{align*}
14 &= 2 cdot 4^x – 10\
2 cdot 4^x &= 24\
4^x &= 12
end{align*}
$$

We can use the $ln$ function

$$
ln 4^x = ln 12
$$

Using the formula $(*)$ we have

$$
begin{align*}
x ln 4 &= ln 12\
x &= frac {ln 12}{ ln 4}\
x &= frac {2.485}{1.386}\
x &= 1.793
end{align*}
$$

The solution of equation is

$$
x = 1.793
$$

Result
4 of 4
a) $x = 1.355$

b) $x = 2.112$

c) $x = 1.793$

Exercise 52
Step 1
1 of 4
Exercise scan
We are given:
Step 2
2 of 4
$cos AOB=dfrac{OB}{OA}=dfrac{53}{100}=0.53$

$cos^{-1} 0.53approx 58text{textdegree}$

$$
AOB=58text{textdegree}
$$

There are 4 possibilities: $A, C, E, F$. First we determine the angle $AOB$, using cosine:
Step 3
3 of 4
$COB=180text{textdegree}-58text{textdegree}=122text{textdegree}$

$EOB=180text{textdegree}+58text{textdegree}=238text{textdegree}$

$$
FOB=360text{textdegree}-58text{textdegree}=302text{textdegree}
$$

Then we determine all the 3 angles in the other quadrants which have the same reference angle of $58text{textdegree}$:
Result
4 of 4
$$
58text{textdegree}; 122text{textdegree}; 238text{textdegree}; 302text{textdegree}
$$
Exercise 53
Step 1
1 of 6
Exercise scan
a) We sketch an angle with positive cosine and negative sine: it lies in Quadrant IV:
Step 2
2 of 6
Exercise scan
b) An angle with sine -1 is $270text{textdegree}$:
Step 3
3 of 6
Exercise scan
c) We sketch an angle with negative cosine and negative sine: it lies in Quadrant III:
Step 4
4 of 6
Exercise scan
d) ) We sketch an angle with $cos thetaapprox -0.9,sinthetaapprox 0.4$: it lies in Quadrant II:
Step 5
5 of 6
$BM^2+OM^2stackrel{?}{=}OB^2$

$sin^2theta+cos^2thetastackrel{?}{=}1$

$0.9^2+0.8^2stackrel{?}{=}1$

$$
1.45not=1
$$

Exercise scan

e) We check if we can have:

$sintheta=0.9$

$costheta=0.8$.

Step 6
6 of 6
This means there is no angle to fit the given conditions.
Exercise 54
Step 1
1 of 4
$theta=70text{textdegree}$

Exercise scan

We are given the angle:
Step 2
2 of 4
$R(x,y)$

$sin theta=dfrac{y}{OR}$

$y=ORsintheta=1cdotsin 70text{textdegree}approx 0.9397$

$cos theta=dfrac{x}{OR}$

$x=ORcostheta=1cdotcos 70text{textdegree}approx 0.3420$

$$
R(0.3420,0.9397)
$$

a) We approximate the coordinates of the angle $theta$ using sine and cosine:
Step 3
3 of 4
$$
R(cos 70text{textdegree},sin 70text{textdegree})
$$
b) The exact coordinates of the point $R$ are:
Step 4
4 of 4
$$
sin^2theta+cos^2theta=0.9397^2+0.3420^2approx 1checkmark
$$
c) We check that the Pythagorean Identity works for the angle $theta$:
Exercise 55
Step 1
1 of 4
$y=sintheta$

$y=costheta$

Exercise scan

We are given the functions:
Step 2
2 of 4
$sin 0text{textdegree}=0$

$$
cos 0text{textdegree}=1
$$

Both functions have period $2pi$, thus we cannot use this attribute to label the functions.

We know:

Step 3
3 of 4
Function A: $y=sin theta$

Function B: $y=cos theta$

The function which passes through $(0,0)$ is the sine function, while the function which passes through $(0,1)$ is the cosine function.

So we have:

Result
4 of 4
A: $y=sin theta$

B: $y=cos theta$

Exercise 56
Step 1
1 of 6
$$
begin{cases}
y=cos x\
y=-1
end{cases}
$$
We are given the system of equations:
Step 2
2 of 6
We can solve this system either by substitution, or by graphing.
Step 3
3 of 6
$cos x=-1$
When using substitution we get the equation:
Step 4
4 of 6
Exercise scan
When using graphing, we get:
Step 5
5 of 6
$x=-3pi$

$x=-pi$

$x=pi$

$x=3pi$

$$
x=5pi
$$

b) We list 5 solutions:
Step 6
6 of 6
$x=(2n+1)pi, n$ integer
c) We can write all solutions using a sequence:
Exercise 57
Step 1
1 of 2
We note on the graph that $x=-2$ is a double root and $x=2$ is a single root, thus the function is then of the form:

$$
y=a(x+2)^2(x-2)
$$

We also note that if $x=0$, then we need $y=2$:

$$
2=y=a(2)^2(-2)=-8a
$$

Divide both sides of the equation by $-8$:

$$
-dfrac{1}{4}=a
$$

Thus we then obtain the equation:

$$
y=-dfrac{1}{4}(x+2)^2(x-2)
$$

Result
2 of 2
$$
y=-dfrac{1}{4}(x+2)^2(x-2)
$$
Exercise 58
Step 1
1 of 6
$$
f(x)=dfrac{sqrt{x+4}}{2}-1
$$
We are given the function:
Step 2
2 of 6
Exercise scan
a) In order to graph $f(x)$ we start with the parent function $f_0(x)=sqrt x$. We shift $f_0$ 4 units to the left to get $f_1(x)=sqrt{x+4}$, then we vertically shrink $f_1$ by a factor of $dfrac{1}{2}$ to get $f_2(x)=dfrac{sqrt{x+4}}{2}$ and finally we shift $f_2$ 1 unit down to get $f(x)$:
Step 3
3 of 6
Exercise scan
We graph the inverse by reflecting $f(x)$ across the line $y=x$:
Step 4
4 of 6
$y=dfrac{sqrt{x+4}}{2}-1$

$x=dfrac{sqrt{y+4}}{2}-1$

$x+1=dfrac{sqrt{y+4}}{2}$

$2(x+1)=sqrt{y+4}$

$[2(x+1)]^2=(sqrt{y+4})^2$

$4(x+1)^2=y+4$

$4x^2+8x+4-4=y$

$y=4x^2+8x$

$f^{-1}(x)=4x^2+8x$

b) We determine the equation of the inverse:
Step 5
5 of 6
$$
[-1,infty)
$$
The domain of the inverse is:
Step 6
6 of 6
$$
[-4,infty)
$$
The range of the inverse is:
Exercise 59
Step 1
1 of 1
The word “radian” comes from radius: it is the measure of a central angle subtending an arc equal in length to the radius.

A radian equals to $dfrac{360text{textdegree}}{2pi}approx 57.2958text{textdegree}$.

Exercise 60
Step 1
1 of 5
The radii of the circle are the two straight sides of the figure.
Step 2
2 of 5
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/a3bcb2d7-52ea-464f-9bb4-bf89b871774c-1632836104393144.png)
Step 3
3 of 5
Let us wrap the radii around the circle (each $r$ represents the angle of $1$ radian):
Step 4
4 of 5
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/1c0c11d9-40ba-4295-9841-6b754588236f-1632837408217803.png)
Step 5
5 of 5
To construct an angle that measures $1$ radian, we wrapped the radius of the circle around the circle and connected its end points with the center.
Exercise 61
Step 1
1 of 8
$$
r=1
$$
We are given the unit circle:
Step 2
2 of 8
$$
A=pi r^2=pi(1^2)=pi
$$
a) We determine the circle’s area:
Step 3
3 of 8
$$
L=2pi r=2pi(1)=2pi
$$
We determine the circle’s circumference:
Step 4
4 of 8
$$
dfrac{L}{r}=dfrac{2pi}{1}=2piapprox 6.28
$$
b) We determine the number of radii needed to wrap completely around the circle:
Step 5
5 of 8
$$
dfrac{L}{r}=dfrac{2pi r}{r}=2piapprox 6.28
$$
c) We determine the number of radii needed to wrap completely around the circle when the radius is $r$:
Step 6
6 of 8
The number of radii is the same no matter the size of the radius because the circle’s circumference and its radius vary directly.
Step 7
7 of 8
$$
2pi
$$
d) We determine the number of radians in $360text{textdegree}$: as $360text{textdegree}$ cover the entire circle, the number of radians is:
Step 8
8 of 8
$$
dfrac{2pi}{4}=dfrac{pi}{2}
$$
We determine the number of radians in $90text{textdegree}$: as $90text{textdegree}$ cover a quarter of a circle, the number of radians is:
Exercise 62
Result
1 of 1
A radian is the measure of an angle θ that subtends an arc whose length equals the radius of the circle.
Exercise 63
Step 1
1 of 15
$$
theta=1text{textdegree}
$$
a) We are given the angle:
Step 2
2 of 15
Exercise scan
We draw the angle in its own unit circle:
Step 3
3 of 15
$theta=1$ radian
b) We are given the angle:
Step 4
4 of 15
Exercise scan
We draw the angle in its own unit circle:
Step 5
5 of 15
$theta=pi$ radians
c) We are given the angle:
Step 6
6 of 15
Exercise scan
We draw the angle in its own unit circle:
Step 7
7 of 15
$theta=dfrac{pi}{2}$ radians
d) We are given the angle:
Step 8
8 of 15
Exercise scan
We draw the angle in its own unit circle:
Step 9
9 of 15
$theta=dfrac{pi}{4}$ radians
e) We are given the angle:
Step 10
10 of 15
Exercise scan
We draw the angle in its own unit circle:
Step 11
11 of 15
$theta=dfrac{pi}{3}$ radians
f) We are given the angle:
Step 12
12 of 15
Exercise scan
We draw the angle in its own unit circle:
Step 13
13 of 15
$theta=dfrac{pi}{6}$ radians
g) We are given the angle:
Step 14
14 of 15
Exercise scan
We draw the angle in its own unit circle:
Result
15 of 15
See graphs
Exercise 64
Step 1
1 of 2
According to the calculator, the following values of radians and degrees are equal:
$$begin{align*}
30^{circ}&=0.523text{ rad}\
60^{circ}&=1.047text{ rad}\
90^{circ}&=1.57text{ rad}\
end{align*}$$
Step 2
2 of 2
$$begin{align*}
120^{circ}&=2.09text{ rad}\
180^{circ}&=pitext{ rad}\
270^{circ}&=4.712text{ rad}\
360^{circ}&=2pitext{ rad}
end{align*}$$
Exercise 65
Step 1
1 of 6
$$
sin 60text{textdegree}=0.8660254
$$
a) We determine $sin 60text{textdegree}$ with the calculator set in degree mode:
Step 2
2 of 6
$$
sin dfrac{pi}{3}=0.8660254
$$
We determine $sin dfrac{pi}{3}$ with the calculator set in radian mode:
Step 3
3 of 6
$$
60text{textdegree}=dfrac{pi}{3}
$$
We got the same result because practically we computed the sine for the same angle:
Step 4
4 of 6
$$
sin dfrac{pi}{4}=0.70710678
$$
b) We compute $sin dfrac{pi}{4}$:
Step 5
5 of 6
$$
sin 45text{textdegree}=0.70710678
$$
As $dfrac{pi}{4}=45text{textdegree}$, we have:
Step 6
6 of 6
$$
sin 135text{textdegree}=0.70710678
$$
Also the angle in Quadrant II have the same sine value:
Exercise 66
Step 1
1 of 4
$pi$ radians $=180$$text{textdegree}$
Step 2
2 of 4
a-

$sin (dfrac {pi}{4})=sin 45$

$sin (dfrac {pi}{4})=dfrac {1}{sqrt {2}}=0.7071$

Step 3
3 of 4
b-

$sin(dfrac {2pi}{3})=sin (120)$

$sin(dfrac {2pi}{3})=sin 60$          (sin (180-60)=sin 60)

$sin(dfrac {2pi}{3})=dfrac {sqrt 3}{2}=0.8660$

Result
4 of 4
a-          $sin (dfrac {pi}{4})=dfrac {1}{sqrt {2}}=0.7071$

b-          $sin(dfrac {2pi}{3})=dfrac {sqrt 3}{2}=0.8660$

Exercise 67
Solution 1
Solution 2
Step 1
1 of 2
Colleen is calculate

$$
sin ( 30 text{radians}) = – 0.9880316241
$$

Jolleen is calculate

$$
sin ( 30^{text{textdegree}}) = 0.5
$$

Both calculators are correct.

Result
2 of 2
Both calculators are correct.
Step 1
1 of 2
Both their calculators work correctly. Jolleen set hers on degrees and she got

$sin 30text{textdegree}=0.5$,

while Colleen set hers in radians and she got:

$sin 30$ radians $=-0.9880316241$.

Result
2 of 2
Both are correct (see explanation)
Exercise 68
Solution 1
Solution 2
Step 1
1 of 5
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
log _2left(xleft(x-2right)right)&=3&&boxed{text{Apply log rule}}\
log _2left(xleft(x-2right)right)&=log _2left(8right)&&boxed{text{Apply log rule}}\
xleft(x-2right)&=8&&boxed{text{Simplify}}\
x^2-2x&=8&&boxed{text{Distributive property}}\
x^2-2x-8&=8-8&&boxed{text{Subtract 8 from both sides}}\
x^2-2x-8&=0&&boxed{text{Simplify}}\
end{align*}
$$

Solve with the quadratic formula

$$
begin{align*}
x_{1,:2}&=frac{-bpm sqrt{b^2-4ac}}{2a}&&boxed{text{ Use quadratic formula}}\
x_{1,:2}&=frac{-left(-2right)pm sqrt{left(-2right)^2-4cdot :1left(-8right)}}{2cdot :1}&&boxed{text{Substitute }1 text{ for }a, -2 text{ for } b, text{ and } -8 text{ for } c.} \
end{align*}
$$

Step 2
2 of 5
First we solve $x_1$

$$
begin{align*}
x_1&=frac{-left(-2right)+sqrt{left(-2right)^2-4cdot :1left(-8right)}}{2cdot :1}&&boxed{text{Simplify}}\
x_1&=frac{2+sqrt{left(-2right)^2+4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Remove parentheses: }-(-a)=a}\
x_1&=frac{2+sqrt{4+4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Evaluate: }(-2)^2=4}\
x_1&=frac{2+sqrt{4+32}}{2cdot :1}&&boxed{text{Multiply the numbers: } 4cdot1cdot8=32}\
x_1&=frac{2+sqrt{4+32}}{2}&&boxed{text{Multiply the numbers: } 2cdot1=2}\
x_1&=frac{2+sqrt{36}}{2}&&boxed{text{Add the numbers: }4+32=36 }\
x_1&=frac{2+6}{2}&&boxed{text{Simplify}}\
x_1&=frac{8}{2}&&boxed{text{Add the numbers: } 2+6=8}\
x_1&=color{#c34632}{4} text{ True }&&boxed{text{Divide the numbers: } frac{8}{2}=4}\
end{align*}
$$

Step 3
3 of 5
Second we solve $x_2$

$$
begin{align*}
x_2&=frac{-left(-2right)-sqrt{left(-2right)^2-4cdot :1left(-8right)}}{2cdot :1}&&boxed{text{Simplify}}\
x_2&=frac{2-sqrt{left(-2right)^2+4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Remove parentheses: }-(-a)=a}\
x_2&=frac{2-sqrt{4+4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Evaluate: }(-2)^2=4}\
x_2&=frac{2-sqrt{4+32}}{2cdot :1}&&boxed{text{Multiply the numbers: } 4cdot1cdot8=32}\
x_2&=frac{2-sqrt{4+32}}{2}&&boxed{text{Multiply the numbers: } 2cdot1=2}\
x_2&=frac{2-sqrt{36}}{2}&&boxed{text{Add the numbers: }4+32=36 }\
x_2&=frac{2-6}{2}&&boxed{text{Simplify}}\
x_2&=frac{-4}{2}&&boxed{text{Subtract the numbers: } 2-6=-4}\
x_2&=color{#c34632}{-2} text{ False }&&boxed{text{Divide the numbers: } frac{-4}{2}=-2}\
&boxed{{color{#c34632}x=4} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:log:rule}:quad log _cleft(aright)+log _cleft(bright)=log _cleft(abright) }
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:log:rule}:quad :a=log _bleft(b^aright) }
$$

$$
boxed{ color{#c34632} text{ } mathrm{When:the:logs:have:the:same:base:::}log _bleft(fleft(xright)right)=log _bleft(gleft(xright)right)quad Rightarrow quad fleft(xright)=gleft(xright)}
$$

Step 4
4 of 5
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
log _{10}left(2right)+log _{10}left(xright)-2log _{10}left(xright)&=-2&&boxed{text{Apply log rule}}\
log _{10}left(2right)-log _{10}left(xright)&=-2&&boxed{text{Simplify}}\
log _{10}left(2right)-log _{10}left(xright)-log _{10}left(2right)&=-2-log _{10}left(2right)&&boxed{text{Subtract }log_{10}(2) text{ from both sides}}\
-log _{10}left(xright)&=-2-log _{10}left(2right)&&boxed{text{Simplify}}\
frac{-log _{10}left(xright)}{-1}&=-frac{2}{-1}-frac{log _{10}left(2right)}{-1}&&boxed{text{Divide both sides by }-1}\
log _{10}left(xright)&=2+log _{10}left(2right)&&boxed{text{Simplify}}\
log _{10}left(xright)&=log _{10}left(200right)&&boxed{text{Apply log rule}}\
x&=200text{ True}&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=200} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:log:rule}:quad log _aleft(cx^bright)=log _aleft(cright)+bcdot log _aleft(xright) }
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:log:rule}:quad :a=log _bleft(b^aright) }
$$

$$
boxed{ color{#c34632} text{ } mathrm{When:the:logs:have:the:same:base:::}log _bleft(fleft(xright)right)=log _bleft(gleft(xright)right)quad Rightarrow quad fleft(xright)=gleft(xright)}
$$

Result
5 of 5
$$
color{#4257b2} text{ a) }x=4
$$

$$
color{#4257b2} text{ b) }x=200
$$

Step 1
1 of 3
a. The sum of logarithm is the logarithm of the product:

$$
log_2{(x(x-2))}=3
$$

Take the exponential with base 2 of both sides of the equation:

$$
x(x-2)=2^3
$$

Rewrite the equation:

$$
x^2-2x-8=0
$$

Factorize:

$$
(x-4)(x+2)=0
$$

Zero product property:

$$
x-4=0text{ or } x+2=0
$$

Solve each equation to $x$:

$$
x=4text{ or } x=-2
$$

It is only possible to take the logarithm of a positive number and thus $x=-2$ cannot be a solution.

Step 2
2 of 3
b. The difference of logarithm is the logarithm of the quotient:

$$
log{dfrac{2x}{x^2}}=-2
$$

Take the exponential with base 10 of both sides of the equation:

$$
dfrac{2}{x}=10^{-2}
$$

Multiply both sides of the equation by 10

$$
2=0.01x
$$

Multiply both sides of the equation by 100:

$$
200=x
$$

Result
3 of 3
a. $x=4$

b. $x=200$

Exercise 69
Step 1
1 of 5
a-

$4x^2-9y^2$          (Write the equation)

$(2x)^2-(3y)^2$

$=(2x+3y)(2x-3y)$          (Difference of two squares)

Step 2
2 of 5
b-

$8x^3-2x^7$          (Write the equation)

$=2x^3(4-x^4)$          (Factor out $2x^3$)

$=2x^3(2+x^2)(2-x^2)$          (Difference of two squares)

Step 3
3 of 5
c-

$x^4-81y^4$          (Write the equation)

$(x^2)^2-(9y^2)^2$

$=(x^2+9y^2)(x^2-9y^2)$          (Difference of two squares)

$=(x^2+9y^2)(x+3y)(x-3y)$          (Difference of two squares)

Step 4
4 of 5
d-

$8x^3+2x^7$          (Write the equation)

$=2x^3(4+x^4)$          (Factor out $2x^3$)

Result
5 of 5
a-          $4x^2-9y^2=(2x+3y)(2x-3y)$

b-          $8x^3-2x^7=2x^3(2+x^2)(2-x^2)$

c-          $x^4-81y^4=(x^2+9y^2)(x+3y)(x-3y)$

d-          $8x^3+2x^7=2x^3(4+x^4)$

Exercise 70
Solution 1
Solution 2
Step 1
1 of 3
a) The solution of equation:

$$
begin{align*}
frac 3x &= frac {5}{x-7}\
3(x-7) &= 5x\
3x – 21 &= 5x\
2x &= -21\
x&= – frac {21}{2}\
x &= 10.5
end{align*}
$$

The solution of equation is

$$
x = 10.5
$$

Step 2
2 of 3
b) The solution of equation:

$$
begin{align*}
frac {2x+3}{4} – frac {x-7}{6} &= frac {2x-3}{12}\
frac {6(2x+3)-4(x-7)}{24} &= frac {2x-3}{12}\
frac {12x+18-4x+28}{24} &= frac {2x-3}{12}\
frac {8x+46}{24} &= frac {2x-3}{12}
end{align*}
$$

Multiply both sides by $24$

$$
begin{align*}
24 cdot frac {8x+46}{24} &= 24 cdot frac {2x-3}{12}\
8x+46 &= 2 cdot (2x-3)\
8x+46 &= 4x-6\
4x &= -52\
x &= -13
end{align*}
$$

The solution of equation is

$$
x=-13
$$

Result
3 of 3
a) $x = 10.5$

b) $x=-13$

Step 1
1 of 9
$$
dfrac{3}{x}=dfrac{5}{x-7}
$$
a) We are given the equation:
Step 2
2 of 9
$$
(-infty,0)cup(0,7)cup(7,infty)
$$
We eliminate from the domain the zeros of the denominators. The domain of the equation is:
Step 3
3 of 9
$3(x-7)=5x$

$3x-21=5x$

$3x-21-3x=5x-3x$

$2x=-21$

$$
x=-dfrac{21}{2}
$$

We cross-multiply:
Step 4
4 of 9
$dfrac{2x+3}{4}-dfrac{x-7}{6}=dfrac{2x-3}{12}$
b) We are given the equation:
Step 5
5 of 9
$dfrac{2x+3}{4}cdot 12-dfrac{x-7}{6}cdot 12=dfrac{2x-3}{12}cdot 12$

$3(2x+3)-2(x-7)=2x-3$

$6x+9-2x+14=2x-3$

$$
4x+23=2x-3
$$

We multiply all terms by 12 to clear fractions:
Step 6
6 of 9
$4x+23-2x=2x-3-2x$

$$
2x+23=-3
$$

We subtract $2x$ from both sides:
Step 7
7 of 9
$2x+23-23=-3-23$

$$
2x=-26
$$

We subtract 23 from both sides:
Step 8
8 of 9
$x=-dfrac{26}{2}$
We divide by 2:
Result
9 of 9
a) $x=-dfrac{21}{2}$

b) $x=-13$

Exercise 71
Step 1
1 of 4
1 $cm^3=7.27$ g

$h=12$ cm

$d=3$ cm

$V<80$g

We are given:
Step 2
2 of 4
$V=pileft(dfrac{d}{2}right)^2h=pileft(dfrac{3}{2}right)^2cdot 12$

$=picdot 1.5^2cdot 12=27piapprox 84.82$ $cm^3$

The solid has the shape of a cylinder. We determine its volume:
Step 3
3 of 4
$84.82cdot 7.27=616.6$ g
We determine the weight of the treetop:
Step 4
4 of 4
As $616>80$, the treetop is not solid.
Exercise 72
Step 1
1 of 2
$textcolor{#4257b2}{theta=0}$

$sin 0=0$

$cos 0=1$

$textcolor{#4257b2}{theta=dfrac{pi}{2}}$

$sin dfrac{pi}{2}=1$

$cos dfrac{pi}{2}=0$

$textcolor{#4257b2}{theta=pi}$

$sin pi=0$

$cos pi=-1$

$textcolor{#4257b2}{theta=dfrac{3pi}{2}}$

$sin dfrac{3pi}{2}=-1$

$cos dfrac{3pi}{2}=0$

We list angles for which we know the exact values of sine and cosine:
Result
2 of 2
$$
left{0, dfrac{pi}{2},pi,dfrac{3pi}{2}right}
$$
Exercise 73
Step 1
1 of 3
Exercise scan
a) We label the exact coordinates for three points in Quadrant I:
Step 2
2 of 3
Exercise scan
b) We mark all points on the unit circle for which we know the exact coordinates:
Step 3
3 of 3
c) The points were labeled with their corresponding measure in radians and degrees.
Exercise 74
Step 1
1 of 7
Exercise scan
a) We draw the point on the unit circle corresponding to $dfrac{pi}{12}$:
Step 2
2 of 7
$sindfrac{pi}{12}approx 0.25881905$

$$
cosdfrac{pi}{12}approx 0.96592583
$$

Using a calculator, we determine:
Step 3
3 of 7
$$
P(0.96592583,0.25881905)approx (0.97,0.26)
$$
The coordinates of the point $P$ are:
Step 4
4 of 7
Exercise scan
b) We draw the points:

$Q$ – corresponding to $dfrac{11pi}{12}$

$R$ – corresponding to $dfrac{13pi}{12}$

$S$ – corresponding to $dfrac{7pi}{12}$

Step 5
5 of 7
$$
Q(-0.97,0.26)
$$
i) We notice that the point $Q$ has the same $y$-coordinate as $P$ and the opposite $x$-coordinate:
Step 6
6 of 7
$$
R(-0.97,-0.26)
$$
ii) We notice that the point $R$ has the same $x$-coordinate as $Q$ and the opposite $y$-coordinate:
Step 7
7 of 7
$$
S(-0.26,0.97)
$$
iii) We notice that the angle formed by $OS$ with the $y$-axis is congruent with angle formed by $OQ$ with the $x$-axis, therefore the $x$-coordinate of $S$ is equal to the opposite of the $y$-coordinate of $Q$,while the $y$-coordinate of $S$ is equal to the opposite $x$-coordinate of $Q$:
Exercise 75
Step 1
1 of 4
a-

$(sin alpha)^2+(cos alpha)^2=1$

$(sin alpha)^2=1-left(dfrac {8}{17} right)^2$

$(sin alpha)^2=dfrac {289}{289}-dfrac {64}{289}$

$(sin alpha)^2=dfrac {225}{289}$

$$
sin alpha=dfrac {15}{17}
$$

Step 2
2 of 4
b-

$angle (pi+alpha)$ lies in the third quadrant. So:

$sin (pi+alpha)=-sin alpha$

$sin (pi+alpha)=-dfrac {15}{17}$

Step 3
3 of 4
c-

$angle (2 pi -alpha)$ lies in the fourth quadrant. So:

$cos (2 pi -alpha)=cos alpha$

$cos (2 pi -alpha)=dfrac {8}{17}$

Result
4 of 4
a-          $sin alpha=dfrac {15}{17}$

b-          $sin (pi+alpha)=-dfrac {15}{17}$

c-          $cos (2 pi -alpha)=dfrac {8}{17}$

Exercise 76
Step 1
1 of 9
$$
theta=330text{textdegree}
$$
a) We are given the angle:
Step 2
2 of 9
$$
360text{textdegree}-theta=360text{textdegree}-330text{textdegree}=30text{textdegree}
$$
The angle is in Quadrant IV. We determine its reference angle:
Step 3
3 of 9
$$
theta=120text{textdegree}
$$
b) We are given the angle:
Step 4
4 of 9
$$
180text{textdegree}-theta=text{textdegree}-120text{textdegree}=60text{textdegree}
$$
The angle is in Quadrant II. We determine its reference angle:
Step 5
5 of 9
$$
theta=113text{textdegree}
$$
c) We are given the angle:
Step 6
6 of 9
$$
180text{textdegree}-theta=180text{textdegree}-113text{textdegree}=67text{textdegree}
$$
The angle is in Quadrant II. We determine its reference angle:
Step 7
7 of 9
$$
theta=203text{textdegree}
$$
d) We are given the angle:
Step 8
8 of 9
$$
theta-180text{textdegree}=203text{textdegree}-180text{textdegree}=23text{textdegree}
$$
The angle is in Quadrant III. We determine its reference angle:
Result
9 of 9
a) $30text{textdegree}$

b) $60text{textdegree}$

c) $67text{textdegree}$

d) $23text{textdegree}$

Exercise 77
Step 1
1 of 3
a-

$sin (4)=sin left(4 times dfrac {180}{pi} right)$

$sin (4)=sin (229.18)$

$$
sin (4) approx -0.7568
$$

Step 2
2 of 3
b-

$sin (dfrac {4 pi}{3})=sin (dfrac {4 times 180}{3})$

$sin (dfrac {4 pi}{3})=sin (240)$

$angle 240=angle (180+60)$          ($angle 240$$text{textdegree}$ $textrm { ~lies in the third quadrant}$)

$sin (dfrac {4 pi}{3}) =-sin (60)$

$$
sin (dfrac {4 pi}{3})=-dfrac {sqrt {3}}{2}
$$

$$
sin (dfrac {4 pi}{3}) approx -0.866
$$

Result
3 of 3
a-          $sin (4) approx -0.7568$

b-          $sin (dfrac {4 pi}{3})=-dfrac {sqrt {3}}{2} approx -0.866$

Exercise 78
Step 1
1 of 4
$$
sin theta=0.5
$$
We are given the equation:
Step 2
2 of 4
$theta_1=dfrac{pi}{6}$

$theta_2=dfrac{5pi}{6}$

The solutions in $[0,2pi)$ are:
Step 3
3 of 4
$theta_1=dfrac{pi}{6}+2kpi$

$theta_2=dfrac{5pi}{6}+2kpi, k$ integer

The general solutions are:
Result
4 of 4
$theta_1=dfrac{pi}{6}+2kpi$

$theta_2=dfrac{5pi}{6}+2kpi, k$ integer

Exercise 79
Step 1
1 of 2
We complete the table:

|Degrees |Radians |
|–|–|
|0$degree$ |0 |
|30$degree$ | $dfrac{pi}{6}$|
|45$degree$ |$dfrac{pi}{4}$ |
| 60$degree$|$dfrac{pi}{3}$ |
|90$degree$ |$dfrac{pi}{2}$ |
|120$degree$ |$dfrac{2pi}{3}$ |
|135$degree$ | $dfrac{3pi}{4}$|
|150$degree$ | $dfrac{5pi}{6}$|
| 180$degree$|$pi$ |
| 210$degree$|$dfrac{7pi}{6}$ |
|225$degree$ | $dfrac{5pi}{4}$|
|240 $degree$|$dfrac{4pi}{3}$ |
|270 $degree$| $dfrac{3pi}{2}$|
|300 $degree$| $dfrac{5pi}{3}$|
|315$degree$ | $dfrac{7pi}{4}$|
|330 $degree$| $dfrac{11pi}{12}$|

Result
2 of 2
See table
Exercise 80
Step 1
1 of 3
Exercise scan
We sketch the unit circle with an angle that measures 6 radians:
Step 2
2 of 3
$$
6cdotdfrac{180text{textdegree}}{pi}approx 344text{textdegree}
$$
a) We convert the angle of 6 radians to textdegree:
Step 3
3 of 3
$$
sin 6approx -0.27
$$
b) We approximate the sine of the angle of 6 radians estimating the $y$-coordinate of the point from the diagram:
Exercise 81
Step 1
1 of 7
$f(0)=80,000$

$$
f(2)=2,400,000
$$

We are given (we consider year 1866 as $t=0$):
Step 2
2 of 7
a) An exponential function is better than a linear or sine function as the growth seems exponential; the linear and sine function show only when the function increases/decreases.
Step 3
3 of 7
$$
f(t)=ab^t+k
$$
b) The equation showing the number of rabbits $t$ years after 1866 is:
Step 4
4 of 7
$y=79979(5.47792)^{t}+21$

$f(5)=ab^5+k=79979(5.47792)^5+21$

$$
approx 394,000,000
$$

c) We have to determine $f(1871-1866)=f(5)$
Step 5
5 of 7
$79,979(5.47792)^t+21=2$

$(5.47792)^t=dfrac{2}{79,979}$

$ln (5.47792)^t=ln dfrac{2}{79,979}$

$tln 5.47792=(5.47792)^t=ln dfrac{2}{79,979}$

$t=dfrac{ln dfrac{2}{79,979}}{ln 5.47792}$

$$
tapprox -6
$$

d) We determine the value of $t$ for which $f(t)=2$:
Step 6
6 of 7
$t=-6$ corresponds to the year $1866-6=1860$.
Step 7
7 of 7
e) As 24 rabbits were actually introduced in 1859, the model is pretty close.

The model shows a very fast grow, which is not real for a great value of $t$.

Exercise 82
Solution 1
Solution 2
Step 1
1 of 2
We can simplify this expression

$$
begin{align*}
frac {2x^5-6x^4-2x^2+7x-4}{x-3} &= frac {2x^4(x-3)-2x^2+6x+x-4}{x-3}\
&= frac {2x^4(x-3)-2x(x-3)+x-3-1}{x-3}\
&= frac {2x^4(x-3)-2x(x-3) + (x-3) -1}{x-3}\
&= frac {2x^4(x-3)}{x-3} – frac {2x(x-3)}{x-3} + frac {x-3}{x-3} – frac {1}{x-3}\
&= 2x^4 – 2x + 1 – frac {1}{x-3}
end{align*}
$$

The expression is

$$
frac {2x^5-6x^4-2x^2+7x-4}{x-3} = 2x^4 – 2x + 1 – frac {1}{x-3}
$$

Result
2 of 2
$$
frac {2x^5-6x^4-2x^2+7x-4}{x-3} = 2x^4 – 2x + 1 – frac {1}{x-3}
$$
Step 1
1 of 4
$$
(2x^5-6x^4-2x^2+7x-4)div(x-3)
$$
We are given:
Step 2
2 of 4
$$
polyhornerscheme[x=3]{2x^5-6x^4-2x^2+7x-4}
$$
We use synthetic division:
Step 3
3 of 4
$$
dfrac{2x^5-6x^4-2x^2+7x-4}{x-3}=2x^4-2x+1-dfrac{1}{x-3}
$$
We got:
Result
4 of 4
$$
dfrac{2x^5-6x^4-2x^2+7x-4}{x-3}=2x^4-2x+1-dfrac{1}{x-3}
$$
Exercise 83
Step 1
1 of 3
Exercise scan
a) We are given the angle:
Step 2
2 of 3
$m_{OB}=dfrac{y_B-y_O}{x_B-x_O}$

$$
=dfrac{sin AOB}{cos AOB}=dfrac{sin dfrac{pi}{10}}{cos dfrac{pi}{10}}
$$

We determine the slope of the line $OB$ in terms of $sine$ and $cosine$:
Step 3
3 of 3
$m_{OB}=dfrac{sin dfrac{pi}{10}}{cos dfrac{pi}{10}}$

$=tan dfrac{pi}{10}$

$$
=tandfrac{pi}{10}
$$

b) We express the slope in terms of $tagent$:
Exercise 84
Step 1
1 of 4
Exercise scan
We graph the function $y=tan x=dfrac{sin x}{cos x}$:
Step 2
2 of 4
$x=dfrac{(2k+1)pi}{2}, k$ integer

The domain: $mathbb{R}-left{dfrac{(2k+1)pi}{2}, k text{ integer}right}$

The tangent function is undefined for the values of $x$ for which $cos x=0$, which must be excluded from the function’s domain:.
Step 3
3 of 4
$$
T=pi
$$
The tangent is similar to the $sine$ and $cosine$ functions as it has a period $T$, but while the period of the functions $sine$ and $cosine$ is $2pi$, the period to the $tangent$ function is:
Step 4
4 of 4
$x=dfrac{(2k+1)pi}{2}, k$ integer
The $sine$ and $cosine$ functions have the range $[-1,1]$, while the range of the $tangent$ function is $mathbb{R}$.

The $sine$ and $cosine$ functions increase and decrease, while the $tangent$ is only increasing.

The $sine$ and $cosine$ functions do not have asymptotes, while the $tangent$ function has vertical asymptotes:

Exercise 85
Step 1
1 of 4
begin{center}
begin{tabular}{|| c|c|c|c| c||}
hline
$theta$ & $cos (theta)$ & $sin(theta)$ & $tan(theta)$ & $tan(theta)$ \
& & & & (approximate to nearest 0.01)\[0.5ex]
hline
$0textdegree$ & 0& 1& 0& 0 \
hline
$30textdegree$ &$dfrac{sqrt 3}{2}$ & 0.5 & $dfrac{sqrt 3}{3}$ & 0.58 \
hline
$45textdegree$ & $dfrac{sqrt 2}{2}$ &$dfrac{sqrt 2}{2}$ &1 &1 \
hline
$60textdegree$ & 0.5 &$dfrac{sqrt 3}{2}$ & $sqrt 3$ & 1.73 \
hline
$90textdegree$ & 0& 1& undefined& undefined\
hline
$120textdegree$ &-0.5 &$dfrac{sqrt 3}{2}$ &$-sqrt 3$ &-1.73 \
hline
$135textdegree$ & $-dfrac{sqrt 2}{2}$ & $dfrac{sqrt 2}{2}$&-1 &-1 \
hline
$150textdegree$ &$-dfrac{sqrt 3}{2}$ &0.5 & $-dfrac{sqrt 3}{3}$ & -0.58 \
hline
$180textdegree$ &-1 &0 &0 &0 \
hline
$210textdegree$ &$-dfrac{sqrt 3}{2}$ &-0.5 &$dfrac{sqrt 3}{3}$ & 0.58 \
hline
$225textdegree$ & $-dfrac{sqrt 2}{2}$ &$-dfrac{sqrt 3}{2}$ &1 &1 \
hline
$240textdegree$ & -0.5& $-dfrac{sqrt 3}{2}$& $sqrt 3$& 1.73 \
hline
$270textdegree$ & 0&-1 &undefined &undefined \
hline
$300textdegree$ &0.5 &$-dfrac{sqrt 3}{2}$ & $-sqrt 3$& -1.73 \
hline
$330textdegree$ &$dfrac{sqrt 3}{2}$ &-0.5 & $-dfrac{sqrt 3}{3}$ & -0.58 \
hline
$315textdegree$ & $dfrac{sqrt 2}{2}$ &$-dfrac{sqrt 2}{2}$ &-1 &-1 \
hline
$360textdegree$ & 1& 0&0 & 0\[1ex]
hline
end{tabular}
end{center}
a) We complete the table:
Step 2
2 of 4
Exercise scan
b) We plot the tangent values on the graph:
Step 3
3 of 4
Exercise scan
c) We graph the 5 triangles in each of the Quadrants I and II:
Step 4
4 of 4
Exercise scan
d) We graph the 5 triangles in each of the Quadrants III and IV:
Exercise 86
Step 1
1 of 7
$$
y=tan(theta)
$$
We are given the function:
Step 2
2 of 7
$$
mathbb{R}-left{dfrac{(2k+1)pi}{2}| k text { integer}right}
$$
a) The domain of the function is:
Step 3
3 of 7
$$
mathbb{R}
$$
The range of the function is:
Step 4
4 of 7
$$
x=dfrac{(2k+1)pi}{2}, k text { integer}
$$
b) The tangent function has the vertical asymptotes (the points in which $cos x=0$):
Step 5
5 of 7
$$
tan(-x)=dfrac{sin(-x)}{cos(-x)}=dfrac{-sin x}{cos x}=-tan x
$$
c) The graph has symmetry with respect to the origin:
Step 6
6 of 7
d) The graph of $tangent$ has a different period $(pi$) than the period of $sine$ and $cosine$ ($2pi$).

The graph of $tangent$ has vertical asymptotes, while the graphs of $sine$ and $cosine$ do not.

The graph of $tangent$ increases, while the $sine$ and $cosine$ increase and decrease.

Result
7 of 7
a. The domain of the function is:

$$
mathbb{R}-left{dfrac{(2k+1)pi}{2}| k text { integer}right}
$$

Please see solution for parts b-d.

Exercise 87
Step 1
1 of 8
Exercise scan
a) We draw the point corresponding to $theta=dfrac{pi}{6}$ on the unit circle:
Step 2
2 of 8
$cos BOC=dfrac{OC}{OB}$

$x_B=OC=OBcos dfrac{pi}{6}=1cdot dfrac{sqrt 3}{2}=dfrac{sqrt 3}{2}$

$sin BOC=dfrac{BC}{OB}$

$y_B=BC=OBsin dfrac{pi}{6}=1cdot dfrac{1}{2}=dfrac{1}{2}$

$$
Rightarrow Bleft(dfrac{sqrt 3}{2},dfrac{1}{2}right)
$$

We determine the coordinates $(x_B,y_B)$ of point $B$:
Step 3
3 of 8
Exercise scan
b) i) We draw the point corresponding to $theta=dfrac{7pi}{6}$ on the unit circle:
Step 4
4 of 8
$cos DOE=dfrac{OE}{OD}$

$OE=ODcos dfrac{pi}{6}=1cdot left(dfrac{sqrt 3}{2}right)=dfrac{sqrt 3}{2}$

$x_D=cos AOD=-dfrac{sqrt 3}{2}$

$sin DOE=dfrac{DE}{OD}$

$DE=ODsin dfrac{pi}{6}=1cdot dfrac{1}{2}=dfrac{1}{2}$

$y_D=sin AOD=-dfrac{1}{2}$

$$
tandfrac{7pi}{6}=dfrac{sin AOD}{cos AOD}=dfrac{y_D}{x_D}=dfrac{-dfrac{1}{2}}{-dfrac{sqrt 3}{2}}=dfrac{1}{sqrt 3}=dfrac{sqrt 3}{3}
$$

We determine the coordinates $(x_D,y_D)$ of point $D$ and compute $tandfrac{7pi}{6}$:
Step 5
5 of 8
Exercise scan
ii) We draw the point corresponding to $theta=dfrac{13pi}{6}$ on the unit circle:
Step 6
6 of 8
$$
cos dfrac{13pi}{6}=cosdfrac{pi}{6}=dfrac{sqrt 3}{2}
$$
As the cosine function has the period $2pi$,computing $cos dfrac{13pi}{6}$ is the same thing as computing $cos left(2pi+dfrac{pi}{6}right)=cos dfrac{pi}{6}$. We did this in part $b(i)$:
Step 7
7 of 8
Exercise scan
iii) We draw the point corresponding to $theta=dfrac{2pi}{3}$ on the unit circle:
Step 8
8 of 8
$cos HOK=dfrac{OK}{OH}$

$OK=OHcos dfrac{pi}{3}=1cdot left(dfrac{1}{2}right)=dfrac{1}{2}$

$x_H=cos AOH=-dfrac{1}{2}$

$sin HOK=dfrac{HK}{OH}$

$HK=OHsin dfrac{pi}{3}=1cdot dfrac{sqrt 3}{2}=dfrac{sqrt 3}{2}$

$y_H=sin AOH=dfrac{sqrt 3}{2}$

$$
tandfrac{2pi}{3}=dfrac{sin AOH}{cos AOH}=dfrac{y_H}{x_H}=dfrac{dfrac{sqrt 3}{2}}{-dfrac{1}{2}}=-sqrt 3
$$

We determine the coordinates $(x_H,y_H)$ of point $H$ and compute $tandfrac{2pi}{3}$:
Exercise 88
Step 1
1 of 7
$$
theta=dfrac{7pi}{3}
$$
We are given the angle:
Step 2
2 of 7
$$
theta=dfrac{7pi}{3}cdot dfrac{180text{textdegree}}{pi}=420text{textdegree}
$$
We convert from radians to degrees:
Step 3
3 of 7
a) Any angle in the shape:

$alpha=theta+kcdot 360text{textdegree}=420text{textdegree}+kcdot 360text{textdegree}$ integer

corresponds to the same point on the circle.

Step 4
4 of 7
$$
k=-1Rightarrowalpha=420text{textdegree}+(-1)360text{textdegree}=60text{textdegree}
$$
For example:
Step 5
5 of 7
Exercise scan
b) We make a sketch of the unit circle showing the resulting right angle:
Step 6
6 of 7
$sin AOB=dfrac{BC}{OB}$

$BC=OBsin 60text{textdegree}=1cdot dfrac{sqrt 3}{2}=dfrac{sqrt 3}{2}$

$cos AOB=dfrac{OC}{OB}$

$OC=OBcos 60text{textdegree}=1cdot dfrac{1}{2}=dfrac{1}{2}$

c) We determine the coordinates of the point $B$:
Step 7
7 of 7
$sin dfrac{7pi}{3}=sin dfrac{pi}{3}=dfrac{sqrt 3}{2}$

$cos dfrac{7pi}{3}=cos dfrac{pi}{3}=dfrac{1}{2}$

$tan dfrac{7pi}{3}=tan dfrac{pi}{3}=dfrac{sin dfrac{pi}{3}}{cos dfrac{pi}{3}}$

$$
=dfrac{dfrac{sqrt 3}{2}}{dfrac{1}{2}}=sqrt 3
$$

We determine $sin dfrac{7pi}{3}, cos dfrac{7pi}{3}, tan dfrac{7pi}{3}$:
Exercise 89
Step 1
1 of 2
a) $sin180text{textdegree}=0$

b) $sin360text{textdegree}=sin (360text{textdegree}-360text{textdegree})=sin 0text{textdegree}=0$

c) $sin(-90text{textdegree})=sin (-90text{textdegree}+360text{textdegree})=sin 270text{textdegree}=-1$

d) $sin510text{textdegree}=sin (510text{textdegree}-360text{textdegree})$

$=sin 150text{textdegree}=sin (180text{textdegree}-150text{textdegree})$

$=sin 30text{textdegree}=0.5$

e) $cos 90text{textdegree}=0$

f) $tan (-90text{textdegree})$ (undefined!)

We evaluate the given expressions:
Result
2 of 2
a) 0; b) 0; c) -1; d) 0.5;e) 0; f) undefined
Exercise 90
Step 1
1 of 2
$2pi$ radians……………….$360text{textdegree}$

$x$ radians………. $ytext{textdegree}$

$$
y=dfrac{360text{textdegree}}{2pi}cdot x=dfrac{180text{textdegree}}{pi}cdot x
$$

$2pi$ radians correspond to $360text{textdegree}$. Then $x$ radians correspond to:
Step 2
2 of 2
$360text{textdegree}$……………$2pi$ radians

$xtext{textdegree}$………. $y$ radians

$$
y=dfrac{2pi}{360text{textdegree}}cdot x=dfrac{pi}{180text{textdegree}}cdot x
$$

$360text{textdegree}$ correspond to $2pi$ radians. Then $xtext{textdegree}$ correspond to:
Exercise 91
Step 1
1 of 7
$$
dfrac{7pi}{6}=dfrac{7pi}{6}cdot dfrac{180text{textdegree}}{pi}=210text{textdegree}
$$
a) We convert from radians to degree:
Step 2
2 of 7
$$
dfrac{5pi}{3}=dfrac{5pi}{3}cdot dfrac{180text{textdegree}}{pi}=300text{textdegree}
$$
b) We convert from radians to degree:
Step 3
3 of 7
$$
45text{textdegree}=45text{textdegree}cdotdfrac{pi}{180text{textdegree}}=dfrac{pi}{4}
$$
c) We convert from degrees to radians:
Step 4
4 of 7
$$
100text{textdegree}=100text{textdegree}cdotdfrac{pi}{180text{textdegree}}=dfrac{5pi}{9}
$$
d) We convert from degrees to radians:
Step 5
5 of 7
$$
810text{textdegree}=810text{textdegree}cdotdfrac{pi}{180text{textdegree}}=dfrac{9pi}{2}
$$
e) We convert from degrees to radians:
Step 6
6 of 7
$$
dfrac{7pi}{2}=dfrac{7pi}{2}cdot dfrac{180text{textdegree}}{pi}=630text{textdegree}
$$
f) We convert from radians to degree:
Result
7 of 7
a) $210text{textdegree}$; b) $300text{textdegree}$; c) $dfrac{pi}{4}$; d) $dfrac{5pi}{9}$; e) $dfrac{9pi}{2}$; f) $630text{textdegree}$
Exercise 92
Step 1
1 of 5
$costheta=-dfrac{12}{13}$ (Quadrant III)
We are given:
Step 2
2 of 5
$sin^2theta+left(-dfrac{12}{13}right)^2=1$

$sin^2theta+dfrac{144}{169}=1$

$sin^2theta=1-dfrac{144}{169}$

$sin^2theta=dfrac{25}{169}$

$sintheta=pmdfrac{5}{13}$

a)We use the Pythagorean identity:

$sin^2theta+cos^2theta=1$.

Step 3
3 of 5
$sintheta=-dfrac{5}{13}$
Because $theta$ is in Quadrant III, the sine is negative:
Step 4
4 of 5
$$
tantheta=dfrac{sintheta}{costheta}=dfrac{-dfrac{5}{13}}{-dfrac{12}{13}}=dfrac{5}{12}
$$
b) We determine $tantheta$:
Result
5 of 5
a) $sintheta=-dfrac{5}{13}$

b) $tantheta=dfrac{5}{12}$

Exercise 93
Solution 1
Solution 2
Step 1
1 of 3
The solution of equation:

$$
log_2(x) = 2^x
$$

Let

$$
begin{align*}
y &= log_2(x)-text{blue}\
y &= 2^x-text{red}
end{align*}
$$

Exercise scan

Step 2
2 of 3
From the graphs we see that these two functions have no common points. This equation has no solution.
Result
3 of 3
No solution.
Step 1
1 of 4
$$
log_2 x=2^x
$$
We are given the equation:
Step 2
2 of 4
Exercise scan
We graph both sides of the equation.
Step 3
3 of 4
The functions are inverse to each other. They do not intersect as they lie on only one side of the line $y=x$.
Result
4 of 4
No solution
Exercise 94
Step 1
1 of 3
If $a,b$ and $c$ are solutions of the equation, then the equation is of the form

$$
color{#c34632}{ (x-a)(x-b)(x-c) =0}
$$

Since

$$
begin{align*}
a&=3\
b&=2\
c&=-1
end{align*}
$$

We obtain

$$
begin{align*}
(x-3)(x-2)(x+1) &= 0\
(x^2 -2x-3x+6)(x+1) &= 0\
(x^2 – 5x + 6)(x+1) &= 0\
x^3 – 5x^2 + 6x + x^2 -5x +6 &= 0\
x^3 – 4x^2 + x +6 &= 0
end{align*}
$$

Exercise scan

Step 2
2 of 3
In order for the function to pass through point $(1,1)$, it is necessery to calculation $k$ such that

$$
k (x^3 -4x^2 + x +6) = 0
$$

Since $(1,1)$ we obitan

$$
y(1) =1
$$

Then

$$
begin{align*}
k ( 1^3 – 4 cdot 1^2 + 1 +6) &= 1\
k (1-4+1+6) &= 1\
4k &= 1\
k &= frac 14
end{align*}
$$

The function passing through point $(1,1)$ is

$$
y = frac 14 ( x^3 – 4x^2 + x +6)
$$

Exercise scan

Result
3 of 3
$$
y = frac 14 ( x^3 – 4x^2 + x +6)
$$
Exercise 95
Step 1
1 of 4
Exercise scan
a) In the unit circle, $x=costheta$, while $y=sintheta$.
Step 2
2 of 4
Exercise scan
b) In graph $b$, $x$ represents the angle, while $y=sin x$.
Step 3
3 of 4
Exercise scan
c) In graph $c$, $x$ represents the angle, while $y=cos x$.
Step 4
4 of 4
Exercise scan
d) In graph $d$, $x$ represents the angle, while $y=tan x$.
Exercise 96
Step 1
1 of 9
Let us graph $y=sin x$ and $y=cos x$.
Step 2
2 of 9
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/4ae4b609-8056-4a99-84d2-ef8d9581cfe1-1632838288627417.png)
Step 3
3 of 9
The domain of the functions $sin x$ and $cos x$ is $(-infty,+infty)$. The range of the functions $sin x$ and $cos x$ is $(-1,1)$. They do not have any asymptotes.
Step 4
4 of 9
Let us graph $sin x$, $sin 2x$, $2sin x$, $sin(x-1)$ and $sin x+1$:
Step 5
5 of 9
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/f2858fad-c0f3-44eb-b445-0384af110bee-1632838737263482.png)
Step 6
6 of 9
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/73c9ea48-a9c5-4d72-a5da-a27a5be9ada2-1632838821139533.png)
Step 7
7 of 9
The general form of the equation of the sine function is:
$$y=Asin(B(x-k))+c,$$
where $k$ represents horizontal shift, $c$ represents the vertical shift, $B$ represents the horizontal stretching and $|A|$ is an amplitude.
Step 8
8 of 9
The same goes for the cosine function:
$$y=Acos(B(x-k))+c.$$
Step 9
9 of 9
Usually $A$ represents the vertical stretching or compression (it does here too), but it also tells us more important information about the curves. It tells us the amplitude of $sin$ and $cos$.
Exercise 97
Step 1
1 of 7
$$
y=sin (x)
$$
We are given the function:
Step 2
2 of 7
$y=sin (x)+3$

Exercise scan

i) We shift $y=sin (x)$ 3 units up:
Step 3
3 of 7
$y=-sin (x)$

Exercise scan

ii) We reflect $y=sin (x)$ across the $x$-axis:
Step 4
4 of 7
$y=sin (x-2)$

Exercise scan

iii) We shift $y=sin (x)$ 2 units to the right:
Step 5
5 of 7
$y=2sin x$

Exercise scan

iv) We vertically stretch $y=sin (x)$ by a factor of 2:
Step 6
6 of 7
b) The important points to label on a periodic function are the interval’s ends, then the point situated in the middle of the interval, then the middle of each interval and so on if necessary.
Step 7
7 of 7
$$
y=asin (bx+c)+d
$$
c) The general equation for the family of functions is:
Exercise 98
Step 1
1 of 7
$$
y=sin (x)
$$
We are given the function:
Step 2
2 of 7
Exercise scan
a) We graph the function shifted up 1 unit:
Step 3
3 of 7
$$
y=sin (x)+1
$$
b) In order to get the function $y=sin (x)$ shifted up 1 unit we have to add 1 to the function:
Step 4
4 of 7
$…, -dfrac{pi}{2}, dfrac{3pi}{2}, dfrac{7pi}{2},….$
c) The $x$-intercepts of the function $y=sin (x)+1$ are:
Step 5
5 of 7
$$
y=1
$$
The $y$-intercept is:
Step 6
6 of 7
Exercise scan
We label the intercepts on the graph:
Step 7
7 of 7
$x=dfrac{(4k+3)pi}{2}, k$ integer
d) All the $x$-intercepts are:
Exercise 99
Step 1
1 of 3
Exercise scan
We are given:
Step 2
2 of 3
a) The above function was obtained from the parent function $y=sin (x)$ by shifting it by $pi$ to the left.
Step 3
3 of 3
$$
y=sin (x-pi)
$$
b) The equation of the function in the graph can be written:
Exercise 100
Step 1
1 of 4
A periodic function models cyclic situations, which repeat themselves indefinitely..
Step 2
2 of 4
a) The number of students in each year’s graduation class may increase or decrease over time. The best graph to model this situation is a step graph.
Step 3
3 of 4
b) Being ungry throughout the day can be periodic if you are hungry at the same times each day and not periodic if your hunger is shows at random times.
Step 4
4 of 4
c) The high-tide level at a point along the coast is usually periodic over short periods of time.
Exercise 101
Step 1
1 of 6
Exercise scan
We are given the new Screamer:
Step 2
2 of 6
begin{center}
begin{tabular}{|| c|c|c|c|c|c| c||}
hline
x (degrees) & y feet) \ [0.5ex]
hline
0 & 50 \
hline
90 &-50 \
hline
180 & -150 \
hline
270 & -50 \
hline
360 & 50 \[1ex]
hline
end{tabular}
end{center}
We make a table of values;
Step 3
3 of 6
$$
y = acos(x-h) + k
$$
Let’s consider the function:
Step 4
4 of 6
Horizontal shift: $h=0$

Vertical shift: $k=-50$

Amplitude: $a=100$

We have:
Step 5
5 of 6
$$
y=100cos x-50
$$
The function is:
Result
6 of 6
$$
y=100cos x-50
$$
Exercise 102
Step 1
1 of 2
$y=sin (x)$

$$
y=cos (x)
$$

We are given the functions:
Step 2
2 of 2
$y=sin (x)=cosleft(x-dfrac{pi}{2}right)$

$y=cos (x)=sinleft(x-dfrac{pi}{2}right)$

Each of these functions can be the parent of each other because we can write:
Exercise 103
Solution 1
Solution 2
Step 1
1 of 6
$$
y=12x^3+55x^2-27x-10
$$
We are given:
Step 2
2 of 6
$$
polyhornerscheme[x=-5]{12x^3+55x^2-27x-10}
$$
Since $(-5,0)$is a $x$-intercept, the polynomial has the factor $x+5$. We divide the polynomial by $x+5$ using synthetic division:
Step 3
3 of 6
$$
y=(x+5)(12x^2-5x-2)
$$
We have:
Step 4
4 of 6
$y=(x+5)(12x^2-8x+3x-2)$

$=(x+5)[4x(3x-2)+(3x-2)]$

$$
(x+5)(3x-2)(4x+1)
$$

We factor the quadratic:
Step 5
5 of 6
$3x-2=0Rightarrow 3x=2Rightarrow x=dfrac{2}{3}$

$4x+1=0Rightarrow 4x=-1Rightarrow x=-dfrac{1}{4}$

We determine the other 2 $x$-intercepts:
Result
6 of 6
$$
left{-dfrac{1}{4},dfrac{2}{3}right}
$$
Step 1
1 of 3
The graph of function

$$
y = 12x^3 + 55x^2 -27x-10
$$

Exercise scan

Step 2
2 of 3
The $x$ – intercepts:

$$
(12x^3 + 55x^2 -27x-10) div (x+5) = 12x^2 – 5x-2
$$

Now, we calculate

$$
12x^2 -5x-2 =0
$$

The solutions of a square equation $ax^2 + bx +c=0$ are shape

$$
x = frac {-b pm sqrt {b^2 – 4ac}}{2a}
$$

Now we have

$$
begin{align*}
x &= frac {5 pm sqrt {25+96}}{24}\
x &= frac {5 pm sqrt {121}}{24}\
x &= frac {5 pm 11}{24}\
x &= frac 23 qquad x =-frac 14
end{align*}
$$

The $x$ – intercepts are

$$
x=-5 qquad x=frac 23 qquad x=- frac 14
$$

Result
3 of 3
$$
x=-5 qquad x=frac 23 qquad x=- frac 14
$$
Exercise 104
Solution 1
Solution 2
Step 1
1 of 3
A triangle is givenExercise scan
Step 2
2 of 3
The angle $alpha$ can be calculate besad on the formula

$$
cos alpha = frac {frac a2}{b}
$$

Then

$$
begin{align*}
cos alpha &= frac {2.5}{10}\
cos alpha &= 0.25
end{align*}
$$

We can use the inverse function

$$
begin{align*}
alpha &= arccos 0.25\
alpha &= 75.5^{text{textdegree}}
end{align*}
$$

The sum of the interior angles of a triangle is $180^{text{textdegree}}$

$$
begin{align*}
alpha + alpha + beta &= 180^{text{textdegree}}\
75.5^{text{textdegree}} + 75.5^{text{textdegree}} + beta &= 180^{text{textdegree}}\
151^{text{textdegree}} + beta &= 180^{text{textdegree}}\
beta &= 29^{text{textdegree}}
end{align*}
$$

The angles in the triangle are

$$
75.5^{text{textdegree}} , qquad 75.5^{text{textdegree}} qquad text{and} qquad 29^{text{textdegree}}
$$

Result
3 of 3
$$
75.5^{text{textdegree}} , qquad 75.5^{text{textdegree}} qquad text{and} qquad 29^{text{textdegree}}
$$
Step 1
1 of 5
Exercise scan
We are given the triangle:
Step 2
2 of 5
$AC^2=AB^2+BC^2-2cdot ABcdot BCcdot cos B$

$10^2=10^2+5^2-2cdot 10cdot 5cdot cos B$

$100cos B=25$

$cos B=dfrac{25}{100}$

$cos B=0.25$

$B=cos^{-1} 0.25$

$$
Bapprox 75.5text{textdegree}
$$

We use the Law of Cosines to determine the angle $B$:
Step 3
3 of 5
$$
B=C=75.5text{textdegree}
$$
As $triangle ABC$ is isosceles we have:
Step 4
4 of 5
$A=180text{textdegree}-B-C=180text{textdegree}-75.5text{textdegree}-75.5text{textdegree}$

$$
=29text{textdegree}
$$

We determine the angle $A$:
Result
5 of 5
$$
29text{textdegree};75.5text{textdegree}; 75.5text{textdegree};
$$
Exercise 105
Step 1
1 of 2
$$
y=asin(x-h)+k
$$
We are given the general equation:
Step 2
2 of 2
$$
y=asin (bx-h)+k
$$
The general equation does not include all the possible transformations of the graph of $y=sin (x)$.

For example:

Exercise 106
Step 1
1 of 4
The following table represents the distance Briana’s radar.travels through time.\
begin {center}
renewcommand{arraystretch}{2.5}
begin{tabular}{ | m{2cm} | m{2cm} || m{2cm} | m{2cm} | }
hline
t (seconds) & d(t) & t (seconds) & d(t) \
hline
1 & $dfrac { pi}{12}$ & 13 & $dfrac {13 pi}{12}$ \
hline
2 & $dfrac { pi}{6}$ & 14 & $dfrac {7 pi}{6}$ \
hline
3 & $dfrac { pi}{4}$ & 15 & $dfrac {5 pi}{4}$ \
hline
4 & $dfrac { pi}{3}$ & 16 & $dfrac {4 pi}{3}$ \
hline
5 & $dfrac {5 pi}{12}$ & 17 & $dfrac {17 pi}{12}$ \
hline
6 & $dfrac { pi}{2}$ & 18 & $dfrac {3 pi}{2}$ \
hline
7 & $dfrac {7 pi}{12}$ & 19 & $dfrac {19 pi}{12}$ \
hline
8 & $dfrac {2 pi}{3}$ & 20 & $dfrac {5 pi}{3}$ \
hline
9 & $dfrac {3 pi}{4}$ & 21 & $dfrac {7 pi}{4}$ \
hline
10 & $dfrac {5 pi}{6}$ & 22 & $dfrac {11 pi}{6}$ \
hline
11 & $dfrac {11 pi}{12}$ & 23 & $dfrac {23 pi}{12}$ \
hline
12 & $pi$ & 24 & $2 pi$ \
hline
end {tabular}
end{center}
Step 2
2 of 4
The following graph represents the distance traveled (radian) through time (seconds)Exercise scan
Step 3
3 of 4
Since it takes 2 seconds for the radar line to travels through an angle of $dfrac {pi}{6}$

Then, we can calculate the output with the equation:

$d(t)=dfrac {t}{2}times dfrac { pi}{6}$

It takes 24 seconds to complete on full cycle on the radar screen

From the graph, the line reaches $2 pi$ on y-axis at 24 seconds on x-axes

Result
4 of 4
We can calculate the output with the equation:          $d(t)=dfrac {t}{2}times dfrac { pi}{6}$

It takes 24 seconds to complete on full cycle on the radar screen

Exercise 107
Step 1
1 of 8
$$
y=asin(x-h)+k
$$
We are given the general equation:
Step 2
2 of 8
a) A new perimeter can be introduced as a coefficient of $x$.
Step 3
3 of 8
Exercise scan
b) We graph the functions:

$y=sin (2x-1)+1$

$y=sin (3x-1)+1$

$y=sin (4x-1)+1$

Step 4
4 of 8
As the coefficient of $x$ increases, the graph shrinks more and more.
Step 5
5 of 8
Exercise scan
We graph the functions:

$y=sin (0.5x-1)+1$

$y=sin (0.3x-1)+1$

$y=sin (0.1x-1)+1$

Step 6
6 of 8
As the coefficient of $x$ decreases, the graph stretches more and more.
Step 7
7 of 8
$$
y=asin (bx-h)+k
$$
c) The general equation for the sine function including the new parameter is:
Result
8 of 8
$$
y=asin(bx-h)+k
$$
Exercise 108
Step 1
1 of 5
Exercise scan
a) We are given the function:
Step 2
2 of 5
$$
T_1=pi
$$
The graph of the function repeats after $pi$, therefore its period is:
Step 3
3 of 5
$$
T_2=2pisqrt{dfrac{L}{g}}=3
$$
b) The period T_2$ of a pendulum is:
Step 4
4 of 5
$$
T_3=2pi
$$
c) The period $T_3$ of the function $y=sin (x)$ is:
Result
5 of 5
Period of function $sin x$ is $2pi$.
Exercise 109
Step 1
1 of 6
Exercise scan
We are given:
Step 2
2 of 6
$$
y=sin (x-pi)
$$
a) We write the function for the above graph:
Step 3
3 of 6
$sin x=cosleft(dfrac{pi}{2}-xright)$
We can write a cosine function for the above graph using the identity:
Step 4
4 of 6
$y=cosleft(dfrac{pi}{2}-x+piright)$

$y=cosleft(dfrac{3pi}{2}-xright)$

b) We can write the following cosine function for the above graph:
Step 5
5 of 6
$$
y=-sin (x)
$$
c) Another equation can be written for the same graph:
Result
6 of 6
$$
y=-sin x
$$
Exercise 110
Step 1
1 of 2
Claudia did not saw any difference between the graph of $y=cos theta$ and the graph of $y=cos (theta+360text{textdegree})$ because the period of $cos$ function is $360text{textdegree}$ or $2pi$. The value of trigonometric function does not changes for multiple of $2pi$ or $360text{textdegree}$, Hence the graph of $y=cos theta$ and the graph of $y=cos (theta+360text{textdegree})$ will overlap each other.

So the value of $y=cos theta=cos (theta+360text{textdegree})=cos (theta+720text{textdegree})=cos (theta+n2pi)$ will be same.

Result
2 of 2
Both the graph will overlap each other.
Exercise 111
Solution 1
Solution 2
Step 1
1 of 3
a) According to the formula

$$
begin{align*}
color{#c34632}{tan theta = frac {sin theta}{cos theta}} tag{$*$}
end{align*}
$$

we obtain

$$
tan left( frac {2 pi}{3} right) = frac {sin left( frac {2 pi}{3} right)}{cos left( frac {2 pi}{3} right)}
$$

Since

$$
begin{align*}
sin left( frac {2 pi}{3} right) &= frac {sqrt 3}{2}\
cos left( frac {2 pi}{3} right) &= – frac 12
end{align*}
$$

we have

$$
tan left( frac {2 pi}{3} right) = frac {frac {sqrt 3}{2}}{- frac 12} = – sqrt 3
$$

Step 2
2 of 3
b) According to the $(*)$ we obtain

$$
tan left( frac {7 pi}{6} right) = frac {sin left( frac {7 pi}{6} right)}{cos left( frac {7 pi}{6} right)}
$$

Since

$$
begin{align*}
sin left( frac {7 pi}{6} right) &= – frac 12\
cos left( frac {7 pi}{6} right) &= – frac {sqrt 3}{2}
end{align*}
$$

we have

$$
tan left( frac {7 pi}{6} right) = frac {- frac 12}{ – frac {sqrt 3}{2}} = frac {1}{sqrt 3} = frac {sqrt 3}{3}
$$

Result
3 of 3
a) $tan left( frac {2 pi}{3} right) = – sqrt 3$

b) $tan left( frac {7 pi}{6} right) = frac {sqrt 3}{3}$

Step 1
1 of 5
$$
tanleft(dfrac{2pi}{3}right)
$$
a) We are given the expression:
Step 2
2 of 5
$tanleft(dfrac{2pi}{3}right)=-tanleft(pi-dfrac{2pi}{3}right)$

$$
=-tanleft(dfrac{pi}{3}right)=-sqrt 3
$$

We evaluate the expression:
Step 3
3 of 5
$$
tanleft(dfrac{7pi}{6}right)
$$
b) We are given the expression:
Step 4
4 of 5
$tanleft(dfrac{7pi}{6}right)=tanleft(dfrac{7pi}{6}-piright)$

$$
=tanleft(dfrac{pi}{6}right)=dfrac{sqrt 3}{3}
$$

We evaluate the expression:
Result
5 of 5
a) $-sqrt 3$

b) $dfrac{sqrt 3}{3}$

Exercise 112
Solution 1
Solution 2
Step 1
1 of 5
$a=1$

$b=0.5$

$$
c=dfrac{sqrt 3}{2}
$$

We are given the triangle:
Step 2
2 of 5
$0.5<dfrac{sqrt 3}{2}<1$

$$
b<c<a
$$

We have:
Step 3
3 of 5
$b^2+c^2stackrel{?}{=}a^2$

$0.5^2+left(dfrac{sqrt 3}{2}right)^2stackrel{?}{=}1^2$

$0.25+dfrac{3}{4}stackrel{?}{=}1$

$0.25+0.75stackrel{?}{=}1$

$$
1=1checkmark
$$

We check if the Pythagorean Theorem applies:
Step 4
4 of 5
Because $b^2+c^2=a^2$, the triangle is a right triangle.
Result
5 of 5
Yes
Step 1
1 of 2
In order for a triangle to be right triangle, it is necessary to satisfy Pythagoras theorem

$$
color{#c34632}{c^2=a^2 + b^2}
$$

Let

$$
begin{align*}
a &= 0.5\
b &= frac {sqrt 3}{2}\
c &= 1
end{align*}
$$

we get

$$
begin{align*}
1^2 &= 0.5^2 + left( frac {sqrt 3}{2} right)^2\
1 &= 0.25 + frac 34\
1 &= frac 14 + frac 34\
1 &= 1
end{align*}
$$

This triangle is a right triangle.

Result
2 of 2
Right triangle.
Exercise 113
Step 1
1 of 2
Compound interest equation:

$$
K=k(1+r)^n
$$

Replace $K$ with 25,000, $k$ with $15,000$ and $r$ with $8%=0.08$:

$$
25,000=15,000(1.08)^n
$$

Divide both sides of the equation by 15,000:

$$
dfrac{5}{3}=(1.08)^n
$$

Take the logarithm with base 1.08 from both sides of the equation:

$$
log_{1.08}{dfrac{5}{3}}=n
$$

Determine $n$:

$$
n=log_{1.08}{dfrac{5}{3}}=dfrac{log{dfrac{5}{3}}}{log{1.08}}approx 7
$$

Thus it will take approximately 7 years.

Result
2 of 2
About 7 years
Exercise 114
Step 1
1 of 2
The polynomial $f(x)$ can be write

$$
begin{align*}
f(x) &= x^3 – 5x^2 + 11x – 15\
&= x^3 – 3x^2 -2x^2 + 6x + 5x -15\
&= x^2 (x-3) – 2x (x-3) + 5 (x-3)\
&= (x-3)( x^2 – 2x + 5)
end{align*}
$$

The possible factor is

$$
d) (x-3)
$$

Result
2 of 2
d) $(x-3)$
Exercise 115
Solution 1
Solution 2
Step 1
1 of 3
a) The factor of this polynomial is $(x-3)$

$$
begin{align*}
f(x) &= x^3 – 5x^2 + 11x -15\
&= (x-3)(x^2 – 2x +5)
end{align*}
$$

Step 2
2 of 3
b) The roots is

$$
begin{align*}
x-3 &= 0\
x &= 0
end{align*}
$$

and

$$
x^2 -2x + 5 =0
$$

The solution of a square equation $a^2 + bx + c =0$ are shape

$$
x = frac {-b pm sqrt {b^2 – 4ac}}{2a}
$$

Now we have

$$
begin{align*}
x &= frac {2 pm sqrt {4-20}}{2}\
x &= frac {2 pm sqrt {-16}}{2}\
x &= frac {2 pm 4 i}{2}\
x &= 1+ 2 i qquad x= 1- 2 i
end{align*}
$$

The roots of the polynomial

$$
x=3 qquad x=1+2 i qquad x=1-2 i
$$

Result
3 of 3
a) $f(x) = (x-3)(x^2 – 2x +5)$

b) $x=3 qquad x=1+2 i qquad x=1-2 i$

Step 1
1 of 8
$$
f(x)=x^3-5x^2+11x-15
$$
We are given the function:
Step 2
2 of 8
$$
f(x)=(x-3)Q(x)
$$
In Exercise 9-114 we found that $(x-3)$ is a possible factor:
Step 3
3 of 8
As $f(3)=0$, $(x-3)$ is a possible factor.
Step 4
4 of 8
$$
polyhornerscheme[x=3]{x^3-5x^2+11x-15}
$$
We divide $f(x)$ by $(x-3)$:
Step 5
5 of 8
$$
f(x)=(x-3)(x^2-2x+5)
$$
We get:
Step 6
6 of 8
$f(x)=(x-3)[(x^2-2x+1)+4]$

$=(x-3)[(x-1)^2-(21)^2]$

$$
=(x-3)(x-1-2i)(x-1+2i)
$$

We factor the polynomial completely:
Step 7
7 of 8
$x-1-2i=0Rightarrow x_2=1+2i$

$x-1+2i=0Rightarrow x_3=1-2i$

We determine the roots of the polynomial:
Result
8 of 8
$$
{3, 1+2i,1-2i}
$$
Exercise 116
Step 1
1 of 6
$$
y=costheta
$$
a) We are given the function:
Step 2
2 of 6
$$
T=2pi
$$
The period is:
Step 3
3 of 6
average dayly temperature =f(time)
b) We are given the function:
Step 4
4 of 6
$T=365$ days
The period is:
Step 5
5 of 6
distance of bloody drips from the midline of the hallway=f(distance traveled along the hallway)
c) We are given the function:
Step 6
6 of 6
The period depends on Nurse Nina’s speed and the speed of the blood pendulum.
Exercise 117
Step 1
1 of 8
a-

The domain of one cycle of the function $y=sin(x)$ is:          $0 leq x leq 2 pi$

The range of one cycle of the function $y=sin(x)$ is:          $-1 leq y leq 1$

Step 2
2 of 8
b-\
The table below represents the cycles number, midline, amplitude and cycle length of each graph.\
begin {center}
renewcommand{arraystretch}{2.5}
begin{tabular}{|l|c|c|c|c|c|}
hline
Function & Cycles # & Midline Equation & Amplitude & Period & Function? (Yes/No) \
hline
$y=sin(x)$ & 1 & $y=0$ & 1 & $2 pi$ & Yes \
hline
$y=sin(0.5 x)$ & $dfrac {1}{2}$ & $y=0$ & 1 & $4 pi$ & Yes \
hline
$y=sin(2 x)$ & 2 & $y=0$ & 1 & $dfrac {1}{2} pi$ & Yes \
hline
$y=sin(3 x)$ & 3 & $y=0$ & 1 & $dfrac {2}{3} pi$ & Yes \
hline
$y=sin(5 x)$ & 5 & $y=0$ & 1 & $dfrac {2}{5} pi$ & Yes \
hline
end{tabular}
end {center}
All the graph are equations because they pass the vertical line test.\
Step 3
3 of 8
c-

For the graph of $y=sin(bx)$

i.          The cycles number $=b$

ii.          The midline equation is: $y=0$

iii.          The amplitude: $=1$

iv.          The period (Cycle length) is: $dfrac {2 pi}{b}$

v.          The equation is a function.

Step 4
4 of 8
d-

The graph of the equation $y=sin(6x)$

i.          The cycles number $=6$

ii.          The midline equation is: $y=0$

iii.          The amplitude: $=1$

iv.          The period (Cycle length) is: $dfrac {2 pi}{6}$

v.          The equation is a function.

Exercise scan

Step 5
5 of 8
The graph of the equation $y=sin(7x)$

i.          The cycles number $=7$

ii.          The midline equation is: $y=0$

iii.          The amplitude: $=1$

iv.          The period (Cycle length) is: $dfrac {2 pi}{7}$

v.          The equation is a function.

Exercise scan

Step 6
6 of 8
The graph of the equation $y=sin(8x)$

i.          The cycles number $=8$

ii.          The midline equation is: $y=0$

iii.          The amplitude: $=1$

iv.          The period (Cycle length) is: $dfrac {2 pi}{8}$

v.          The equation is a function.

Exercise scan

Step 7
7 of 8
e-

For the graph of $y=sin(bx)$, the relation between the period of the sing graph and $b$ is:

The period (Cycle length) is: $dfrac {2 pi}{b}$

Result
8 of 8
For the graph of $y=sin(bx)$

i.          The cycles number $=b$

ii.          The midline equation is: $y=0$

iii.          The amplitude: $=1$

iv.          The period (Cycle length) is: $dfrac {2 pi}{b}$

v.          The equation is a function.

Exercise 118
Result
1 of 1
From the graph we made by swinging a pendulum in lesson 7.1.1

We should draw x-axis exactly below the meter stick and parallel to it and the y-axis at the start point of releasing the pendulum and perpendicular to x-axis.

There are more than one possible equation, it varies according the speed of the pendulum and the speed of moving the butcher paper.

Exercise 119
Step 1
1 of 18
$$
y=sin 2left(x-dfrac{pi}{6}right)
$$
a) We are given the function:
Step 2
2 of 18
Amplitude: $A=1$

Period: $T=dfrac{2pi}{2}=pi$

Horizontal shift: $-dfrac{-dfrac{pi}{6}}{1}=dfrac{pi}{6}$

Vertical shift: $0$

We determine the amplitude, period, horizontal shift and vertical shift (midline):
Step 3
3 of 18
Exercise scan
We sketch the graph using the above information:
Step 4
4 of 18
$$
y=3+sin left(dfrac{1}{3}xright)
$$
b) We are given the function:
Step 5
5 of 18
Amplitude: $A=1$

Period: $T=dfrac{2pi}{dfrac{1}{3}}=6pi$

Horizontal shift: $-dfrac{0}{dfrac{1}{3}}=0$

Vertical shift: $3$

We determine the amplitude, period horizontal shift and vertical shift (midline):
Step 6
6 of 18
Exercise scan
We sketch the graph using the above information:
Step 7
7 of 18
$$
y=3sin (4x)
$$
c) We are given the function:
Step 8
8 of 18
Amplitude: $A=3$

Period: $T=dfrac{2pi}{4}=dfrac{pi}{2}$

Horizontal shift: $-dfrac{0}{4}=0$

Vertical shift: $0$

We determine the amplitude, period horizontal shift and vertical shift (midline):
Step 9
9 of 18
Exercise scan
We sketch the graph using the above information:
Step 10
10 of 18
$$
y=sin dfrac{1}{2}left(x+1right)
$$
d) We are given the function:
Step 11
11 of 18
Amplitude: $A=1$

Period: $T=dfrac{2pi}{dfrac{1}{2}}=4pi$

Horizontal shift: $-dfrac{dfrac{1}{2}}{dfrac{1}{2}}=-1$

Vertical shift: $0$

We determine the amplitude, period horizontal shift and vertical shift (midline):
Step 12
12 of 18
Exercise scan
We sketch the graph using the above information:
Step 13
13 of 18
$$
y=-sin 3left(x-dfrac{pi}{3}right)
$$
e) We are given the function:
Step 14
14 of 18
Amplitude: $A=1$

Period: $T=dfrac{2pi}{3}$

Horizontal shift: $-dfrac{-pi}{3}=dfrac{pi}{3}$

Vertical shift: $0$

We determine the amplitude, period horizontal shift and vertical shift (midline):
Step 15
15 of 18
Exercise scan
We sketch the graph using the above information:
Step 16
16 of 18
$$
y=-1+sin left(2x-dfrac{pi}{2}right)
$$
f) We are given the function:
Step 17
17 of 18
Amplitude: $A=1$

Period: $T=dfrac{2pi}{2}=pi$

Horizontal shift: $-dfrac{-dfrac{pi}{2}}{2}=dfrac{pi}{4}$

Vertical shift: $-1$

We determine the amplitude, period horizontal shift and vertical shift (midline):
Step 18
18 of 18
Exercise scan
We sketch the graph using the above information:
Exercise 120
Step 1
1 of 9
Exercise scan
We are given the function:
Step 2
2 of 9
Amplitude: $A=3$

Horizontal shift: $dfrac{pi}{4}$

Midline: $y=-2$

We have:
Step 3
3 of 9
$$
y=Asin(Bx+C)+D
$$
The general form of the equation is:
Step 4
4 of 9
$A=3$

$D=-2$

$$
-dfrac{C}{B}=dfrac{pi}{4}
$$

We have:
Step 5
5 of 9
$$
C=-dfrac{pi}{4}cdot B=-dfrac{pi}{4}cdot 2=-dfrac{pi}{2}
$$
Since both used $B=2$, we determine the correct $C$:
Step 6
6 of 9
$y=3sin left(2x-dfrac{pi}{2}right)-2$

$$
y=3sin 2left(x-dfrac{pi}{4}right)-2
$$

The correct equation is:
Step 7
7 of 9
So Farah is right.
Step 8
8 of 9
Exercise scan
b) We graph the function:

$y=3sin left(2x-dfrac{pi}{4}right)-2$

in continuous line, and the correct function:

$y=3sin left(2x-dfrac{pi}{2}right)-2$

in dotted line:

Step 9
9 of 9
The wrong function is $dfrac{pi}{8}$ units to the left of the correct function.
Exercise 121
Step 1
1 of 2
$y=Asin (Bx+C)+D$, where:

$A$=the amplitude

$dfrac{2pi}{B}$=the period

$-dfrac{C}{B}$=the horizontal shift

$D$=the vertical shift (midline)

The most general equation for the family of sine functions is:
Step 2
2 of 2
If $-dfrac{C}{B}0$, the graph is pushed to the right.
Exercise 122
Solution 1
Solution 2
Step 1
1 of 4
$f(x)=sin (x)$

$$
g(x)=3sinleft(dfrac{1}{2} xright)
$$

We are given the functions:
Step 2
2 of 4
a) The graph of $g(x)$ is obtained from the graph of $f(x)$ by a horizontal stretch by the factor of $dfrac{1}{2}$ and a vertical stretch by a factor of 3.
Step 3
3 of 4
Exercise scan
b) We sketch both graphs:
Step 4
4 of 4
c) The graph of $g(x)$ has an amplitude 3 times greater than $f(x)$ and a period of $4pi$ instead of $2pi$. The horizontal and vertical shifts are zero in both cases.
Step 1
1 of 3
The Amplitude of the graph $y=3sin (frac{1}{2}x)$ will be 3 times the amplitude of the graph $y=sin x$ and also the period of the graph $y=3sin (frac{1}{2}x)$ will be $4pi$ which is 2 times the period of the graph $y=sin x$.

The similarities in both the graph is that there is no horizontal or vertical shift.

Step 2
2 of 3
Graph of both function is shown below :Exercise scan
Result
3 of 3
The similarities in both the graph is that there is no horizontal or vertical shift.
Exercise 123
Step 1
1 of 3
$$
y=sin (2pi x)
$$
We are given the function:
Step 2
2 of 3
$$
T=dfrac{2pi}{2pi}=1
$$
We determine the function’s period:
Result
3 of 3
$$
T=1
$$
Exercise 124
Step 1
1 of 3
$$
y=sin [2(x-1)]=sin (2x-2)
$$
Shifting the function $y=sin (2x)$ 1 unit to the right is correctly done if we subtract 1 from the variable $x$:
Step 2
2 of 3
Adel got the right equation. Ceirin’s equation $y=sin (2x-1)$ is wrong because the subtraction must be made only from $x$, not from $2x$.
Step 3
3 of 3
When having to shift a graph 1 unit to the right, we must always see the variable $x$ as being isolated from the rest of the equation and practically replace $x$ by $(x-1)$,the brackets making sure that the subtraction applies to $x$.
Exercise 125
Solution 1
Solution 2
Step 1
1 of 5
a) In this exercise we can use the formula

$$
sin theta = frac ax
$$

Exercise scan

Step 2
2 of 5
Therefore

$$
begin{align*}
sin 30^{text{textdegree}} &= frac 2x\
frac {1}{2} &= frac 2x\
x &= 2 cdot 2\
x &= 4
end{align*}
$$

Step 3
3 of 5
b) In this exercise we can use the formula

$$
cos theta = frac ax
$$

Exercise scan

Step 4
4 of 5
Therefore

$$
begin{align*}
cos 45^{text{textdegree}} &= frac 4x\
frac {sqrt 2}{2} &= frac 4x\
x sqrt 2 &= 4 cdot 2\
x sqrt 2 &= 8\
x &= frac {8}{sqrt 2}\
x &= frac {8 sqrt 2}{2}\
x &= 4 sqrt 2
end{align*}
$$

Result
5 of 5
a) $x = 4$

b) $x = 4 sqrt 2$

Step 1
1 of 5
Exercise scan
a) We are given the triangle:
Step 2
2 of 5
$sin 30text{textdegree}=dfrac{2}{x}$

$dfrac{1}{2}=dfrac{2}{x}$

$x=2cdot 2$

$$
x=4
$$

We determine $x$ using the sine function:
Step 3
3 of 5
Exercise scan
b) We are given the triangle:
Step 4
4 of 5
$cos 45text{textdegree}=dfrac{4}{x}$

$dfrac{sqrt 2}{2}=dfrac{4}{x}$

$xsqrt 2=2cdot 4$

$x=dfrac{8}{sqrt 2}$

$$
x=4sqrt 2
$$

We determine $x$ using the cosine function:
Result
5 of 5
a) $x=4$

b) $x=4sqrt 2$

Exercise 126
Solution 1
Solution 2
Step 1
1 of 11
$$
29=3^x
$$
a) We are given the equation:
Step 2
2 of 11
$log (29)=log(3^x)$

$log (29)=xlog(3)$

$x=dfrac{log (29)}{log (3)}$

$$
xapprox 3.0650
$$

We apply logarithm:
Step 3
3 of 11
$3^x=dfrac{1}{29}$

$$
3^x=29^{-1}
$$

b) We are given the equation:
Step 4
4 of 11
$log (3^x)=log (29^{-1})$

$xlog (3)=-log (29)$

$x=dfrac{-log (29)}{log (3)}$

$$
xapprox -3.0650
$$

We apply logarithm:
Step 5
5 of 11
$$
29=x^3
$$
c) We are given the equation:
Step 6
6 of 11
$x=sqrt[3] {29}$

$$
xapprox 3.0723
$$

We take the cubic root:
Step 7
7 of 11
$$
-29=x^3
$$
d) We are given the equation:
Step 8
8 of 11
$x=sqrt[3] {-29}$

$$
xapprox -3.0723
$$

We take the cubic root:
Step 9
9 of 11
$A=P(1+r)^t$

$A=10(1+0.07)^t$

$$
A=10(1.07)^t
$$

e) The equation modeling the problem is:
Step 10
10 of 11
$15=10(1.07)^t$

$(1.07)^t=dfrac{15}{10}$

$(1.07)^t=1.5$

$log ((1.07)^t)=log (1.5)$

$tlog (1.07)=log (1.5)$

$t=dfrac{log (1.5)}{log (1.07)}$

$$
tapprox 6
$$

We determine the time $t$ for which $A=15$:
Result
11 of 11
a) $xapprox 3.0650$

b) $xapprox -3.0650$

c) $xapprox 3.0723$

d) $xapprox -3.0723$

e) 6 years

Step 1
1 of 6
a) For this equation, we can use the $ln$ function

$$
begin{align*}
29 &= 3^x\
ln 29 &= ln 3^x
end{align*}
$$

Using the formula

$$
begin{align*}
color{#c34632}{ ln a^b = b ln a} tag {$*$}
end{align*}
$$

we obtain

$$
begin{align*}
ln 29 &= x ln 3\
x &= frac {ln 29}{ln 3}\
x &= frac {3.3673}{1.0986}\
x &= 3.0651
end{align*}
$$

The solution of equation is

$$
x = 3.0651
$$

Step 2
2 of 6
b) For this equation, we can use the $ln$ function

$$
begin{align*}
3^x &= frac {1}{29}\
ln 3^x &= ln frac {1}{29}
end{align*}
$$

Using the $(*)$

$$
begin{align*}
x ln 3 &= ln frac {1}{29}\
x &= frac {ln frac {1}{29}}{ln 3}\
x &= frac {-3.3673}{1.0986}\
x &= – 3.0651
end{align*}
$$

The solution of equation is

$$
x = – 3.0651
$$

Step 3
3 of 6
c) The solution of this equation we get as follows

$$
begin{align*}
29 &= x^3\
x &= sqrt[3]{29}\
x &= 3.0723
end{align*}
$$

The solution of equation is

$$
x = 3.0723
$$

Step 4
4 of 6
d) The solution to this equation we get as follows

$$
begin{align*}
-29 &= x^3\
x &= sqrt[3]{-29}\
x &= – 3.0723
end{align*}
$$

The solution of equation is

$$
x = – 3.0723
$$

Step 5
5 of 6
e) The equation is shape

$$
A=P ( 1+r )^t
$$

where

$$
A=$15, qquad P=$10, qquad r=7%=0.07
$$

Therefore

$$
begin{align*}
15 &= 10 (1+ 0.07)^t\
15 &= 10 cdot 1.007^t\
1.007^t &= 1.5
end{align*}
$$

We can use $ln$ function

$$
ln 1.007^t = ln 1.5
$$

According to $(*)$ we obtain

$$
begin{align*}
t ln 1.007 &= ln 1.5\
t &= frac {ln 1.5}{ln 1.007}\
t &= frac {0.4054}{0.0069}\
t &approx 6
end{align*}
$$

Ticket will cost $$15$ for $6$ years.

Result
6 of 6
a) $x = 3.0651$

b) $x = – 3.0651$

c) $x = 3.0723$

d) $x = – 3.0723$

e) $6$ years

Exercise 127
Step 1
1 of 5
$$
begin{cases}
y=x^2-5\
y=x+1
end{cases}
$$
We are given the system of equations:
Step 2
2 of 5
$x+1=x^2-5$

$x+1-x-1=x^2-5-x-1$

$x^2-x-6=0$

$x^2+2x-3x-6=0$

$x(x+2)-3(x+2)=0$

$(x+2)(x-3)=0$

$x+2=0Rightarrow x_1=-2$

$x-3=0Rightarrow x_2=3$

We substitute the expression of $y$ from the second equation into the first and determine $x$:
Step 3
3 of 5
$x_1=-2Rightarrow y_1=-2+1=-1$

$x_2=3Rightarrow y_2=3+1=4$

We determine $y$:
Step 4
4 of 5
$$
{(-2,-1),(3,4)}
$$
The solutions are:
Result
5 of 5
$$
{(-2,-1),(3,4)}
$$
Exercise 128
Step 1
1 of 5
$$
y=x^2+4x+c
$$
We are given the equation:
Step 2
2 of 5
$Delta=4^2-4(1)(c)=16-4c<0$

$16-4c+4c<0+4c$

$16<4c$

$4<c$

The equation has complex roots if the discriminant $Delta$ is negative:
Step 3
3 of 5
$$
5,6,7,8,9,10,11,12
$$
Therefore for $c>4$ the equation has complex roots. In the set ${1,2,3,…,11,12}$ the numbers greater than 4 are:
Step 4
4 of 5
$$
P(c>4)=dfrac{8}{12}=dfrac{2}{3}approx 66.66%
$$
We determine the probability:
Result
5 of 5
$$
dfrac{2}{3}approx 66.66%
$$
Exercise 129
Step 1
1 of 3
$y=Asin (Bx+C)+D$

$y=Acos (Bx+C)+D$

The general equations for the sines and cosine families are:
Step 2
2 of 3
$cos x=sinleft(dfrac{pi}{2}-xright)$

$sin x=cosleft(dfrac{pi}{2}-xright)$

If we know how to handle a sine function, we also know how to handle a cosine function (and the same goes the other way around) because we can replace sine by cosine, or cosine by sine:
Step 3
3 of 3
$A$=the amplitude

$B$ which gives us the period $T=dfrac{2pi}{B}$

$C$ which gives us the horizontal shift $-dfrac{C}{B}$

$D$=the vertical shift (midline)

In order to graph any of the sine or cosine functions, we need to know the elements:
Exercise 130
Step 1
1 of 7
$$
A=2
$$
a) Let’s consider a sine function $y=Asin (Bx+C)+D$ with the amplitude 2:
Step 2
2 of 7
$-dfrac{C}{B}=dfrac{pi}{6}$
b) Let’s say the graph will begin $dfrac{pi}{6}$ right from the $y$-axis.The horizontal shift will be:
Step 3
3 of 7
$$
D=-3
$$
c) Let’s place the center of the graph 3 units bellow the $x$-axis. The middle line will be $y=-3$ and the vertical shift:
Step 4
4 of 7
$dfrac{2pi}{B}=piRightarrow B=2$

$$
Rightarrow -dfrac{C}{2}=dfrac{pi}{6}Rightarrow C=-dfrac{pi}{3}
$$

d) Let’s take a period $T=pi$ for our function:
Step 5
5 of 7
e) Let’s say there is no reflection that relates our graph to $y=sin (x)$.
Step 6
6 of 7
$$
y=2sin left(2x-dfrac{pi}{3}right)-3
$$
f) The equation of the function is:
Result
7 of 7
$$
y=2sin left(2x-dfrac{pi}{3}right)-3
$$
Exercise 131
Step 1
1 of 3
$$
y=3cos(2x-pi)+1
$$
We receive the function:
Step 2
2 of 3
Amplitude: $A=3$

Period: $T=dfrac{2pi}{2}=pi$

Vertical shift: $D=1$

Horizontal shift: $-dfrac{C}{B}=-dfrac{-pi}{2}=dfrac{pi}{2}$

We determine the elements:
Step 3
3 of 3
Exercise scan
We draw the graph of the function:
Exercise 132
Step 1
1 of 6
Exercise scan
Both sine and cosine can be used, but if we want to get a more simple equation we should choose (reflected) cosine for the given graph because the value in $x=0$ is a multiple of the $cos 0$.
Step 2
2 of 6
$y=-2cos x$

$y=-2sinleft(dfrac{pi}{2}-xright)$

We write 2 different equations for the given graph:
Step 3
3 of 6
$y=-2cos (x+2npi)$

$y=-2sinleft(dfrac{pi}{2}-x+2npiright)$

where $n$ in any integer

As the period of the function is $2pi$ we can write an infinity of equations:
Step 4
4 of 6
$y=-2cos (x+2pi)$

$y=-2sinleft(dfrac{pi}{2}-x+2piright)=-2sinleft(dfrac{5pi}{2}-xright)$

$y=-2cos (x+4pi)$

$y=-2sinleft(dfrac{pi}{2}-x-2piright)=-2sinleft(dfrac{9pi}{2}-xright)$

For example:
Step 5
5 of 6
a) It didn’t matter if we used sine or cosine.
Step 6
6 of 6
b) We prefer the cosine equations because they are more simple.
Exercise 133
Step 1
1 of 8
Let us take the periodic function of the form:
$$y=Acos(B(x-c))+D.$$
Step 2
2 of 8
The maximum of the periodic function will be $26$. The minimum value will be $12$. Therefore, the median ($D$) of the periodic function is:
$$dfrac{26+12}{2}=dfrac{38}{2}=19.$$
Step 3
3 of 8
The distance from $26$ to $19$ is $7$. Therefore, the amplitude is $A=7$. Since the maximum value of $cos$ is at $x=0$ and we have it here at $0.5$, then our periodic function will be of the form:
$$y=7cos(B(x-0.5))+19.$$
Step 4
4 of 8
The difference between $4.2$ and $0.5$ is $4.2-0.5=3.7$. Therefore, the same pattern will reappear every $3.7cdot2=7.4$ units (period) on the graph of the periodic function.
Step 5
5 of 8
$B$ is equal to $dfrac{2pi}{text{period}}$. Therefore, $B=dfrac{2pi}{7.4}=0.85.$
Step 6
6 of 8
Therefore, the periodic function is:
$$y=7cos(0.85(x-0.5))+19.$$
Step 7
7 of 8
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/710c2c33-aee9-4cab-b63b-cbbbcb9a0f2b-1632898879377398.png)
Result
8 of 8
$y=7cos(0.85(x-0.5))+19$
Exercise 134
Step 1
1 of 8
$$
y=cos(2pi(x-1))-3
$$
a) We are given the function:
Step 2
2 of 8
Amplitude:$A=1$

Period: $T=dfrac{2pi}{2pi}=1$

We determine its amplitude and period:
Step 3
3 of 8
Exercise scan
We sketch the graph:
Step 4
4 of 8
The graph is obtained starting with the parent function $y=cos x$, which we horizontally shrink by a factor of $2pi$, then horizontally shift 1 unit to the right and finally vertically shift 3 units down.
Step 5
5 of 8
$$
y=3sinleft(dfrac{pi}{2}(x-2)right)+1
$$
b) We are given the function:
Step 6
6 of 8
Amplitude:$A=3$

Period: $T=dfrac{2pi}{dfrac{pi}{2}}=4$

We determine its amplitude and period:
Step 7
7 of 8
Exercise scan
We sketch the graph:
Step 8
8 of 8
The graph is obtained starting with the parent function $y=sin x$, which we horizontally shrink by a factor of $dfrac{pi}{2}$, then horizontally shift 2 units to the right, vertically stretch by a factor of 3 and finally vertically shift 1 unit up.
Exercise 135
Step 1
1 of 2
It does not matter if we use $sin$ or $cos$ to get the periodic function because $sinleft(x+dfrac{pi}{2}right)=cos x$.
Step 2
2 of 2
To make a complete graph of the periodic function, we need its period, the amplitude, the number of units the graph was horizontally and/or vertically shifted from normal $cos x$ or $sin x$ curve and the points where the function has a maximum and minimum value.
Exercise 136
Step 1
1 of 7
Amplitude: $a=7$

Period: $T=8pi$

Let’s consider the function:
Step 2
2 of 7
$$
y=asin[b(x-h)]+k
$$
The general form of the equation is:
Step 3
3 of 7
$T=dfrac{2pi}{b}$

$8pi=dfrac{2pi}{b}$

$8pi b=2pi$

$b=dfrac{2pi}{8pi}$

$$
b=dfrac{1}{4}
$$

We determine $b$ using the period:
Step 4
4 of 7
$$
y=7sin left[dfrac{1}{4}(x-h)right]+k
$$
The function has the equation:
Step 5
5 of 7
$h=1$

$k=2$

$$
y=7sin left[dfrac{1}{4}(x-1)right]+2
$$

We give $h$ and $k$ random values:
Step 6
6 of 7
Exercise scan
We sketch the graph of the function:
Result
7 of 7
$$
y=7sinleft[frac{1}{2}(x-1)right]+2
$$
Exercise 137
Step 1
1 of 13
$theta=pi$ radians
a) We are given the angle:
Step 2
2 of 13
$$
theta=dfrac{180text{textdegree}}{pi}cdot pi=180text{textdegree}
$$
We convert the angle from radians to degrees:
Step 3
3 of 13
$$
theta=3pi
$$
b) We are given the angle:
Step 4
4 of 13
$$
theta=dfrac{180text{textdegree}}{pi}cdot 3pi=540text{textdegree}
$$
We convert the angle from radians to degrees:
Step 5
5 of 13
$$
theta=30text{textdegree}
$$
c) We are given the angle:
Step 6
6 of 13
$theta=dfrac{pi}{180text{textdegree}}cdot 30text{textdegree}=dfrac{pi}{6}$ radians
We convert the angle from degrees to radians:
Step 7
7 of 13
$$
theta=dfrac{pi}{4}
$$
d) We are given the angle:
Step 8
8 of 13
$$
theta=dfrac{180text{textdegree}}{pi}cdot dfrac{pi}{4}=45text{textdegree}
$$
We convert the angle from radians to degrees:
Step 9
9 of 13
$$
theta=225text{textdegree}
$$
e) We are given the angle:
Step 10
10 of 13
$theta=dfrac{pi}{180text{textdegree}}cdot 225text{textdegree}=dfrac{5pi}{4}$ radians
We convert the angle from degrees to radians:
Step 11
11 of 13
$$
theta=dfrac{3pi}{2}
$$
f) We are given the angle:
Step 12
12 of 13
$$
theta=dfrac{180text{textdegree}}{pi}cdot dfrac{3pi}{2}=270text{textdegree}
$$
We convert the angle from radians to degrees:
Result
13 of 13
a) $180text{textdegree}$; b) $540text{textdegree}$; c) $dfrac{pi}{6}$ radians; d) $45text{textdegree}$; e) $dfrac{5pi}{4}$ radians; f) $270text{textdegree}$;
Exercise 138
Step 1
1 of 17
$$
cosleft(dfrac{3pi}{4}right)
$$
a) We are given the expression:
Step 2
2 of 17
$$
cosleft(dfrac{3pi}{4}right)=-cosleft(pi-dfrac{3pi}{4}right)=-cosleft(dfrac{pi}{4}right)=-dfrac{sqrt 2}{2}
$$
We determine the exact value of the expression:
Step 3
3 of 17
$$
tanleft(dfrac{4pi}{3}right)
$$
b) We are given the expression:
Step 4
4 of 17
$$
tanleft(dfrac{4pi}{3}right)=tanleft(dfrac{4pi}{3}-piright)=tanleft(dfrac{pi}{3}right)=sqrt 3
$$
We determine the exact value of the expression:
Step 5
5 of 17
$$
sinleft(dfrac{11pi}{6}right)
$$
c) We are given the expression:
Step 6
6 of 17
$$
sinleft(dfrac{11pi}{6}right)=-sinleft(2pi-dfrac{11pi}{6}right)=-sin dfrac{pi}{6}=-dfrac{1}{2}
$$
We determine the exact value of the expression:
Step 7
7 of 17
$$
sinleft(dfrac{3pi}{4}right)
$$
d) We are given the expression:
Step 8
8 of 17
$$
sinleft(dfrac{3pi}{4}right)=sinleft(pi-dfrac{3pi}{4}right)=sin dfrac{pi}{4}=dfrac{sqrt 2}{2}
$$
We determine the exact value of the expression:
Step 9
9 of 17
$$
tanleft(dfrac{5pi}{4}right)
$$
e) We are given the expression:
Step 10
10 of 17
$$
tanleft(dfrac{5pi}{4}right)=tanleft(dfrac{5pi}{4}-piright)=tan dfrac{pi}{4}=1
$$
We determine the exact value of the expression:
Step 11
11 of 17
$$
tanleft(dfrac{17pi}{6}right)
$$
f) We are given the expression:
Step 12
12 of 17
$tanleft(dfrac{17pi}{6}right)=tanleft(dfrac{17pi}{6}-2piright)=tan dfrac{5pi}{6}$

$$
=-tanleft(pi-dfrac{5pi}{6}right)=-tanleft(dfrac{pi}{6}right)=-dfrac{sqrt 3}{3}
$$

We determine the exact value of the expression:
Step 13
13 of 17
$$
tan^{-1}(1), thetain[0,2pi)
$$
g) We are given the expression:
Step 14
14 of 17
$$
tan^{-1}(1)=dfrac{pi}{4}
$$
We determine the exact value of the expression:
Step 15
15 of 17
$$
tan^{-1}(-1), thetain[0,2pi)
$$
h) We are given the expression:
Step 16
16 of 17
$$
tan^{-1}(-1)=-dfrac{pi}{4}
$$
We determine the exact value of the expression:
Result
17 of 17
a) $-dfrac{sqrt 2}{2}$; b) $sqrt 3$; c) $-dfrac{1}{2}$; d) $dfrac{sqrt 2}{2}$; e) $1$; f) $-dfrac{sqrt 3}{3}$; g) $dfrac{pi}{4}$; h) $-dfrac{pi}{4}$;
Exercise 139
Solution 1
Solution 2
Step 1
1 of 7
a) In this exercise we can use the following formula

$$
color{#c34632}{ log_ca – log_cb = log_c {frac ab}}
$$

Therefore

$$
begin{align*}
log_2{(30x)} – log_2{(6)} &= log_2{left( frac {30x}{6} right)}\
&= log_2 {(5x)}
end{align*}
$$

Step 2
2 of 7
b) In this exercise we can use the following formula

$$
begin{align*}
color{#c34632}{log_ca + log_cb = log_c {a cdot b}} tag{**}\
color{#c34632}{log_c {a^b} = b log_ca}
end{align*}
$$

Therefore

$$
begin{align*}
2 log_3 {(x)} + log_3 {(5)} &= log_3 {(x^2)} + log_3 {(5)}\
&= log_3 {(x^2 cdot 5)}
end{align*}
$$

Step 3
3 of 7
c) We can use the formula

$$
begin{align*}
color{#c34632}{log_ca = b} tag{*}\
color{#c34632}{a = c^b}
end{align*}
$$

Then

$$
begin{align*}
log_7 {(3x-2)} &= 2\
3x -2 &= 7^2\
3x-2 &= 49\
3x &= 47\
x &= frac {47}{3}\
x &= 15.66
end{align*}
$$

Step 4
4 of 7
d) We can use the formula $(*)$

$$
begin{align*}
log {(2x+1)} &= -1\
log_{10}{(2x+1)} &= -1\
2x+1 &= 10^{-1}\
2x+1 &= 0.1\
2x &= -0.9\
x &= -0.45
end{align*}
$$

Step 5
5 of 7
e) We can use the formula $(**)$

$$
begin{align*}
log_5 {(3y)} + log_5 {(9)} &= log_5 {(405)}\
log_5 {(3y cdot 9)} &= log_5 {(405)}\
log_5 {(27y)} &= log_5 {(405)}\
27y &= 405\
y &= frac {405}{27}\
y &= 15
end{align*}
$$

Step 6
6 of 7
f) We can use the formula $(**)$

$$
begin{align*}
log {(x)} + log {(x+21)} &= 2\
log_{10}{(x)} + log_{10}{(x+21)} &= 2\
log_{10}{(x cdot (x+21))} &= 2\
log_{10}{(x^2 + 21x)} &= 2
end{align*}
$$

Using the $(*)$

$$
begin{align*}
x^2 + 21x &= 10^2\
x^2 + 21x &= 100\
x^2 + 21x – 100 &= 0
end{align*}
$$

The solution of a square equation $ax^2 + bx + c = 0$ are shape

$$
x = frac {-b pm sqrt {b^2 -4ac}}{2a}
$$

Now we can

$$
begin{align*}
x &= frac {-21 pm sqrt {441 + 400}}{2}\
x &= frac {-21 pm sqrt {841}}{2}\
x &= frac {-21 pm 29}{2}\
x &= -25 qquad x=4
end{align*}
$$

Result
7 of 7
a) $log_2 {(5x)}$

b) $log_3 {(x^2 cdot 5)}$

c) $x = 15.66$

d) $x = -0.45$

e) $y = 15$

f) $x = -25 qquad x=4$

Step 1
1 of 14
$$
log_2 (30x)-log_2(6)
$$
a) We are given the expression:
Step 2
2 of 14
$$
log_2 (30x)-log_2(6)=log_2left(dfrac{30x}{6}right)=log_2 (5x)
$$
We use the Quotient Property of Logarithms:

$log_a (x)-log_a (y)=log_a left(dfrac{x}{y}right)$.

Step 3
3 of 14
$2log_3 (x)+log_3 (5)$
b) We are given the expression:
Step 4
4 of 14
$2log_3 (x)+log_3 (5)=log_3 (x^2)+log_3 (5)=log_3 (5x^2)$
First we use the Power Property of Logarithms:

$log_a (x^m)=mlog_2 (x)$,

then we use the Product Property of Logarithms:

$log_a x+log_a y=log_a (xy)$.

Step 5
5 of 14
$$
log_7 (3x-2)=2
$$
c) We are given the equation:
Step 6
6 of 14
$3x-2=7^2$

$3x-2=49$

$3x=49+2$

$3x=51$

$x=dfrac{51}{3}$

$$
x=17
$$

We rewrite the equation in the exponential form and solve it:
Step 7
7 of 14
$$
log (2x+1)=-1
$$
d) We are given the equation:
Step 8
8 of 14
$2x+1=10^{-1}$

$2x+1=0.1$

$2x=0.1-1$

$2x=-0.9$

$x=dfrac{-0.9}{2}$

$$
x=-0.45
$$

We rewrite the equation in the exponential form and solve it:
Step 9
9 of 14
$$
log_5 (3y)+log_5 (9)=log_5 (405)
$$
e) We are given the equation:
Step 10
10 of 14
$log_5 (3ycdot 9)=log_5 (405)$

$log_5 (27y)=log_5 (405)$

$27y=405$

$y=dfrac{405}{27}$

$$
y=15
$$

We use the Product Property of Logarithms:

$log_a x+log_a y=log_a (xy)$.

Step 11
11 of 14
$$
log (x)+log (x+21)=2
$$
f) We are given the equation:
Step 12
12 of 14
$log [x(x+21)]=2$

$x^2+21x=10^2$

$x^2+21x=100$

$x^2-4x+25x-100=0$

$x(x-4)+25(x-4)=0$

$(x-4)(x+25)=0$

$x-4=0Rightarrow x_1=4$

$x+25=0Rightarrow x_2=-25$

We use the Product Property of Logarithms:

$log_a x+log_a y=log_a (xy)$.

Step 13
13 of 14
$$
x=4
$$
As $log (x)$ is undefined for $xleq 0$, the only solution is:
Result
14 of 14
a) $log_2 (5x)$; b) $log_3 (5x^2)$; c) $x=17$; d) $x=-0.45$; e) $y=15$; f) $x=4$
Exercise 140
Step 1
1 of 3
$$
P(x)=x^2+kx+18
$$
We are given the polynomial:
Step 2
2 of 3
$Delta=k^2-4(1)(18)=k^2-72$

$Deltageq 0$

$k^2-72geq 0$

$k^2geq 72$

$|k|geq sqrt{72}$

$|k|geq 6sqrt 2$

$$
kin (-infty,-6sqrt 2]cup[6sqrt 2,infty)
$$

Since $P(x)$ is factorable with real coefficients, the discriminant must be greater or equal to zero:
Result
3 of 3
$$
kin (-infty,-6sqrt 2]cup[6sqrt 2,infty)
$$
Exercise 141
Solution 1
Solution 2
Step 1
1 of 5
$$
-23,-19,-15,…
$$
We are given the arithmetic sequence:
Step 2
2 of 5
$a_1=-23$

$$
d=-19-(-23)=4
$$

We determine the elements of the arithmetic sequence:
Step 3
3 of 5
$a_n>10,000$

$a_1+(n-1)d>10,000$

$-23+(n-1)cdot 4>10,000$

$-23+4n-4>10,000$

$4n-27>10,000$

$4n>10,000+27$

$4n>10,027$

$n>dfrac{10,027}{4}$

$$
n>2506
$$

We have to solve the inequality:
Step 4
4 of 5
$$
a_{2507}=-23+(2507-1)cdot 4=10,001
$$
The first term having a value over $10,000$ is the term with number 2507. The term is:
Result
5 of 5
The 2507th term (the term $10,001$)
Step 1
1 of 3
a) Formula for arithmetic sequence is

$$
color{#c34632}{ a_n = a_1 + (n-1) d}
$$

where

$$
a_1 = -23
$$

and

$$
begin{align*}
a_2 &= a_1 + (2-1) d\
-19 &= -23 + (2-1) d\
-19 &= -23 + d\
d &= 4
end{align*}
$$

Step 2
2 of 3
b) We need to calculate the first number more than 10000

$$
begin{align*}
a_n &> 10000\
a_1 + ( n-1 ) d &> 10000\
-23 + ( n-1 ) 4 &>10000\
4 (n-1) &> 10000 +23\
4 (n-1) &> 10023\
n-1 &> 2505.75\
n &> 2506.75
end{align*}
$$

Check

$$
begin{align*}
a_{2507} &= a_1 + (2507-1)d\
a_{2507} &= -23 + 2506 cdot 4\
a_{2507} &= -23 + 10024\
a_{2507} &= 10001
end{align*}
$$

The first number that is higher than 10000 is 2507.

Result
3 of 3
a) $d = 4$

b) $2507$

Exercise 142
Step 1
1 of 6
a) Let’s note:

$x$=the number of miles traveled with the car

$y$=the number of days the car is rented

Step 2
2 of 6
$$
C_1(x)=25y+0.50x
$$
The cost for the first car is:
Step 3
3 of 6
$$
C_2(x)=0.03(2^{x-1})
$$
The cost for the second car is:
Step 4
4 of 6
$x=10$

$C_1(10)=2cdot 25+0.50cdot 10=55$

$x=20$

$C_1(10)=2cdot 25+0.50cdot 20=60$

$x=100$

$C_1(10)=2cdot 25+0.50cdot 100=100$

b) We compute the cost for a mid-sized car for 2 days:
Step 5
5 of 6
$x=10$

$C_2(10)=0.03(2^9)=15.36$

$x=20$

$C_2(20)=0.03(2^{19})=15,728.64$

$x=100$

$C_2(100)=0.03(2^{199})=2.41cdot 10^{58}$

We compute the cost for a sedan for 2 days:
Step 6
6 of 6
The best option for renting a car for 10 miles is a sedan, but for 20 and 100 miles a mid-sized car is best.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Investigations and Functions
Chapter 2: Transformations of Parent Graphs
Page 53: Questions
Page 100: Closure Activity
Chapter 3: Solving and Inequalities
Page 107: Questions
Page 151: Closure Activity
Chapter 4: Normal Distributions and Geometric Modeling
Page 157: Questions
Page 217: Closure Activity
Chapter 7: Logarithms and Triangles
Page 321: Questions
Page 368: Closure Activity
Chapter 8: Polynomials
Page 373: Questions
Page 425: Closure Activity
Chapter 9: Trigonometric Functions
Page 431: Questions
Page 483: Closure Activity
Chapter 10: Series
Page 489: Questions
Page 557: Closure Activity
Chapter 11: Rational Expressions and Three-Variable Systems
Page 563: Questions
Page 605: Closure Activity
Chapter 12: Analytic Trigonometry
Page 611: Questions
Page 643: Closure Activity