Core Connections Integrated 3
Core Connections Integrated 3
1st Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283939
Table of contents
Textbook solutions

All Solutions

Page 373: Questions

Exercise 1
Step 1
1 of 2
We note that the function $y=x(x-2)$ (blue graph) has zeros ar $x=0$ and $x=2$, the function $y=(x-2)^2$ has a double root at $x=2$ and the function $y=x(x-2)(x-3)$.

The given graph has a root at $x=0$ and $x=3$ and a double root at $x=2$, thus the equation of this function is then $y=x(x-2)^2(x-3)$ (as we note on this graph, this function matches the given graph).

Exercise scan

Result
2 of 2
$$
y=x(x-2)^2(x-3)
$$
Exercise 2
Step 1
1 of 1
On the graph we note that functions of the form $y=(x-a)(x-b)(x-c)…$ have roots at $x=a$, $x=b$, $x=c$.

If a factor of the function is of the form $(x-a)^2$ then $x=a$ is a double root (function will touch the $x$-axis in this point but not go to the other side of the axis) and if it is of the form $(x-a)^3$ then it is a triple root (function becomes almost zero at an interval close to the point $x=a$).

We note that if the function is negative before a single root, then it will become positive after the single root.

Exercise scan

Exercise 3
Step 1
1 of 3
a. This function belongs to the third degree polynomials because the first factor is to the first power and the second factor is to the second power, adding these powers then gives us that the highest term of the polynomial will be of degree 3.Exercise scan
Step 2
2 of 3
b. The $x$-intercepts are the intersections of the graph with the $x$-axis, thus $x=2$ and $x=-5$.

Before the first $x$-intercept the function is negative and increasing, between the $x$-intercepts the function is negative (partly increasing and partly decreasing) and after the last $x$-intercepts the function is positive and increasing.

Result
3 of 3
a. Third degree polynomials

b. $x=2$ and $x=-5$

Exercise 4
Step 1
1 of 3
a. The function had four different factors: $2, (x-2), (x+2), (x-3)$.

The graph of the function will have 3 $x$-intercepts because the function contains three factors of the form $(x-a)$.

We note that this graph differs at the $x$-intercepts, because before and after each $x$-intercept the function changes from negative to positive or from positive to negative.

Exercise scan

Step 2
2 of 3
b. The factor 2 does not affect the $x$-intercepts (since this function has the same $x$-intercepts as the function $P(x)=(x-2)(x+2)(x-3)$).

The shape of the graph is affected by the factor 2 because it stretches the function $P(x)=(x-2)(x+2)(x-3)$ vertically be a factor 2.

The $y$-intercepts are also influenced because the $y$-intercept of $P(x)=(x-2)(x+2)(x-3)$ is $y=12$ and of this function is $y=24$.

If the factor 2 is changed to $-2$ than the graph of the function will be reflected about the $x$-axis.

Result
3 of 3
a. 4, 3

b. No, yes, yes, reflection about the $x$-axis

Exercise 5
Step 1
1 of 2
$P_3(x)$ differs because it has not been given in the form $P(x)=C(x-a)(x-b)(x-c)$, instead the factors have been multiplied and worked out.

From the equation of the function we know that $x=0$ will be an $x$-intercept, because every term contains a factor $x$ and thus this factor could be factored out as $P_3=x(x^3-21x+20)$.

On the graph of the function we then note that $x=-5$, $x=0$, $x=1$ and $x=4$ are the $x$-intercepts.

Exercise scan

Result
2 of 2
$x=-5$, $x=0$, $x=1$ and $x=4$
Exercise 6
Step 1
1 of 2
We note that $P_4(x)$ has roots at $x=-3$ (double), $x=-1$, $x=1$ and $x=5$.

We note that $P_5(x)$ has roots at $x=0$ and $x=-4$ (triple).

We note that $P_6(x)$ has roots at $x=0$ (double), $x=-3$, $x=3$.

Exercise scan

Step 2
2 of 2
We note that $P_7(x)$ has roots at $x=0$, $x=-1$, $x=3$ and $x=-4$.

We note that $P_8(x)$ has roots at $x=-1$ (double), $x=2$ and $x=4$.

Exercise scan

Exercise 7
Step 1
1 of 1
Determine first the $x$-intercepts of the function, if the equation of the function contains factors of the form $(x-a)$ then the function will have an $x$-intercept at $x=a$. If the factor is of the form $(x-a)^2$ then the root is double and if the factor is of the form $(x-a)^3$ then the root is triple.

Determine if the function is positive or negative before, between and after all $x$-intercepts.

The function will change sign (positive/negative) after a single root and a triple root, however it will not change sign after a double root.

Exercise 8
Step 1
1 of 5
a.Exercise scan
Step 2
2 of 5
b.Exercise scan
Step 3
3 of 5
c.Exercise scan
Step 4
4 of 5
d. The first and the third function have three $x$-intercepts and are thus three degree functions, which has as parent function $y=x^3$.

The second function has four $x$-intercepts and is thus of degree 4, which has as parent function $y=x^4$.

Result
5 of 5
$y=x^3$ and $y=x^4$
Exercise 9
Step 1
1 of 2
$$
text{The polynomial which has degree $n$ and coefficients $a_n, a_{n-1} ,…, a_1, a_0$ is the following,}
$$

$$
Pleft(xright)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0
$$

#### a.

$text{The function is a polynomial because it is of shape $Pleft(xright)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0$.}$

$$
text{The given polynomial has degree $5$ and coefficients $a_5=8, a_4=6.5, a_2=1$ and $a_0=6$.}
$$

#### b.

$text{The function is a polynomial because it is of shape $Pleft(xright)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0$.}$

$$
text{The given polynomial has degree $6$ and coefficients $a_6=dfrac{3}{5}$ and $a_2=19$.}
$$

#### c.

$$
text{The function in graph textbf{c.} is not a polynomial because it has a horizontal asymptote $rightarrow y=8$.}
$$

#### d.

$$
text{The function in graph textbf{d.} is not a polynomial because its left end doesn’t go to $-infty$ or $infty$.}
$$

#### e.

$$
text{The function in graph textbf{e.} is a polynomial.}
$$

#### f.

The function is not a polynomial because it contains the variable in the denominator of a fraction.
#### g.

For example:

$$
pleft(xright)=6x^4+3x^3-2x^2+7x-1
$$

$text{The function is a polynomial because it is of shape $Pleft(xright)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0$.}$

$text{The given polynomial has degree $4$ and coefficients $a_4=6, a_3=3, a_2=-2, a_1=7$ and $a_0=-1$.}$

For example:

$$
pleft(xright)=5x^2+frac{1}{x+6}
$$

The function is not a polynomial because it contains the variable in the denominator of a fraction.

Result
2 of 2
$$
text{The polynomial functions are: textbf{a., b., e.}}
$$
Exercise 10
Solution 1
Solution 2
Step 1
1 of 3
a)\\
begin{tabular}{ p{4cm}| |p{2cm} |p{2.5cm}| p{2cm}| p{2cm}}

& 1st & 2nd & 3rd & 4th \
hline
What does $g$ to $x$ & adds $1$ & $left(quad right)^2$ & divides by $3$ & subtracts $2$\
hline
What does $g^{-1}$ to $x$ & adds $2$ & multiplies by $3$ & $sqrt{ } $ & subtracts $1$\

end{tabular}

Step 2
2 of 3
b)

$$
fleft(xright)=2sqrt{x-1}+3
$$

$$
f^{-1}left(xright)=left(frac{x-3}{2}right)^2+1
$$

$$
gleft(xright)=frac{1}{3}left(x+1right)^2-2
$$

$$
g^{-1}left(xright)=sqrt{3left(x+2right)}-1
$$

Result
3 of 3
$$
f^{-1}left(xright)=left(frac{x-3}{2}right)^2+1
$$

$$
g^{-1}left(xright)=sqrt{3left(x+2right)}-1
$$

Step 1
1 of 3
a. $g^{-1}$ is the function that would undo the operations of $g$ (thus the opposite transformation) in the opposite order (thus first undo the last transformation, then the next to last, etc.)

Exercise scan

Step 2
2 of 3
b. The function equation can be obtained by applying the given transformation of the inverse function to $x$:

$$
f^{-1}(x)=left(dfrac{x-3}{2}right)^2+1
$$

$$
g^{-1}(x)=sqrt{3left(x+3right)}-1
$$

Result
3 of 3
a. See table

b. $f^{-1}(x)=left(dfrac{x-3}{2}right)^2+1$ and $g^{-1}(x)=sqrt{3left(x+3right)}-1$

Exercise 11
Step 1
1 of 2
#### a.

$text{In order to find the $x$-intercept we should set $fleft(xright)$ to zero and thus find the $x$ coordinate.}$

$$
begin{align*}
0&=left(x+3right)^2-5 && text{Substitute} fleft(xright)
=0. \
left(x+3right)^2&=5 && text{Add} 5 text{to both sides.} \
x+3&=pmsqrt{5} && text{Square root of both sides.} \
x&=pmsqrt{5}-3 && text{Subtract} 3 text{from both sides.} \
end{align*}
$$

$$
text{The $x$-intercepts of the graph of $f$ are $left(-sqrt{5}-3, 0right)$ and $left(sqrt{5}-3, 0right)$.}
$$

#### b.

$text{In order to find the $x$-intercept we should set $fleft(xright)$ to zero and thus find the $x$ coordinate.}$

$$
begin{align*}
0&=left(x-74right)^2left(x+29right) && text{Substitute} fleft(xright)=0. \
x-74&=0 text{or} x+29=0 && acdot b=0Rightarrow a=0 text{or} b=0. \
x&=74 text{or} x=-29 && text{Solve for} x. \
end{align*}
$$

$$
text{The $x$-intercepts of the graph of $f$ are $left(74, 0right)$ and $left(-29, 0right)$.}
$$

Result
2 of 2
$textbf{a.}$ $text{The $x$-intercepts of the graph of $f$ are $left(-sqrt{5}-3, 0right)$ and $left(sqrt{5}-3, 0right)$.}$

$textbf{b.}$ $text{The $x$-intercepts of the graph of $f$ are $left(74, 0right)$ and $left(-29, 0right)$.}$

Exercise 12
Step 1
1 of 2
#### a.

$$
begin{align*}
log left(1right)&=0 && text{Basic properties of logarithms:} log_a1=0.
end{align*}
$$

#### b.

$$
begin{align*}
log left(10^3right)&=3log left(10right) && text{Power rule:} log_ax^p=plog_ax. \
&=3 cdot 1 && text{Basic properties of logarithms:} log_aa=1. \
&=3
end{align*}
$$

#### c.

$$
begin{align*}
10^{log left(4right)}&=4 && text{Basic properties of logarithms:} a^{log_ax}=x. \
end{align*}
$$

#### d.

$$
begin{align*}
10^{3log left(4right)}&=10^{log left(4^3right)} && text{Power rule:} log_ax^p=plog_ax. \
&=10^{log left(64right)} && text{Simplify.} \
&=64 && text{Basic properties of logarithms:} a^{log_ax}=x. \
end{align*}
$$

Result
2 of 2
$textbf{a.}$ $0$, $textbf{b.}$ $3$, $textbf{c.}$ $4$, $textbf{d.}$ $64$
Exercise 13
Solution 1
Solution 2
Step 1
1 of 2
a. Group the real parts and the complex parts of the numbers:

$$
(3+7)+(4i-2i)
$$

Simplify:

$$
10+2i
$$

b. Use $(a+b)^2=a^2+2ab+b^2$:

$$
(3+5i)^2=9+30i+25i^2=9+30i-25=-16+30i
$$

c. Use $(a+b)(a-b)=a^2-b^2$:

$$
(7+i)(7-i)=49-i^2=49+1=50
$$

d.

$$
(3i)(2i)^2=(3i)(4i^2)=(3i)(-4)=-12i
$$

e.
$$
i^3=i^2cdot i=-1cdot i=-i
$$

f.
$$
i^{32}=(i^4)^8=1^8=1
$$

Result
2 of 2
a. $10+2i$

b. $-16+30i$

c. $50$

d. $-12i$

e. $-i$

f. $1$

Step 1
1 of 7
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
&left(3+7right)+left(4-2right)i&&boxed{text{Group }}\
&10+(4-2)i&&boxed{text{Calculate within parentheses}}\
&10+2i&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}10+2i} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }text{Group:the:real:part:and:the:imaginary:part:of:the:complex:number }}
$$

$$
boxed{ color{#c34632} text{ } left(a+biright)pm left(c+diright)=left(a:pm :cright)+left(b:pm :dright)i}
$$

Step 2
2 of 7
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
&3^2+2cdot :3cdot :5i+left(5iright)^2&&boxed{text{Perfect square formula }}\
&9+2cdot :3cdot :5i+left(5iright)^2&&boxed{text{Evaluate }3^2=9}\
&9+30i+left(5iright)^2&&boxed{text{Multiply the numbers: }2cdot3cdot5i=30i}\
&9+30i+5^2i^2&&boxed{text{Raise to the second power}}\
&9+30i+25i^2&&boxed{text{Evaluate: }5^2=25}\
&9+30i+25(-1)&&boxed{text{Apply imaginary number rule }i^2=-1}\
&9+30i-25&&boxed{text{Multiply the numbers: } 25(-1)=-25}\
&-16+30i&&boxed{text{Subtract the numbers: } 9+25=-16}\
&boxed{{color{#c34632}-16+30i} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:Perfect:Square:Formula}:quad left(a+bright)^2=a^2+2ab+b^2}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:exponent:rule}:quad left(acdot :bright)^n=a^nb^n}
$$

Step 3
3 of 7
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

$$
begin{align*}
&7^2+1^2&&boxed{text{Apply complex arithmetic rule}}\
&49+1^2&&boxed{text{Evaluate }7^2=49}\
&49+1&&boxed{text{Evaluate }1^2=1}\
&50&&boxed{text{Add the numbers: } 49+1=50}\\
&boxed{{color{#c34632}50} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:complex:arithmetic:rule}:quad left(a+biright)left(a-biright)=a^2+b^2}
$$

Step 4
4 of 7
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

$$
begin{align*}
&3ileft(2iright)^2&&boxed{text{Remove parentheses }}\
&3i2^2i^2&&boxed{text{Raise to the second power}}\
&2^23ii^2&&boxed{text{Simplify}}\
&2^23i^{1+2}&&boxed{text{Add exponents when multiplying powers}}\
&2^23i^3&&boxed{text{Simplify exponents}}\
&4cdot3i^3&&boxed{text{Evaluate: } 2^2=4}\
&4cdot3(-i)&&boxed{text{Apply imaginary number rule: } i^3=-i}\
&4cdot(-3i)&&boxed{text{Simplify}}\
&-12i&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}-12i} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:exponent:rule}:quad left(acdot :bright)^n=a^nb^n}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:exponent:rule}:quad :a^bcdot :a^c=a^{b+c}}
$$

Step 5
5 of 7
$$
{color{#4257b2}text{e)}}
$$

Solution to this example is given below

$$
begin{align*}
&i^2i&&boxed{text{Apply exponent rule }}\
&-1i&&boxed{text{Apply imaginary number rule: }i^2=-1}\
&-i&&boxed{text{Multiply: }-1cdot i=-i}\\
&boxed{{color{#c34632}-i} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:exponent:rule}:quad :a^{b+c}=a^ba^c}
$$

Step 6
6 of 7
$$
{color{#4257b2}text{f)}}
$$

Solution to this example is given below

$$
begin{align*}
&left(i^2right)^{16}&&boxed{text{Apply exponent rule }}\
&left(-1right)^{16}&&boxed{text{Apply imaginary number rule: }i^2=-1}\
&1^{16}&&boxed{text{Remove parenthseses: }(-1)^{16}=1^{16}}\
&1&&boxed{text{Evaluate: } 1^{16}=1}\\
&boxed{{color{#c34632}1} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:exponent:rule}:quad :a^{b+c}=a^ba^c}
$$

Result
7 of 7
$$
color{#4257b2} text{ a) }10+2i
$$

$$
color{#4257b2} text{ b) } -16+30i
$$

$$
color{#4257b2} text{ c) }50
$$

$$
color{#4257b2} text{ d) }-12i
$$

$$
color{#4257b2} text{ e) }-1
$$

$$
color{#4257b2} text{ f) }1
$$

Exercise 14
Step 1
1 of 2
$overline {AB} parallel overline {CP}$          (Given)

$overline {AC}$ is a transversal of both parallel lines.

So,

$mangle {BAC}=mangle {ACP}$          (A pair of alternate interior angles)

$4x-3y=65$          (1)

$mangle {AMB}=mangle {CMP}$          (A pair of vertical angles)

$3x-y=2x+3y$

$3x-2x=3y+y$

$x=4y$          (2)

Substituting for $x$ in equation (1)

$4(4y)-3y=65$

$13y=65$

$$
y=5
$$

$4x-3(5)=65$          (Substituting 5 for $y$ in equation (1))

$4x-15=65$

$4x=80$

$$
x=20
$$

$mangle CMP=2(20)+3(5)=40+15=55$ $text{textdegree}$

$mangle PCM=4(20)-3(5)=80+15=65$ $text{textdegree}$

$mangle {CPM}=180-(65+55)=180-120=60$ $text{textdegree}$

Result
2 of 2
$mangle {CPM}=60$ $text{textdegree}$
Exercise 15
Solution 1
Solution 2
Step 1
1 of 2
a. Let $y=0$ and factorize:

$$
0=(x-4)(x-2)
$$

Zero product property:

$$
x-4=0 text{ or } x-2=0
$$

Solve each equation to $x$:

$$
x=4 text{ or } x=2
$$

b. Let $y=0$ and factorize:

$$
0=(x-3)^2
$$

Zero product property:

$$
x-3=0
$$

Solve each equation to $x$:

$$
x=3
$$

c. Let $y=0$ and factorize:

$$
0=x(x-2)(x+2)
$$

Zero product property:

$$
x=0text{ or }x-2=0 text{ or } x+2=0
$$

Solve each equation to $x$:

$$
x=0text{ or }x=2 text{ or } x=-2
$$

Result
2 of 2
a. $x=4$ and $x=2$

b. $x=3$

c. $x=0$ and $x=2$ and $x=-2$

Step 1
1 of 5
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
0&=x^2-6x+8&&boxed{text{Substitute 0 for }y}\
x^2-6x+8&=0&&boxed{text{Switch sides}}\
end{align*}
$$

Solve with the quadratic formula

$$
begin{align*}
x_{1,:2}&=frac{-bpm sqrt{b^2-4ac}}{2a}&&boxed{text{ Use quadratic formula}}\
x_{1,:2}&=frac{-left(-6right)pm sqrt{left(-6right)^2-4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Substitute }1 text{ for }a, -6 text{ for } b, text{ and } 8 text{ for } c.} \
end{align*}
$$

First we solve $x_1$

$$
begin{align*}
x_1&=frac{-left(-6right)+sqrt{left(-6right)^2-4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Simplify}}\
x_1&=frac{6-sqrt{left(-6right)^2-4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Remove parentheses}}\
x_1&=frac{6+sqrt{36-4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Evaluate: }(-6)^2=36}\
x_1&=frac{6+sqrt{36-32}}{2cdot :1}&&boxed{text{Multiply the numbers: } 4cdot1cdot8=32}\
x_1&=frac{6+sqrt{36-32}}{2}&&boxed{text{Multiply the numbers: }2cdot1=2}\
x_1&=frac{6+sqrt{4}}{2}&&boxed{text{Subtract the numbers: }36-32=4}\
x_1&=frac{6+2}{2}&&boxed{text{Simplify}}\
x_1&=frac{8}{2}&&boxed{text{Add the numbers: } 6+2=8}\
x_1&=color{#c34632}{4}&&boxed{text{Simplify}}\
end{align*}
$$

Step 2
2 of 5
noindent
Second we solve $x_2$
begin{align*}
x_2&=frac{-left(-6right)-sqrt{left(-6right)^2-4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Simplify}}\
x_2&=frac{6-sqrt{left(-6right)^2-4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Remove parentheses}}\
x_2&=frac{6-sqrt{36-4cdot :1cdot :8}}{2cdot :1}&&boxed{text{Evaluate: }(-6)^2=36}\
x_2&=frac{6-sqrt{36-32}}{2cdot :1}&&boxed{text{Multiply the numbers: } 4cdot1cdot8=32}\
x_2&=frac{6-sqrt{36-32}}{2}&&boxed{text{Multiply the numbers: }2cdot1=2}\
x_2&=frac{6-sqrt{4}}{2}&&boxed{text{Subtract the numbers: }36-32=4}\
x_2&=frac{6-2}{2}&&boxed{text{Simplify}}\
x_2&=frac{4}{2}&&boxed{text{Subtract the numbers: } 6-2=4}\
x_2&=color{red}{2}&&boxed{text{Simplify}}\\
&boxed{{color{Maroon}x_1=4, x_2=2} }&&boxed{text{Final solution}}\
end{align*}
Step 3
3 of 5
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
0&=x^2-6x+9&&boxed{text{Substitute 0 for }f(x)}\
x^2-6x+9&=0&&boxed{text{Switch sides}}\
end{align*}
$$

Solve with the quadratic formula

$$
begin{align*}
x_{1,:2}&=frac{-bpm sqrt{b^2-4ac}}{2a}&&boxed{text{ Use quadratic formula}}\
x_{1,:2}&=frac{-left(-6right)pm sqrt{left(-6right)^2-4cdot :1cdot :9}}{2cdot :1}&&boxed{text{Substitute }1 text{ for }a, -6 text{ for } b, text{ and } 9 text{ for } c.} \
x_{1,:2}&=frac{6pm sqrt{left(-6right)^2-4cdot :1cdot :9}}{2cdot :1}&&boxed{text{Remove parentheses}}\
x_{1,:2}&=frac{6pm sqrt{36-4cdot :1cdot :9}}{2cdot :1}&&boxed{text{Evaluate: }(-6)^2=36}\
x_{1,:2}&=frac{6pm sqrt{36-36}}{2cdot :1}&&boxed{text{Multiply the numbers: } 4cdot1cdot9=36}\
x_{1,:2}&=frac{6pm sqrt{36-36}}{2}&&boxed{text{Multiply the numbers: }2cdot1=2}\
x_{1,:2}&=frac{6pm sqrt{0}}{2}&&boxed{text{Subtract the numbers: }36-36=0}\
x&=frac{6}{2}&&boxed{text{Simplify}}\
x&=color{#c34632}{3}&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=3} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 4
4 of 5
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

$$
begin{align*}
0&=x^3-4x&&boxed{text{Substitute 0 for }y}\
x^3-4x&=0&&boxed{text{Switch sides}}\
end{align*}
$$

Solve by factoring

$$
begin{align*}
x^2x-4x&=0&&boxed{text{Apply exponent rule}}\
xleft(x^2-4right)&=0&&boxed{text{Factor out common term }x}\
x(x^2-2^2)&=0&&boxed{text{Rewrite 4 as }2^2}\
xleft(x+2right)left(x-2right)&=0&&boxed{text{Squares formula}}\
end{align*}
$$

Using the zero factor principle

$$
begin{align*}
x&=color{#c34632}{0} &&boxed{text{Simplify}}\
end{align*}
$$

Using the zero factor principle

$$
begin{align*}
x+2&=0 &&boxed{text{Simplify}}\
x+2-2&=0-2&&boxed{text{Subtract 2 from both sides}}\
x&=color{#c34632}{-2}&&boxed{text{Simplify}}\
end{align*}
$$

Using the zero factor principle

$$
begin{align*}
x-2&=0 &&boxed{text{Simplify}}\
x-2+2&=0+2&&boxed{text{Add 2 from both sides}}\
x&=color{#c34632}{2}&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=0, x=-2, x=2} }
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{Apply:exponent:rule}:quad :a^{b+c}=a^ba^c}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:Difference:of:Two:Squares:Formula::}x^2-y^2=left(x+yright)left(x-yright) }
$$

Result
5 of 5
$$
color{#4257b2} text{ a) }x_1=4, x_2=2
$$

$$
color{#4257b2} text{ b) } x=3
$$

$$
color{#4257b2} text{ c) }x=0, x=-2, x=2
$$

Exercise 16
Step 1
1 of 2
#### a.

$$
begin{align*}
y&=2x-3 && text{Substitute} y text{for} fleft(xright). \
y+3&=2x && text{Add} 3 text{to both sides.} \
frac{y+3}{2}&=x && text{Divide both sides by} 2. \
frac{y+3}{2}&=f^{-1}left(yright) && text{Substitute} f^{-1}left(yright) text{for} x. \
end{align*}
$$

#### b.

$$
begin{align*}
y&=left(x-3right)^2+2 && text{Substitute} y text{for} hleft(xright). \
y-2&=left(x-3right)^2 && text{Subtract} 2 text{from both sides.} \
sqrt{y-2}&=x-3 && text{Square root of both sides.} xgeq 0 \
sqrt{y-2}+3&=x && text{Add} 3 text{ro both sides.} \
sqrt{y-2}+3&=h^{-1}left(yright) && text{Substitute} h^{-1}left(yright) text{for} x. \
end{align*}
$$

Result
2 of 2
$textbf{a.}$ $f^{-1}left(yright)=dfrac{y+3}{2}$, $textbf{b.}$ $h^{-1}left(yright)=sqrt{y-2}+3$
Exercise 17
Step 1
1 of 2
#### a.

$$
begin{align*}
log left(6right)&=log left(2 cdot 3right) \
&=log left(2right)+log left(3right) && text{Product Rule:} log_a left(mnright)=log_a left(mright)+log_a left(nright). \
&=0.3010+0.4771 && text{Substitute the given data.} \
&=0.7781
end{align*}
$$

#### b.

$$
begin{align*}
log left(15right)&=log left(3 cdot 5right) \
&=log left(3right)+log left(5right) && text{Product Rule:} log_a left(mnright)=log_a left(mright)+log_a left(nright). \
&=0.4771+0.6990 && text{Substitute the given data.} \
&=1.1761
end{align*}
$$

#### c.

$$
begin{align*}
log left(9right)&=log left(3 cdot 3right) \
&=log left(3right)+log left(3right) && text{Product Rule:} log_a left(mnright)=log_a left(mright)+log_a left(nright). \
&=0.4771+0.4771 && text{Substitute the given data.} \
&=0.9542
end{align*}
$$

#### d.

$$
begin{align*}
log left(50right)&=log left(2 cdot 5 cdot 5right) \
&=log left(2right)+log left(5right)+log left(5right) && text{Product Rule:} log_a left(mnright)=log_a left(mright)+log_a left(nright). \
&=0.3010+0.6990+0.6990 && text{Substitute the given data.} \
&=1.699
end{align*}
$$

Result
2 of 2
$textbf{a.}$ $0.7781$, $textbf{b.}$ $1.1761$, $textbf{c.}$ $0.9542$, $textbf{d.}$ $1.699$
Exercise 18
Solution 1
Solution 2
Step 1
1 of 2
$textbf{a.}rightarrow 4.$

$textbf{b.}rightarrow 5.$

$textbf{c.}rightarrow 3.$

$textbf{d.}rightarrow 1.$

$textbf{e.}rightarrow 2.$

Result
2 of 2
$textbf{a.}rightarrow 4.$ $textbf{b.}rightarrow 5.$ $textbf{c.}rightarrow 3.$ $textbf{d.}rightarrow 1.$ $textbf{e.}rightarrow 2.$
Step 1
1 of 1
Exercise scan
We match the two Columns:
Exercise 19
Step 1
1 of 3
Work as shown below, follow the steps:

$bullet,,$a) Since we have the slope of the line and a point on it we can find one more point on this line by using the definition of the slope:

$color{#c34632} text{$m=dfrac{text{change in $,y,$}}{text{change in $,x,$}}$}$

$Rightarrow dfrac{text{change in $,y,$}}{text{change in $,x,$}}=dfrac{3}{1}$

$bullet,,$Given the point $color{#c34632} text{$,,(0,2),,$}$ we can find one more point the:

$,,(0+1 ,,, 2+3)=color{#4257b2}text{$(1,5)$}$

$bullet,,$For the graph of the indicated line plot the points $color{#c34632} text{$,,(0,2),,$}$ , $color{#c34632} text{$,,(1,5),,$}$ and connect them as shown in the picture below:

Exercise scan

Step 2
2 of 3
$bullet,,$b) In order to find the equation of this line use the point-slope form of linear equations:

$y-y_{0}=m(x-x_{0})qquadqquadqquadqquadqquad$ $color{#c34632} text{[set $m=3$ , $(x_{0} , y_{0})=(0,2)$]}$

$Rightarrow y-2=3(x-0)$

$Rightarrow color{#4257b2} text{$y=3x+2$}$

The equation of the indicated line is: $color{#4257b2} text{$,,,y=3x+2$}$

$bullet,,$c) For the first term of this sequence set $color{#c34632} text{$,,n=1,,$}$ and estimate $color{#c34632} text{$,,t(1)$}$:

$t(n)=3n-1qquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[set $n=1$]}$

$Rightarrow t(1)=3(1)-1$

$Rightarrow color{#4257b2} text{$t(1)=2$}$

For the 2nd, 3rd, 4th terms:

$$
t(2)=3(2)-1Rightarrow color{#4257b2}text{$t(2)=5$}
$$

$$
t(3)=3(3)-1Rightarrow color{#4257b2} text{$t(3)=8$}
$$

$t(4)=3(4)-1Rightarrow color{#4257b2} text{$t(4)=11$}$

Plot the points on the form $color{#c34632}text{$,,big(n , t(n)big),,$}$ for the graph of this sequence as shown in the picture below:

Exercise scan

Step 3
3 of 3
$bullet,,$d) The main similarity is that if we consider a line that passes through these points above it has the same slope as the line in part a).

The main difference is that while the graph of the line in part a) is a continuous line, the graph of the sequence in part c) consists of discrete points.

Exercise 20
Step 1
1 of 2
The percentage of the people who consume chicken soup when they have a cold is

obtained by dividing the number of people who consume chicken soup with total

number of respondents.

$$
frac{580}{1024}approx 0.566=56.6%
$$

Adding and subtracting the margin of error, we can be reasonably sure the population

$$
text{proportion is between $53.6%$ and $59.6%$, which is greater than $50%$.}
$$

Result
2 of 2
$$
text{Yes, because more than $50\%$ of people believe that chicken soup helps relieve cold and flu symptoms.}
$$
Exercise 21
Step 1
1 of 2
#### a.

$$
begin{align*}
log_6 left(5xright)&=3 && text{Product Rule:} log_a left(mnright)=log_a left(mright)+log_a left(nright). \
5x&=6^3 && log_ax=bLeftrightarrow x=a^b. \
5x&=216 && text{Simplify.} \
x&=frac{216}{5} && text{Divide bith sides by} 5.
end{align*}
$$

#### b.

$$
begin{align*}
1-log_7 left(xright)&=5 && text{Basic properties of logarithms:} log_aa=1. \
-log_7 left(xright)&=4 && text{Subtract} 1 text{from both sides.} \
log_7 left(xright)&=-4 && text{Multiply both sides by} -1. \
x&=7^{-4} && log_ax=bLeftrightarrow x=a^b. \
x&=frac{1}{7^4} && text{Use} a^{-n}=frac{1}{a^n}. \
x&=frac{1}{2401}
end{align*}
$$

#### c.

$$
begin{align*}
8-x&=6 && text{Equality rule:} log_ax=log_ayrightarrow x=y. \
-x&=-2 && text{Subtract} 8 text{from both sides.} \
x&=2 && text{Multiply both sides by} -1. \
end{align*}
$$

#### d.

$$
begin{align*}
log_5left(frac{x}{10}right)&=log_5left(2right) && text{Quotient Rule:} log_a left(frac{m}{n}right)=log_a left(mright)-log_a left(nright). \
frac{x}{10}&=2 && text{Equality rule:} log_ax=log_ayrightarrow x=y. \
x&=20 && text{Multiply both sides by} 10. \
end{align*}
$$

Result
2 of 2
$textbf{a.}$ $x=dfrac{216}{5}$, $textbf{b.}$ $x=dfrac{1}{2401}$, $textbf{c.}$ $x=2$, $textbf{d.}$ $x=20$
Exercise 22
Step 1
1 of 5
a.Exercise scan
Step 2
2 of 5
b.Exercise scan
Step 3
3 of 5
c.Exercise scan
Step 4
4 of 5
d.Exercise scan
Step 5
5 of 5
e.Exercise scan
Exercise 23
Step 1
1 of 3
a. The maximum number of roots that a polynomial of degree 3 can have is 3 (the same as the degree).Exercise scan
Step 2
2 of 3
b. A polynomial of degree $n$ can have at most $n$ roots.

c. Yes, if it contain a factor such as (for example) $x^2+1$ which has no real roots.

Result
3 of 3
a. 3

b. $n$

c. Yes

Exercise 24
Step 1
1 of 2
a. The $y$-values become larger and large as the $x$-values get very large, if the most right side of the graph is increasing. Thus this is true for graph i. and iii.

b. The other graphs will be decreasing and thus the $y$ values will become smaller and smaller as the $x$ values get very large.

c. Graph i. and iii. have a positive orientation and graph ii. and iv. have a negative orientation.

Result
2 of 2
a. i. and iii.

b. $y$-values become smaller and smaller

c. i. and iii. have positive orientation, graph ii. and iv. have negative orientation

Exercise 25
Step 1
1 of 2
a. The two graphs have the same roots $x=1$, however the graph $y=(x-1)^4$ will be closer to zero about the root than the graph of $y=(x-1)^2$.

b. No, because it does not contain a part at the top that seems constantly zero.

c. No, because a polynomial of odd degree will be increasing to the left and decreasing to the right (or the other way around).

d. The two graphs have the same roots $x=0$, however the graph $y=x^5$ will be closer to zero about the root than the graph of $y=x^3$.

e. Repeated factors will only represent one root on the graph, however multiple different factors will represent multiple roots.

Result
2 of 2
a. Same roots

b. Np

c. No

d. Same roots

e. Repeated factors will only represent one root on the graph.

Exercise 26
Step 1
1 of 1
a. About a single root the function will be positive on one side of the root and negative on the other side, however for a double root the function will be positive about both sides of the root or negative about both sides of the root.

b. A triple root behaves the same as a single root, however the function will be very close to zero on an interval about the root.

Exercise 27
Step 1
1 of 5
a.Exercise scan
Step 2
2 of 5
b.Exercise scan
Step 3
3 of 5
c.Exercise scan
Step 4
4 of 5
d.Exercise scan
Result
5 of 5
See graphs
Exercise 28
Step 1
1 of 3
A polynomial of even degree will be positive for very large and very small $x$-values or negative for very large and very small $x$-values.

Exercise scan

Step 2
2 of 3
A polynomial of odd degree will be positive for very large $x$-values and negative for very small $x$-values, or the other way around.

Exercise scan

Result
3 of 3
A polynomial of even degree will be positive for very large and very small $x$-values or negative for very large and very small $x$-values.

A polynomial of odd degree will be positive for very large $x$-values and negative for very small $x$-values, or the other way around.

Exercise 29
Step 1
1 of 4
$$
P_1 left(xright)=left(x-2right)left(x+5right)^2
$$

The bold part of the line shows where the output values of a polynomial function are positive.

Exercise scan

Step 2
2 of 4
$$
P_3 left(xright)=x^4-21x^2+20x=xleft(x-1right)left(x-4right)left(x+5right)
$$

The bold part of the line shows where the output values of a polynomial function are positive.

Exercise scan

Step 3
3 of 4
$$
P_7 left(xright)=0.2xleft(x+1right)left(x-3right)left(x+4right)
$$

The bold part of the line shows where the output values of a polynomial function are positive.

Exercise scan

Result
4 of 4
$$
P_1 left(xright)=left(x-2right)left(x+5right)^2
$$

$$
P_3 left(xright)=xleft(x-1right)left(x-4right)left(x+5right)
$$

$$
P_7 left(xright)=0.2xleft(x+1right)left(x-3right)left(x+4right)
$$

Exercise 30
Step 1
1 of 2
The circles represent the roots and the emphasised lines denote that the function is positive there.Exercise scan
Step 2
2 of 2
A possible corresponding graph is then:Exercise scan
Exercise 31
Step 1
1 of 4
If the function contains a factor $(x-a)$ then $x=a$ is a root.

Determine every root of the function and then determine if the function is positive or negative before, between and after every root.

a.

Exercise scan

Step 2
2 of 4
b.Exercise scan
Step 3
3 of 4
c.Exercise scan
Result
4 of 4
See graphs
Exercise 32
Solution 1
Solution 2
Step 1
1 of 2
$text{In order to find the $x$-intercept we should set $fleft(xright)$ to zero and thus find the $x$ coordinate.}$

$$
begin{align*}
0&=x^2+6x+14 && text{Substitute} fleft(xright)
=0. \
Delta&=6^2-4 cdot1 cdot 14 && text{We compute the discriminant:} Delta=b^2-4ac \
&text{} && a=1, b=6, c=14. \
Delta&=36-56 \
Delta&=-20<0
end{align*}
$$

As the discriminant is negative, the equation has no real solution.

$text{This means the function's graph has no intersection with the $x$-axis.}$

$$
text{The graph does not cross the $x$-axis.}
$$

Result
2 of 2
$$
text{The function’s graph has no intersection with the $x$-axis }
$$
Step 1
1 of 4
$$
f(x)=x^2+6x+14
$$
We are given the function:
Step 2
2 of 4
$f(x)=0$

$$
x^2+6x+14=0
$$

We find the intersections of the function’s graph with the $x$-axis:
Step 3
3 of 4
$$
Delta=6^2-4(1)(14)=36-56=-20<0
$$
We compute the discriminant:
Step 4
4 of 4
As the discriminant is negative, the equation has no real solution. This means the function’s graph has no intersection with the $x$-axis.
Exercise 33
Step 1
1 of 2
Quadratic function in the standard form is:

$$
fleft(xright)=ax^2+bx+c
$$

$text{where $a, b$ and $c$ are real numbers and $aneq0$.}$

Quadratic function in the intercept form is:

$$
fleft(xright)=aleft(x-pright)left(x-qright)
$$

$$
text{The $x$-intercepts are the points $left(p, 0right)$ and $left(q, 0right)$.}
$$

#### a.

$$
begin{align*}
fleft(xright)&=aleft(x-pright)left(x-qright) && text{Intercept form.} \
fleft(xright)&=left(x-left(-3right)right)left(x-frac{1}{2}right) && text{Substitute} a=1, p=-3, text{and} q=frac{1}{2}. \
fleft(xright)&=left(x+3right)left(x-frac{1}{2}right) && text{Simplify.} \
fleft(xright)&=x^2-frac{1}{2}x+3x-frac{3}{2} \
fleft(xright)&=x^2+frac{5}{2}x-frac{3}{2} && text{Standard form.}
end{align*}
$$

#### b.

$$
begin{align*}
fleft(xright)&=aleft(x-pright)left(x-qright) && text{Intercept form.} \
fleft(xright)&=aleft(x-left(-3right)right)left(x-2right) && text{Substitute} p=-3, text{and} q=2. \
fleft(xright)&=aleft(x+3right)left(x-2right) && text{Simplify.} \
-12&=aleft(3+3right)left(3-2right) && text{Substitute} left(x, fleft(xright)right)=left(3, -12right). \
-12&=a cdot 6 cdot 1 && text{Simplify.} \
a&=-2 \\
fleft(xright)&=aleft(x+3right)left(x-2right) && text{Intercept form.} \
fleft(xright)&=-2left(x+3right)left(x-2right) && text{Substitute} a=2. \
fleft(xright)&=-2left(x^2-2x+3x-6right) \
fleft(xright)&=-2x^2-2x+12 && text{Standard form.}
end{align*}
$$

Result
2 of 2
$textbf{a.}$ $fleft(xright)=x^2+dfrac{5}{2}x-dfrac{3}{2}$

$textbf{b.}$ $fleft(xright)=-2x^2-2x+12$

Exercise 34
Solution 1
Solution 2
Step 1
1 of 2
$$
text{The polynomial which has degree $n$ and coefficients $a_n, a_{n-1} ,…, a_1, a_0$ is the following,}
$$

$$
Pleft(xright)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0
$$

#### a.

$$
text{The given polynomial has degree $2$.}
$$

#### b.

$$
text{The given polynomial has degree $5$.}
$$

#### c.

$$
text{The function’s graph has $3$ intersections with the $x$-axis, therefore its minimum degree is $3$.}
$$

#### d.

$$
text{The function’s graph touches the $x$-axis twice, therefore its minimum degree is $2 cdot 2=4$.}
$$

Result
2 of 2
$textbf{a.}$ $2$, $textbf{b.}$ $5$, $textbf{c.}$ $3$, $textbf{d.}$ $4$
Step 1
1 of 7
$$
P(x)=0.08x^2+28x
$$
a) We are given the polynomial:
Step 2
2 of 7
The degree of the polynomial is 2.
Step 3
3 of 7
$$
y=8x^2-dfrac{1}{7}x^5+9
$$
b) We are given the polynomial:
Step 4
4 of 7
The degree of the polynomial is 5.
Step 5
5 of 7
c) The function’s graph has 3 intersections with the $x$-axis, therefore its minimum degree is 3.
Step 6
6 of 7
d) The function’s graph touches the $x$-axis twice, therefore its minimum degree is $2cdot 2=4$.
Result
7 of 7
a) 2; b) 5; c) 3; d) 4;
Exercise 35
Step 1
1 of 2
a. Parabolas are graphs of two degree functions and thus of a polynomial function.

b. Exponential functions are of the form $y=a^x$ with $a$ a constant and since the $x$ is in the power, the function is not a polynomial function.

c. Cubics are graphs of three degree functions and thus of a polynomial function.

d. Lines are graphs of one degree functions and thus of a polynomial function.

e. Circles have equations of the form $(x-a)^2+(y-b)^2=c^2$ with $a,b,c$ constants and thus is not a polynomial function (because of equations contains a term $y^2$).

Result
2 of 2
a. Yes
b. No
c. Yes
d. Yes
e. No
Exercise 36
Step 1
1 of 7
$y=ab^x+k$

$(3,7.5)$

$$
(4,6.25)
$$

We are given the function:
Step 2
2 of 7
$$
k=5
$$
We use the asymptote $y=5$ to determine $k$:
Step 3
3 of 7
$$
begin{cases}
ab^3+5=7.5\
ab^4+5=6.25
end{cases}
$$
Using the two points on the function’s graph we get the system:
Step 4
4 of 7
$$
begin{cases}
ab^3=7.5-5\
ab^4=6.25-5
end{cases}
$$

$$
begin{cases}
ab^3=2.5\
ab^4=1.25
end{cases}
$$

$dfrac{ab^4}{ab^3}=dfrac{1.25}{2.5}$

$b=dfrac{1}{2}$

$aleft(dfrac{1}{2}right)^3=2.5$

$acdot dfrac{1}{8}=dfrac{5}{2}$

$a=dfrac{5}{2}cdot 8$

$$
a=20
$$

We solve the system:
Step 5
5 of 7
$$
f(x)=20(0.5)^x+5
$$
The function is:
Step 6
6 of 7
$$
w=f(8)=20(0.5)^8+5approx5.078
$$
b) We determine $f(8)$:
Result
7 of 7
a) $f(x)=20(0.5)^x+5$

b) $5.078$

Exercise 37
Step 1
1 of 2
The situation can be represented by two similar right triangles.

$dfrac {50}{320}=dfrac {60}{60+x}$

$320 cdot 60=50(60+x)$

$32 cdot 60=5(60+x)$

$1920=300+5x$

$5x=1620$

$$
x=324
$$

The distance to the hotel $=x+60=324+60=384$ ft.

Result
2 of 2
The distance to the hotel $=384$ ft.
Exercise 38
Step 1
1 of 2
$$
text{Solve the second equation for $x^2$:}
$$

$$
left{
begin{aligned}
x^2+y^2&=16 \
x^2=y+4 \
end{aligned}
right.
$$

$$
text{We take $x^2=y+4$ from the second equation and substitute it in the first:}
$$

$$
left{
begin{aligned}
y+4+y^2&=16 \
x^2=y+4 \
end{aligned}
right.
$$

$$
text{Solve the first equation for $y$:}
$$

$$
left{
begin{aligned}
y^2+y-12&=0 \
x^2=y+4 \
end{aligned}
right.
$$

$$
left{
begin{aligned}
y^2-3y+4y+12&=0 \
x^2=y+4 \
end{aligned}
right.
$$

$$
left{
begin{aligned}
yleft(y-3right)+4left(y-3right)&=0 \
x^2=y+4 \
end{aligned}
right.
$$

$$
left{
begin{aligned}
left(y-3right)left(y+4right)&=0 \
x^2=y+4 \
end{aligned}
right.
$$

$$
left{
begin{aligned}
y&=3 text{or} y=-4 \
x^2&=y+4 \
end{aligned}
right.
$$

$$
text{Substitute $y=3$ and $y=4$ in the second equation:}
$$

$$
left{
begin{aligned}
y&=3 text{or} y=-4 \
x^2&=3+4 text{or} x^2=-4+4 \
end{aligned}
right.
$$

$$
text{Solve the second equation for $x$:}
$$

$$
left{
begin{aligned}
y&=3 text{or} y=-4 \
x^2&=7 text{or} x^2=0 \
end{aligned}
right.
$$

$$
left{
begin{aligned}
y&=3 text{or} y=-4 \
x&=pm sqrt{7} text{or} x=0 \
end{aligned}
right.
$$

The system’s solutions are:

$$
boxed{leftlbraceleft(-sqrt{7}, 3right), left(sqrt{7}, 3right), left(0, -4right)rightrbrace}
$$

Result
2 of 2
$$
leftlbraceleft(-sqrt{7}, 3right), left(sqrt{7}, 3right), left(0, -4right)rightrbrace
$$
Exercise 39
Solution 1
Solution 2
Step 1
1 of 4
a)

The graph shows that the curve of the function intersects the $x-$axis at the points $left(-3,0right)$, $left(0,0right)$ and $left(2,0right)$

Then $x$, $x+3$ and $x-2$ are factors of the function

A reasonable equation is

$$
y=xleft(x+3right)left(x-2right)
$$

Since the curve passes through the point $left(-2,8right)$ , then

$$
fleft(-2right)=-2left(-2+3right)left(-2-2right)=8
$$

Since the curve passes through the point $left(1,-4right)$ , then

$$
fleft(1right)=1left(1+3right)left(1-2right)=-4
$$

The equation fits all the curve criteria, then it is accurate

Step 2
2 of 4
b)

The graph shows that the curve of the function intersects the $x-$axis at the points $left(-3,0right)$, $left(0,0right)$ and $left(2,0right)$

Then $x$, $x+3$ and $x-2$ are factors of the function

A reasonable equation is

$$
y=x^3left(x+3right)left(x-2right)
$$

Since the curve passes through the point $left(-2,-30right)$ , then

$$
fleft(-2right)=left(-2right)^3left(-2+3right)left(-2-2right)=32
$$

Since the curve passes through the point $left(1,1right)$ , then

$$
fleft(-1right)=left(-1right)^3left(-1+3right)left(-1-2right)=6
$$

The equation does not fit all the curve criteria, then it is accurate

We need to multiply the function by $-1$, and the equation will become

$$
y=-x^3left(x+3right)left(x-2right)
$$

Step 3
3 of 4
c)

The graph shows that the curve of the function intersects the $x-$axis at the points $left(1,0right)$ and bounces of the pont $left(-2,0right)$

Then $x-1$ is a factor of the function and $x+2$ is a quadratic factor

A reasonable equation is

$$
y=left(x+2right)^2left(x-1right)
$$

Since the curve passes through the point $left(0,8right)$ , then

$$
fleft(0right)=left(0+2right)^2left(0-1right)=-4
$$

The equation does not fit all the curve criteria, then it is accurate

We need to multiply the function by $-2$, and the equation will become

$$
y=-2left(x+2right)^2left(x-1right)
$$

Result
4 of 4
a)

$$
y=xleft(x+3right)left(x-2right)
$$

b)

$$
y=-x^3left(x+3right)left(x-2right)
$$

c)

$$
y=-2left(x+2right)^2left(x-1right)
$$

Step 1
1 of 2
If $x=a$ is an $x$-intercept, then $(x-a)$ is a factor of the function equation:

a. $f(x)=(x+3)x(x-2)$ and let us evaluate this as $x=-2$:

$$
f(-2)=(1)(-2)(-4)=8
$$

this is correct, thus the function equation is correct.

b. $f(x)=(x+3)x^3(x-2)$ and let us evaluate this as $x=-2$:

$$
f(-2)=(1)(-2)^3(-4)=32
$$

We note that the function value at $x=-2$ should be $-32$, thus we still need to multiply the function equation by $-1$: $f(x)=-(x+3)x^3(x-2)$.

a. $f(x)=(x+2)^2(x-1)$ and let us evaluate this as $x=0$:

$$
f(0)=2^2(-1)=-4
$$

We note that the function value at $x=0$ should be $8$, thus we still need to multiply the function equation by $-2$: $f(x)=-2(x+2)^2(x-1)$.

Result
2 of 2
a. $f(x)=(x+3)x(x-2)$

b. $f(x)=-(x+3)x^3(x-2)$

c. $f(x)=-2(x+2)^2(x-1)$

Exercise 40
Solution 1
Solution 2
Step 1
1 of 2
The graph of $y=3x^2left(x-3right)left(x+1right)$ is the same as the graph of $y=x^2left(x-3right)left(x+1right)$ stretched vertically with a factor of $3$

Exercise scan

Result
2 of 2
The graph of $y=3x^2left(x-3right)left(x+1right)$ is the same as the graph of $y=x^2left(x-3right)left(x+1right)$ stretched vertically with a factor of $3$
Step 1
1 of 2
The factor 3 strecthes the graph of $y=x^2(x-3)(x+1)$ vertically by factor 3 to obtain the graph of $y=3x^2(x-3)(x+1)$.
Result
2 of 2
Vertical stretch by factor 3
Exercise 41
Solution 1
Solution 2
Step 1
1 of 2
a. If is sufficient to check the equation at one point (that is not an $x$-incercept) and determine from this by which factor we should still multiply the equation:

$$
f(0)=(3)(1)(-2)^2=12
$$

We note that the function value at $x=0$ should be 24 instead of 21, thus we need to multiply te function equation by 2:

$$
y=2(x+3)(x+1)(x-2)^2
$$

b. You evaluate the function at $x=1$, which should equal 16:

$$
16=a(4)(2)(-1)^2=8a
$$

Divide both sides of the equation by 8 to obtain a:

$$
2=a
$$

Result
2 of 2
a. $y=2(x+3)(x+1)(x-2)^2$

b. $a=2$

Step 1
1 of 2
a)

The given equation is

$$
y=left(x+3right)left(x+1right)left(x-2right)^2
$$

For the $x-$intercepts, let $y=0$

$$
x=-3 , quad x=-1 , quad x=2
$$

For the $y-$intercepts, let $x=0$

$$
y=left(0+3right)left(0+1right)left(0-2right)^2=12
$$

The $x-$intercepts of the given function are the same as the $x-$intercepts of the given graph while the $y-$intercept of the given function is half the $y-$intercept of the given graph

Then we need to multiply the expression for $y$ by a factor of $2$

$$
y=2left(x+3right)left(x+1right)left(x-2right)^2
$$

b)

Given that

$$
y=aleft(x+3right)left(x+1right)left(x-2right)^2
$$

and the point $left(1,16right)$ lies on the curve of the function, then

$$
16=aleft(1+3right)left(1+1right)left(1-2right)^2=8a
$$

$$
a=frac{16}{8}=2
$$

Result
2 of 2
a)

$$
y=2left(x+3right)left(x+1right)left(x-2right)^2
$$

b

$$
a=2
$$

Exercise 42
Step 1
1 of 2
a. We note on the graph that the function intersects the $x$-axis three time and double at $x=2$, thus the polynomial should be of degree 4.

b. The roots are the intersections of the graph with the $x$-axis: $x=0$, $x=2$ (double) and $x=3$

c. Because of the roots we know that the equation is of the form:

$$
y=ax(x-2)^2(x-3)
$$

Evaluate at $x=2.5$ (which should be -0.2):

$$
-0.2=a(2.5)(0.5)^2(-0.5)=-0.3125a
$$

Divide both sides of the equation by $-0.3125$:

$$
0.64=a
$$

Thus the equation then becomes:

$$
y=0.64x(x-2)^2(x-3)
$$

d. The deepest point is obtained at about $x=0.5$:

$$
y=0.64(0.5)(-1.5)^2(-2.5)=-1.8
$$

This corresponds with 180 feet.

Result
2 of 2
a. $4$

b. $x=0$, $x=2$ (double) and $x=3$

c. $y=0.64x(x-2)^2(x-3)$

d. 180 ft

Exercise 43
Step 1
1 of 3
a. The roots are the intersections of the graph with the $x$-axis: $x=-2$(double), $x=2$. Then we know that the equation is of the form:

$$
y=a(x+2)^2(x-2)
$$

Evaluate at $x=0$ (which should be 16):

$$
16=a(2)^2(-2)=-8a
$$

Divide both sides of the equation by $-8$:

$$
-2=a
$$

Thus the equation then becomes:

$$
y=-2(x+2)^2(x-2)
$$

Step 2
2 of 3
b. The roots are the intersections of the graph with the $x$-axis: $x=-2$(double), $x=1$ (double). Then we know that the equation is of the form:

$$
y=a(x+2)^2(x-1)^2
$$

Evaluate at $x=0$ (which should be $-3$):

$$
-3=a(2)^2(-1)^2=4a
$$

Divide both sides of the equation by $4$:

$$
-dfrac{3}{4}=a
$$

Thus the equation then becomes:

$$
y=-dfrac{3}{4}(x+2)^2(x-1)^2
$$

Result
3 of 3
a. $y=-2(x+2)^2(x-2)$

b. $y=-dfrac{3}{4}(x+2)^2(x-1)^2$

Exercise 44
Step 1
1 of 2
The roots are the intersections of the graph with the $x$-axis: $x=-1$(double), $x=4$. Then we know that the equation is of the form:

$$
y=a(x+1)^2(x-4)
$$

Evaluate at $x=-2$ (which should be -18):

$$
-18=a(-1)^2(-6)=-6a
$$

Divide both sides of the equation by $-6$:

$$
3=a
$$

Thus the equation then becomes:

$$
y=3(x+1)^2(x-4)
$$

Result
2 of 2
$$
y=3(x+1)^2(x-4)
$$
Exercise 45
Solution 1
Solution 2
Step 1
1 of 2
The equation we became in the previous exercise was:

$$
y=3(x+1)^2(x-4)
$$

Now let us use what Armando did: The roots are the intersections of the graph with the $x$-axis: $x=-1$(quadruple), $x=4$. Then we know that the equation is of the form:

$$
y=a(x+1)^4(x-4)
$$

Evaluate at $x=-2$ (which should be -18):

$$
-18=a(-1)^2(-6)=-6a
$$

Divide both sides of the equation by $-6$:

$$
3=a
$$

Thus the equation then becomes:

$$
y=3(x+1)^4(x-4)
$$

Thus we note that Armando’s solution is also correct, because we do not know if the bounce of is a double or quadruple root (could be an even higher root).

Result
2 of 2
Yes
Step 1
1 of 2
The equation $y=3left(x+1right)^4left(x-4right)$ is for a function with a graph that bounces off the
$x-$axis at $(-1 , 0)$ , crosses it at $( 4, 0)$ , and goes through the point $(-2, -18)$ , then the equation fits all of the given criteria.

The two equations fit all of the given criteria but have different graphs.

Exercise scan

Result
2 of 2
The equation $y=3left(x+1right)^4left(x-4right)$ fits all of the given criteria.

The two equations fit all of the given criteria but have different graphs.

Exercise 46
Solution 1
Solution 2
Step 1
1 of 2
The equation we became in the previous exercises was:

$$
y=3(x+1)^2(x-4)
$$

$$
y=3(x+1)^4(x-4)
$$

Evaluate at $x=1$ (which should be -36):

$$
y=6=3(2)^2(-3)=-36
$$

$$
y=6=3(2)^4(-3)=-144
$$

Thus the first equation is correct and the second equation is not correct.

Result
2 of 2
No
Step 1
1 of 2
Given that the graph went through the point $(1, -36)$ , then

For the first equation $y=3left(x+1right)^2left(x-4right)$

$$
-36=3left(1+1right)^2left(1-4right)
$$

$$
-36=3times 4 times left(-3right)
$$

$$
-36=-36
$$

Then the first equation $y=3left(x+1right)^2left(x-4right)$ satisfies the new condition.

For the second equation $y=3left(x+1right)^4left(x-4right)$

$$
-36=3left(1+1right)^4left(1-4right)
$$

$$
-36=3times 16 times left(-3right)
$$

$$
-36=-144
$$

which is a contradiction, then the second equation $y=3left(x+1right)^4left(x-4right)$ does not satisfy the new condition.

Then there is only one possible equation.

Result
2 of 2
There is only one possible equation.
Exercise 47
Step 1
1 of 1
To determine the correct equation of a polynomial function we need to know its $x$-intercepts and two extra points (that are not $x$-intercepts), because as we saw in the previous exercise one extra point was not enough.
Exercise 48
Solution 1
Solution 2
Step 1
1 of 2
The roots are the intersections of the graph with the $x$-axis: $x=-4$, $x=1$ and $x=3$. Then we know that the equation is of the form:

$$
y=a(x+4)(x-1)(x-3)
$$

Evaluate at $x=-1$ (which should be 60):

$$
60=a(3)(-2)(-4)=24a
$$

Divide both sides of the equation by $24$:

$$
dfrac{5}{2}=a
$$

Thus the equation then becomes:

$$
y=dfrac{5}{2}(x+4)(x-1)(x-3)
$$

Result
2 of 2
$$
y=dfrac{5}{2}(x+4)(x-1)(x-3)
$$
Step 1
1 of 2
Given that the curve of the function intersects the $x-$axis at the points $left(-4,0right)$ , $left(1,0right)$ and $left(3,0right)$

Then $x+4$ , $x-1$ and $x-3$ are factors of the equation.

A reasonable equation is

$$
y=aleft(x+4right)left(x-1right)left(x-3right)
$$

Since the curve passes through the point $left(-1,60right)$ , then

$$
fleft(-1right)=left(-1+4right)left(-1-1right)left(-1-3right)a=24a
$$

Then

$$
24a=60 quad rightarrow quad a=frac{60}{24}=frac{5}{2}
$$

The equation will become

$$
y=frac{5}{2}left(x+4right)left(x-1right)left(x-3right)
$$

Result
2 of 2
$$
y=frac{5}{2}left(x+4right)left(x-1right)left(x-3right)
$$
Exercise 49
Step 1
1 of 2
#### a.

$$
text{Without solving, we will check the solution $x=5+2i$ by substituting it in the equation.}
$$

$$
begin{align*}
left(5+2iright)^2-10left(5+2iright)&=-29 && text{Substitute} x=5+2i. \
25+20i-4-50-20i&=-29 && text{Use:} left(a+bright)^2=a^2+2ab+b^2, i^2=-1. \
-29&=-29
end{align*}
$$

#### b.

$text{The quadratic equation has $2$ complex solutions. Another solution to the equation is $x=5-2i$.}$

$$
text{We will check the solution $x=5-2i$ by substituting it in the equation.}
$$

$$
begin{align*}
left(5-2iright)^2-10left(5-2iright)&=-29 && text{Substitute} x=5+2i. \
25-20i-4-50+20i&=-29 && text{Use:} left(a-bright)^2=a^2-2ab+b^2, i^2=-1. \
-29&=-29
end{align*}
$$

#### c.

The equation has no real solution.
$text{The parabola does not intersect the $x$-axis.}$
$text{The graph does not cross the $x$-axis.}$

Result
2 of 2
$textbf{a.}$ $text{Without solving, we will check the solution $x=5+2i$ by substituting it in the equation.}$

$textbf{b.}$ $5-2i$

$textbf{c.}$ $text{The parabola does not intersect the $x$-axis.}$

Exercise 50
Step 1
1 of 2
$$
text{The polynomial which has degree $n$ and coefficients $a_n, a_{n-1} ,…, a_1, a_0$ is the following,}
$$

$$
Pleft(xright)=a_nx^n+a_{n-1}x^{n-1}+…+a_1x+a_0
$$

#### a.

$$
text{The given polynomial has degree $4$ and coefficients $a_4=6, a_3=-3, a_2=5, a_1=1$ and $a_0=8$.}
$$

#### b.

$$
text{The given polynomial has degree $3$ and coefficients $a_3=-5, a_2=10, a_1=0$ and $a_0=8$.}
$$

#### c.

$$
text{The given polynomial has degree $2$ and coefficients $a_2=-1, a_1=1$ and $a_0=0$.}
$$

#### d.

$$
begin{align*}
Pleft(xright)&=xleft(x^2-5x-3x+15right) \
Pleft(xright)&=x^3-8x^2+15x
end{align*}
$$

$$
text{The given polynomial has degree $3$ and coefficients $a_3=1, a_2=-8, a_1=15$ and $a_0=0$.}
$$

#### e.

$$
text{The given polynomial has degree $1$ and coefficients $a_1=1$ and $a_0=0$.}
$$

#### f.

$$
text{The given polynomial has degree $0$ and coefficient $a_0=10$.}
$$

Result
2 of 2
$textbf{a.}$ $text{degree}=4, a_4=6, a_3=-3, a_2=5, a_1=1$ and $a_0=8$,

$textbf{b.}$ $text{degree}=3, a_3=-5, a_2=10, a_1=0$ and $a_0=8$,

$textbf{c.}$ $text{degree}=2, a_2=-1, a_1=1,$ and $a_0=0$

$textbf{d.}$ $text{degree}=3, a_3=1, a_2=-8, a_1=15$ and $a_0=0$,

$textbf{e.}$ $text{degree}=1, a_1=1$ and $a_0=0$,

$textbf{f.}$ $text{degree}=0, a_0=0$,

Exercise 51
Step 1
1 of 5
$$
2(x-1)^2=18
$$
a) We are given the equation:
Step 2
2 of 5
$(x-1)^2=dfrac{18}{2}$

$(x-1)^2=9$

$x-1=pm sqrt 9$

$x-1=pm 3$

$x=1pm 3$

$x_1=1-3=-2$

$$
x_2=1+3=4
$$

We solve the equation:
Step 3
3 of 5
$2^x+3=10$
b) We are given the equation:
Step 4
4 of 5
$2^x+3-3=10-3$

$2^x=7$

$log (2^x)=log (7)$

$xlog (2)=log (7)$

$$
x=dfrac{log (7)}{log (2)}approx 2.81
$$

We solve the equation:
Result
5 of 5
a) ${-2,4}$

b) $x=dfrac{log (7)}{log (2)}approx 2.81$

Exercise 52
Step 1
1 of 5
$$
f(t)=5,000,000left(dfrac{1}{2}right)^t
$$
We are given the function:
Step 2
2 of 5
$$
f(0)=5,000,000left(dfrac{1}{2}right)^0=5,000,000
$$
a) The initial moment corresponds to $t=0$:
Step 3
3 of 5
$f(t)=1000$

$5,000,000left(dfrac{1}{2}right)^t=1000$

$left(dfrac{1}{2}right)^t=dfrac{1000}{5,000,000}$

$left(dfrac{1}{2}right)^t=dfrac{1}{5000}$

$2^t=5000$

$log (2^t)=log (5000)$

$tlog (2)=log (5000)$

$t=dfrac{log (5000)}{log (2)}$

$tapprox 12.29$ minutes

b) We solve the equation:
Step 4
4 of 5
$f(t)<1$

$5,000,000left(dfrac{1}{2}right)^t<1$

$left(dfrac{1}{2}right)^t5,000,000$

$log (2^t)>log (5,000,000)$

$tlog (2)>log (5,000,000)$

$t>dfrac{log (5,000,000)}{log (2)}$

$$
t>22.25
$$

c) We solve the inequality:
Result
5 of 5
a) $5,000,000$ bytes

b) $12.29$ minutes

c) $22.25$ minutes

Exercise 53
Solution 1
Solution 2
Step 1
1 of 3
$textbf{Pythagorean Theorem:}$

Pythagorean Theorem is valid in a right-angled triangle:

$$
begin{align*}
c^2&=a^2+b^2 \
a^2&=c^2-b^2 \
b^2&=c^2-a^2 \
end{align*}
$$

$$
text{where $c$ is the hypotenuse, $a$ and $b$ are legs.}
$$

#### a.

We use the Pythagorean Theorem to calculate the missing leg:

$$
begin{align*}
a^2&=c^2-b^2 \
a^2&=1^2-left(frac{1}{2}right)^2 \
a^2&=1-frac{1}{4} \
a^2&=frac{3}{4} \
a&=frac{sqrt{3}}{2} \
end{align*}
$$

#### b.

We use the Pythagorean Theorem to calculate the missing leg:

$$
begin{align*}
a^2&=c^2-b^2 \
a^2&=8^2-left(4sqrt{3}right)^2 \
a^2&=64-48 \
a^2&=16 \
a&=4 \
end{align*}
$$

Step 2
2 of 3
#### c.

We use the Pythagorean Theorem to calculate the missing hypotenuse:

$$
begin{align*}
c^2&=a^2+b^2 \
c^2&=6^2+6^2 \
c^2&=36+36 \
c^2&=72 \
c&=sqrt{72} \
c&=6sqrt{2}
end{align*}
$$

#### d.

We use the Pythagorean Theorem to calculate the missing leg:

$$
begin{align*}
a^2&=c^2-b^2 \
a^2&=left(sqrt{2}right)^2-1^2 \
a^2&=2-1 \
a^2&=1 \
a&=1 \
end{align*}
$$

Result
3 of 3
$textbf{a.}$ $dfrac{sqrt{3}}{2}$, $textbf{b.}$ $4$, $textbf{c.}$ $6sqrt{2}$, $textbf{d.}$ $1$
Step 1
1 of 9
Exercise scan
a) We are given:
Step 2
2 of 9
$left(dfrac{1}{2}right)^2+x^2=1^2$

$dfrac{1}{4}+x^2=1$

$x^2=1-dfrac{1}{4}$

$x^2=dfrac{3}{4}$

$$
x=dfrac{sqrt 3}{2}
$$

We use the Pythagorean Theorem to determine the missing leg:
Step 3
3 of 9
Exercise scan
b) We are given:
Step 4
4 of 9
$x^2+(4sqrt 3)^2=8^2$

$x^2+48=64$

$x^2=64-48$

$x^2=16$

$$
x=4
$$

We use the Pythagorean Theorem to determine the missing leg:
Step 5
5 of 9
Exercise scan
c) We are given:
Step 6
6 of 9
$x^2=6^2+6^2$

$x^2=36+36$

$x^2=72$

$x=sqrt{72}$

$$
x=6sqrt 2
$$

We use the Pythagorean Theorem to determine the missing hypotenuse:
Step 7
7 of 9
Exercise scan
d) We are given:
Step 8
8 of 9
$x^2+1^2=(sqrt 2)^2$

$x^2+1=2$

$x^2=2-1$

$x^2=1$

$$
x=1
$$

We use the Pythagorean Theorem to determine the missing leg:
Result
9 of 9
a) $dfrac{sqrt 3}{2}$

b) $4$

c) $6sqrt 2$

d) $1$

Exercise 54
Step 1
1 of 7
$$
|7-y|leq 3
$$
a) We are given the inequality:
Step 2
2 of 7
$-3leq 7-yleq 3$

$-3-7leq 7-y-7leq 3-7$

$-10leq -yleq -4$

$10geq ygeq 4$

$$
yin [4,10]
$$

We rewrite and solve the inequality:
Step 3
3 of 7
Exercise scan
We graph the solution:
Step 4
4 of 7
$$
3|2m+1|-1>8
$$
b) We are given the inequality:
Step 5
5 of 7
$3|2m+1|-1+1>8+1$

$3|2m+1|>9$

$|2m+1|>3$

$2m+13$

$2m+1-13-1$

$2m2$

$m1$

We rewrite and solve the inequality:
Step 6
6 of 7
Exercise scan
We graph the solution:
Result
7 of 7
a) $[4,10]$

b) $(-infty,-2)cup(1,infty)$

Exercise 55
Step 1
1 of 5
#### a.

We determine the roots:

$$
begin{align*}
left(x-2right)^2-4&=0 && text{Substitute} y=0. \
left(x-2right)^2-4+4&=0+4 && text{Add} 4 text{to both sides.}\
left(x-2right)^2&=4 && text{Simplify.} \
x-2&=pm sqrt{4} && text{Square root of both sides.} \
x-2&=pm 2 \
x&=-2+2 text{or} x=2+2 && text{Add} 2 text{to both sides.}\
x&=0 text{or} x=4
end{align*}
$$

Exercise scan

Step 2
2 of 5
#### b.

We determine the roots:

$$
begin{align*}
left(x-2right)^2&=0 && text{Substitute} y=0. \
x-2&=0 && text{Square root of both sides.} \
x&=0+2 && text{Add} 2 text{to both sides.}\
x&=2
end{align*}
$$

Exercise scan

Step 3
3 of 5
#### c.

We determine the roots:

$$
begin{align*}
left(x-2right)^2+3&=0 && text{Substitute} y=0. \
left(x-2right)^2+3-3&=0-3 && text{Subtract} 3 text{from both sides.}\
left(x-2right)^2&=-3 && text{Simplify.} \
x-2&=pm sqrt{3}i && text{Square root of both sides.} i^2=-1. \
x&=2-sqrt{3}i text{or} x=2+sqrt{3}i && text{Add} 2 text{to both sides.}\
end{align*}
$$

Exercise scan

Step 4
4 of 5
#### d.

$text{$1$.The parabola has two real roots when it crosses the $x$-axis twice.}$

$text{$2$.The parabola has one real double root when it touches the $x$-axis.}$

$text{$3$.The parabola has two conjugate imaginary roots when it doesn’t cross the $x$-axis.}$

Result
5 of 5
$textbf{a.}$ $x=0 text{or} x=4$, $textbf{b.}$ $x=2$, $textbf{c.}$ $x=2-sqrt{3}i text{or} x=2+sqrt{3}i$,
$textbf{d.}$ $text{$1$.The parabola has two real roots when it crosses the $x$-axis twice.}$

$text{$2$.The parabola has one real double root when it touches the $x$-axis.}$

$text{$3$.The parabola has two conjugate imaginary roots when it doesn’t cross the $x$-axis.}$

Exercise 56
Solution 1
Solution 2
Step 1
1 of 2
a)

The given equation is

$$
y=left(x+5right)^2+9
$$

Replace $y$ with $0$

$$
left(x+5right)^2+9=0
$$

Subtract $9$ from both sides

$$
left(x+5right)^2=-9
$$

Apply the square root to both sides

$$
x+5=pmsqrt{-9}=pm 3i
$$

$$
x=-5+3i quad text{or}quad x=-5-3i
$$

Since the roots of the equation are complex numbers, then the graph does not intersect the $x-$axis.

b)

The given equation is

$$
y=x^2-4x+9
$$

Replace $y$ with $0$

$$
x^2-4x+9=0
$$

The discriminant is

$$
D=b^2-4ac=16-36=-20
$$

Apply the quadratic formula

$$
x=frac{4pm sqrt{-20}}{2}=2pmsqrt{5}i
$$

Since the roots of the equation are complex numbers, then the graph does not intersect the $x-$axis.

Result
2 of 2
a)

$$
x=-5+3i quad text{or}quad x=-5-3i
$$

Since the roots of the equation are complex numbers, then the graph does not intersect the $x-$axis.

b)

$$
x=frac{4pm sqrt{-20}}{2}=2pmsqrt{5}i
$$

Since the roots of the equation are complex numbers, then the graph does not intersect the $x-$axis.

Step 1
1 of 3
a. Replace $y$ with 0:

$$
0=(x+5)^2+9
$$

Subtract 9 from both sides of the equation:

$$
-9=(x+5)^2
$$

Take the square root of both sides of the equation:

$$
pm 3i=x+5
$$

Subtract 5 from both sides of the equation:

$$
-5pm 3i=x
$$

Step 2
2 of 3
b. Replace $y$ with 0:

$$
0=x^2-4x+9
$$

Determine the discriminant of the given function $f(x)=x^2-4x+9$:

$$
D=b^2-4ac=(-4)^2-4(1)(9)=16-36=-20
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{4pm sqrt{-20}}{2(1)}=dfrac{4pm 2sqrt{5}i}{2}=2pm sqrt{5}i
$$

Result
3 of 3
a. $x=-5pm 3i$

b. $x=2pm sqrt{5}i$

Exercise 57
Step 1
1 of 1
The complex solutions always come in pairs, namely if $a+bi$ is a complex solution of an equation, then the complex conjuge $a-bi$ is also a solution of the equation.
Exercise 58
Step 1
1 of 2
a. Add the two complex numbers:

$$
2+i+2-i=4
$$

Multiply the two complex numbers:

$$
(2+i)(2-i)=4-i^2=4+1=5
$$

b. Add the two complex numbers:

$$
3-5i+3+5i=6
$$

Multiply the two complex numbers:

$$
(3-5i)(3+5i)=9-25i^2=9+25=34
$$

c. Add the two complex numbers:

$$
-4+i+-4-i=-8
$$

Multiply the two complex numbers:

$$
(-4+i)(-4-i)=16-i^2=16+1=17
$$

d. Add the two complex numbers:

$$
1+isqrt{3}+1-isqrt{3}=2
$$

Multiply the two complex numbers:

$$
(1+isqrt{3})(1-isqrt{3})=1-3i^2=1+3=4
$$

e. By its complex conjugate $3-2i$.

f. We obtain another complex number: $(-4+5i)(-4+3i)=16-20i-12i+15i^2=1-32i$

g. By its complex conjugate $a-bi$

Result
2 of 2
a. $4,5$

b. 6, 34

c. $-8$, 17

d. 2, 4

e. $3-2i$

f. obtain a complex number

g. $a-bi$

Exercise 59
Step 1
1 of 2
If $x=a$ is a root of the function, then the function equation contains the factor $x-a$.

a. $0=(x-(2+i))(x-(2-i))=x^2-4x+5$

b. $0=(x-(3-5i))(x-(3+5i))=x^2-6x+34$

c. $0=(x-(-4+i))(x-(-4-i))=x^2+8x+17$

d. $0=(x-(1+isqrt{3}))(x-(1-isqrt{3}))=x^2-2x+4$

Thus we note that if $a,b$ are solutions of an equation, that this equation is of the form $x^2-(a+b)x+(ab)$.

Result
2 of 2
a. $x^2-4x+5$

b. $x^2-6x+34$

c. $x^2+8x+17$

d. $x^2-2x+4$

Exercise 60
Step 1
1 of 2
Determine the discriminant of the given function $f(x)=x^2-6x+25$:

$$
D=b^2-4ac=(-6)^2-4(1)(25)=36-100=-64
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{6pm sqrt{-64}}{2(1)}=dfrac{6pm 8i}{2}=3pm 4i
$$

Determine the sum of the solutions:

$$
3+4i+3-4i=6
$$

Determine the product of the solutions:

$$
(3+4i)(3-4i)=9-16i^2=9+16=25
$$

Thus we note that if $a, b$ are solutions of an equation, that this equation contains a factor of the form $(x^2-(a+b)x+(ab))$.

Result
2 of 2
If $a,b$ are solutions of an equation, then this equation contains a factor of the form $(x^2-(a+b)x+(ab))$
Exercise 61
Step 1
1 of 1
Let $x=2+i$ and $x=2-i$ be solutions of a quadratic equation, then:

$$
(x-(2+i))(x-(2-i))=x^2-(2+i)x-(2-i)x+(2+i)(2-i)=x^2-4x+5
$$

Thus we can generalize the idea to complex pairs.

Exercise 62
Step 1
1 of 2
Given equation

$$
x=-4pm i
$$

Add $4$ to both sides of the equation:

$$
x+4=pm i
$$

Square both sides of the equation

$$
(x+4)^2=(pm i)^2
$$

Simplify:

$$
x^2+8x+16=i^2
$$

Simplify:

$$
x^2+8x+16=-1
$$

Add 1 to both sides of the equation:

$$
x^2+8x+17=0
$$

Thus we note that this idea works and we can obtain the equation by working backwards.

Result
2 of 2
Yes
Exercise 63
Step 1
1 of 3
Quadratic function in the standard form is:

$$
fleft(xright)=ax^2+bx+c
$$

$text{where $a, b$ and $c$ are real numbers and $aneq0$.}$

Quadratic function in the intercept form is:

$$
fleft(xright)=aleft(x-pright)left(x-qright)
$$

$$
text{The $x$-intercepts are the points $left(p, 0right)$ and $left(q, 0right)$.}
$$

#### a.

$$
begin{align*}
fleft(xright)&=aleft(x-pright)left(x-qright) && text{Intercept form.} \
fleft(xright)&=left(x-frac{3}{4}right)left(x-left(-5right)right) && text{Substitute} a=1, p=frac{3}{4}, text{and} q=-5. \
fleft(xright)&=left(x-frac{3}{4}right)left(x+5right) && text{Simplify.} \
fleft(xright)&=x^2+5x-frac{3}{4}x-frac{15}{4} \
fleft(xright)&=x^2+frac{17}{4}x-frac{15}{4} && text{Standard form.}
end{align*}
$$

#### b.

$$
begin{align*}
fleft(xright)&=aleft(x-pright)left(x-qright) && text{Intercept form.} \
fleft(xright)&=left(x-3iright)left(x-left(-3iright)right) && text{Substitute} a=1, p=3i, text{and} q=-3i. \
fleft(xright)&=left(x-3iright)left(x+3iright) && text{Simplify.} \
fleft(xright)&=x^2+3ix-3ix-9i^2 \
fleft(xright)&=x^2-9 cdot left(-1right) && i^2=-1. \
fleft(xright)&=x^2+9 && text{Standard form.}
end{align*}
$$

Step 2
2 of 3
#### c.

$$
begin{align*}
fleft(xright)&=aleft(x-pright)left(x-qright) && text{Intercept form.} \
fleft(xright)&=left(x-left(5+2iright)right)left(x-left(5-2iright)right) && text{Substitute} a=1, p=5+2i, \
&text{} && text{and} q=5-2i. \
fleft(xright)&=left(x-5-2iright)left(x-5+2iright) && text{Simplify.} \
fleft(xright)&=x^2-5x+2ix-5x+25-10i-2ix+10i-4i^2 \
fleft(xright)&=x^2-10x+25-4 cdot left(-1right) && i^2=-1. \
fleft(xright)&=x^2-10x+29 && text{Standard form.}
end{align*}
$$

#### d.

$$
begin{align*}
fleft(xright)&=aleft(x-pright)left(x-qright) && text{Intercept form.} \
fleft(xright)&=left(x-left(-3+sqrt{2}right)right)left(x-left(-3-sqrt{2}right)right) && text{Substitute} a=1, p=-3+sqrt{2}, \
&text{} && text{and} q=-3-sqrt{2}. \
fleft(xright)&=left(x+3-sqrt{2}right)left(x+3+sqrt{2}right) && text{Simplify.} \
fleft(xright)&=x^2+3x+sqrt{2}x+3x+9+3sqrt{2}-sqrt{2}x-3sqrt{2}-2 \
fleft(xright)&=x^2+6x+7 && text{Standard form.}
end{align*}
$$

#### e.

$$
begin{align*}
fleft(xright)&=aleft(x-pright)left(x-qright) && text{Intercept form.} \
fleft(xright)&=left(x-5right)left(x-5right) && text{Substitute} a=1, p=5, text{and} q=5. \
fleft(xright)&=x^2-5x-5x+25 && text{Simplify.} \
fleft(xright)&=x^2-10x+25 && text{Standard form.}
end{align*}
$$

#### f.

$$
begin{align*}
fleft(xright)&=aleft(x-pright)left(x-qright) && text{Intercept form.} \
fleft(xright)&=left(x-sqrt{2}right)left(x-left(-sqrt{2}right)right) && text{Substitute} a=1, p=sqrt{2}, text{and} q=-sqrt{2}. \
fleft(xright)&=left(x-sqrt{2}right)left(x+sqrt{2}right) && text{Simplify.} \
fleft(xright)&=x^2+sqrt{2}x-sqrt{2}x-2 \
fleft(xright)&=x^2-2 && text{Standard form.}
end{align*}
$$

Result
3 of 3
$textbf{a.}$ $fleft(xright)=x^2+dfrac{17}{4}x-dfrac{15}{4}$ $textbf{b.}$ $fleft(xright)=x^2+9$

$textbf{c.}$ $fleft(xright)=x^2-10x+29$ $textbf{d.}$ $fleft(xright)=x^2+6x+7$

$textbf{e.}$ $fleft(xright)=x^2-10x+25$ $textbf{f.}$ $fleft(xright)=x^2-2$

Exercise 64
Step 1
1 of 5
### Functions and Their Roots

Quadratic function in the standard form is:

$$
fleft(xright)=ax^2+bx+c
$$

$text{where $a, b$ and $c$ are real numbers and $aneq0$.}$

$text{$1$.The parabola has two real roots when it crosses the $x$-axis twice.}$

$text{$2$.The parabola has one real double root when it touches the $x$-axis.}$

$text{$3$.The parabola has two conjugate imaginary roots when it doesn’t cross the $x$-axis.}$

Step 2
2 of 5
$$
textbf{Example:}
$$

#### a.

$$
text{The parabola has two real roots: $y=left(x-1right)^2-9$}
$$

$$
begin{align*}
left(x-1right)^2-9&=0 && text{Substitute} y=0. \
left(x-1right)^2-9+9&=0+9 && text{Add} 9 text{to both sides.}\
left(x-1right)^2&=9 && text{Simplify.} \
x-1&=pm sqrt{9} && text{Square root of both sides.} \
x-1&=pm 3 \
x&=-3+1 text{or} x=3+1 && text{Add} 1 text{to both sides.}\
x&=-2 text{or} x=4
end{align*}
$$

Exercise scan

Step 3
3 of 5
#### b.

$$
text{The parabola has one real double root: $y=left(x-1right)^2$}
$$

$$
begin{align*}
left(x-1right)^2&=0 && text{Substitute} y=0. \
x-1&=0 && text{Square root of both sides.} \
x&=0+1 && text{Add} 1 text{to both sides.}\
x&=1
end{align*}
$$

Exercise scan

Step 4
4 of 5
#### c.

$$
text{The parabola has two conjugate imaginary roots: $y=left(x-1right)^2+2$}
$$

$$
begin{align*}
left(x-1right)^2+2&=0 && text{Substitute} y=0. \
left(x-1right)^2+2-2&=0-2 && text{Subtract} 2 text{from both sides.}\
left(x-1right)^2&=-2 && text{Simplify.} \
x-1&=pm sqrt{2}i && text{Square root of both sides.} i^2=-1. \
x&=1-sqrt{2}i text{or} x=1+sqrt{2}i && text{Add} 1 text{to both sides.}\
end{align*}
$$

Exercise scan

Result
5 of 5
$text{$1$.The parabola has two real roots when it crosses the $x$-axis twice.}$

$text{$2$.The parabola has one real double root when it touches the $x$-axis.}$

$$
text{$3$.The parabola has two conjugate imaginary roots when it doesn’t cross the $x$-axis.}
$$

Exercise 65
Step 1
1 of 3
a. Use the distributive property:

$$
(x-(3+4i))(x-(3-4i))=x^2-(3+4i)x-(3-4i)x+(3+4i)(3-4i)=x^2-6x+9-4i^2=x^2-6x+13
$$

Step 2
2 of 3
b. Given equation:

$$
x=3+4i
$$

Subtract 3 from both sides of the equation:

$$
x-3=4i
$$

Square both sides of the equation:

$$
(x-3)^2=16i^2
$$

$i^2=-1$:

$$
(x-3)^2=-16
$$

Add 16 to both sides of the equation:

$$
(x-3)^2+16=0
$$

c. Alexia’s method is easier and requires less steps.

Result
3 of 3
a. $0=x^2-6x+13$

b. $(x-3)^2+16=0$

c. Alexia

Exercise 66
Step 1
1 of 2
A polynomial is the sum of terms of the form $cx^d$ with $c$ a constant and $d$ an integer. The degree of the polynomial is the highest power of $x$ in any term of the polynomial.

a. Polynomial of degree 3

b. Polynomial of degree 7

c. Not a polynomial, because it contains $x$ in a power.

d. Not a polynomial, because it contains a square root.

e. Polynomial of degree 3

f. Not a polynomial, because it contains $x-2$ in a denominator.

Result
2 of 2
a. Polynomial of degree 3

b. Polynomial of degree 7

c. Not a polynomial

d. Not a polynomial

e. Polynomial of degree 3

f. Not a polynomial

Exercise 67
Step 1
1 of 3
Quadratic function in the standard form is:

$$
fleft(xright)=ax^2+bx+c
$$

$text{where $a, b$ and $c$ are real numbers and $aneq0$.}$

Quadratic function in the intercept form is:

$$
fleft(xright)=aleft(x-pright)left(x-qright)
$$

$$
text{The $x$-intercepts are the points $left(p, 0right)$ and $left(q, 0right)$.}
$$

#### a.

$$
begin{align*}
fleft(xright)&=aleft(x-pright)left(x-qright) && text{Intercept form.} \
fleft(xright)&=left(x-frac{3}{4}right)left(x-left(-2right)right) && text{Substitute} a=1, p=frac{3}{4}, text{and} q=-2. \
fleft(xright)&=left(x-frac{3}{4}right)left(x+2right) && text{Simplify.} \
fleft(xright)&=x^2+2x-frac{3}{4}x-frac{3}{2} \
fleft(xright)&=x^2+frac{5}{4}x-frac{3}{2} && text{Standard form.}
end{align*}
$$

Step 2
2 of 3
#### b.

$$
begin{align*}
fleft(xright)&=aleft(x-pright)left(x-qright) && text{Intercept form.} \
fleft(xright)&=aleft(x-left(-sqrt{5}right)right)left(x-sqrt{5}right) && text{Substitute} p=-sqrt{5}, text{and} q=sqrt{5}. \
fleft(xright)&=aleft(x+sqrt{5}right)left(x-sqrt{5}right) && text{Simplify.} \
fleft(xright)&=aleft(x^2-5right) && text{Use} left(a+bright)left(a-bright)=a^2-b^2. \
12&=aleft(left(-3right)^2-5right) && text{Substitute} left(x, fleft(xright)right)=left(-3, 12right). \
12&=aleft(9-5right) && text{Simplify.} \
12&=4a \
a&=3 && text{Divide both sides by} 4. \\
fleft(xright)&=aleft(x^2-5right) && text{Intercept form.} \
fleft(xright)&=3left(x^2-5right) && text{Substitute} a=3. \
fleft(xright)&=3x^2-15 && text{Standard form.}
end{align*}
$$

Result
3 of 3
$textbf{a.}$ $fleft(xright)=x^2+dfrac{5}{4}x-dfrac{3}{2}$

$textbf{b.}$ $fleft(xright)=3x^2-15$

Exercise 68
Step 1
1 of 2
#### a.

$text{This function is called radical function. The domain of a radical function is any $x$ value}$

for which the radicand is positive or zero.

$$
2x-4geq 0Rightarrow 2xgeq 4Rightarrow xgeq 2
$$

$text{The domain: $left[2, inftyright)$}$

$$
text{As the square root is always positive or $0$, $sqrt{2x-4}geq0$.}
$$

$$
2+sqrt{2x-4}geq2+0=2
$$

$$
text{The range: $left[2, inftyright)$.}
$$

#### b.

$$
begin{align*}
y&=2+sqrt{2x-4} && text{Substitute} y text{for} fleft(xright). \
y-2&=sqrt{2x-4} && text{Subtract} 2 text{from both sides.} \
left(y-2right)^2&=2x-4 && text{Square each side}. \
y^2-4y+4&=2x-4 && text{Use} left(a-bright)^2=a^2-2ab+b^2. \
y^2-4y+8&=2x && text{Add} 4 text{to both sides.} \
x&=frac{y^2-4y+8}{2} && text{Divide both sides by} 2. \
f^{-1}left(yright)&=frac{y^2-4y+8}{2} && text{Substitute} f^{-1}left(yright) text{for} x. \
end{align*}
$$

#### c.

The domain of this function is limited to the range of the original function.

$text{The domain: $left[2, inftyright)$.}$

$$
text{The range: $left[2, inftyright)$.}
$$

Result
2 of 2
$textbf{a.}$ $text{The domain: $left[2, inftyright)$.}$
$text{The range: $left[2, inftyright)$.}$

$textbf{b.}$ $f^{-1}left(yright)=dfrac{y^2-4y+8}{2}$

$textbf{c.}$ $text{The domain: $left[2, inftyright)$.}$
$text{The range: $left[2, inftyright)$.}$

Exercise 69
Step 1
1 of 2
#### a.

$$
begin{align*}
left(3+2iright)left(4+iright)&=12+3i+8i+2i^2 && text{Distributive Property.} \
&=12+11i+2 cdot left(-1right) && i^2=-1. \
&=10+11i && text{Simplify.}
end{align*}
$$

#### b.

$$
begin{align*}
left(2+3iright)left(2-3iright)&=4-6i+6i-9i^2 && text{Distributive Property.} \
&=4-9 cdot left(-1right) && i^2=-1. \
&=13 && text{Simplify.}
end{align*}
$$

#### c.

$$
begin{align*}
left(5-2iright)left(5+2iright)&=25+10i-10i-4i^2 && text{Distributive Property.} \
&=25-4 cdot left(-1right) && i^2=-1. \
&=29 && text{Simplify.}
end{align*}
$$

#### d.

$$
begin{align*}
left(a+biright)left(a-biright)&=a^2-abi+abi-b^2i^2 && text{Distributive Property.} \
&=a^2-b^2 cdot left(-1right) && i^2=-1. \
&=a^2+b^2 && text{Simplify.}
end{align*}
$$

Result
2 of 2
$textbf{a.}$ $10+11i$ $textbf{b.}$ $13$

$textbf{c.}$ $29$ $textbf{d.}$ $a^2+b^2$

Exercise 70
Step 1
1 of 6
Exercise scan
We are given:
Step 2
2 of 6
$SV^2=BS^2+BV^2$

$SV^2=7^2+3^2$

$SV^2=58$

$$
SV=sqrt{58}approx 7.62
$$

We have to determine the perimeter of $triangle SFV$ and compare it to 26.

First we determine $SV$ usisng the Pythagorean Theorem in the right triangle $BSV$:

Step 3
3 of 6
$FV^2=SF^2+SV^2-2(SF)(SV)cos 101text{textdegree}$

$FV^2=7.2^2+7.62^2-2cdot 7.2cdot 7.62cdot (-0.190809)$

$FV^2=130.8415$

$FV=sqrt{130.8415}$

$$
FVapprox 11.44
$$

We use the Law of Cosines in $triangle SVF$ to determine $FV$:
Step 4
4 of 6
$$
P_{triangle SVF}=SF+SV+FV=7.2+7.62+11.44=26.26
$$
We determine the perimeter of $triangle SFV$:
Step 5
5 of 6
Since $P_{triangle SVF}>26$, it does not fit the Association’s guidelines.
Result
6 of 6
It doesn’t fit
Exercise 71
Step 1
1 of 4
text{We build a table of values:}
begin{align*}
fleft(-2right)&=3 cdot left(5right)^{-2} \
&=frac{3}{25} \
&=0.12 \\
fleft(-1right)&=3 cdot left(5right)^{-1} \
&=frac{3}{5} \
&=0.6 \\
fleft(0right)&=3 cdot left(5right)^{0} \
&=3 cdot 1 \
&=3 \\
fleft(1right)&=3 cdot left(5right)^{1} \
&=3 cdot 5 \
&=15 \\
fleft(2right)&=3 cdot left(5right)^{2} \
&=3 cdot 25 \
&=75 \\
end{align*}
begin{table}[ht]
begin{center}
begin{tabular}{|c|c|}
hline
$x$&$fleft(xright)$\
hline
$-2$&$0.12$\
hline
$-1$&$0.6$\
hline
$0$&$3$\
hline
$1$&$15$\
hline
$2$&$75$\
hline
end{tabular}
end{center}
end{table}

Exercise scan

Step 2
2 of 4
subsection*{a.}
text{The domain of function $fleft(xright)$ is $left(-infty, inftyright)$.}
subsection*{b.}
text{We build a table of values $ngeq 1$:}
begin{align*}
tleft(1right)&=3 cdot left(5right)^{1} \
&=3 cdot 5 \
&=15 \\
tleft(2right)&=3 cdot left(5right)^{2} \
&=3 cdot 25 \
&=75 \\
tleft(3right)&=3 cdot left(5right)^{3} \
&=3 cdot 125 \
&=375 \\
tleft(4right)&=3 cdot left(5right)^{4} \
&=3 cdot 625 \
&=1875 \\
end{align*}
begin{table}[ht]
begin{center}
begin{tabular}{|c|c|}
hline
$x$&$fleft(xright)$\
hline
$1$&$15$\
hline
$2$&$75$\
hline
$3$&$375$\
hline
$4$&$1875$\
hline
end{tabular}
end{center}
end{table}

Exercise scan

Step 3
3 of 4
#### c.

The domains of the two functions are different:

$$
begin{align*}
fleft(xright)&: left(-infty, inftyright) \
tleft(nright)&: leftlbrace1, 2, 3, 4, …rightrbrace
end{align*}
$$

The ranges of the two functions are different:

$$
begin{align*}
fleft(xright)&: left(0, inftyright) \
tleft(nright)&: leftlbrace15, 75, 375, 1875, …rightrbrace
end{align*}
$$

$$
text{$fleft(xright)$ is continuous function, while $tleft(nright)$ is discontinuous.}
$$

Result
4 of 4
$textbf{a.}$ $text{The domain of function $fleft(xright)$ is $left(-infty, inftyright)$.}$

$textbf{b.}$ Sketch the graph by using the table.

$textbf{c.}$ $text{$fleft(xright)$ is continuous function, while $tleft(nright)$ is discontinuous.}$

Exercise 72
Step 1
1 of 2
The number of real roots are equal to the number of intersections of the graph with the $x$-axis:

a. 2

b. 3

c. 0

d. 1

Result
2 of 2
a. 2
b. 3
c. 0
d. 1
Exercise 73
Step 1
1 of 3
a.Exercise scan
Step 2
2 of 3
b. No, because a third-degree equation has exactly 3 roots (real/complex) and since all complex roots come in pairs, we then know that at least one of the three roots has to be real.
Result
3 of 3
a. See graph
b. No
Exercise 74
Step 1
1 of 2
a. Because a third-degree equation has exactly 3 roots (real/complex) and since all complex roots come in pairs, we then know that the equation has either one or three real solutions.

b. Use the distributive property:

$$
(x-2)(x^2-x+1)=x^3-x^2+x-2x^2+2x-2=x^2-3x^3+3x-2
$$

c. Use the zero product property:

$$
x-2=0text{ or } x^2-x+1=0
$$

Solve each equation to $x$:

$$
x=2text{ or } x=dfrac{-bpm sqrt{b^2-4ac}}{2a}=dfrac{1pm sqrt{-3}}{2(1)}=dfrac{1pm sqrt{3}i}{2}
$$

d. The function has one $x$-intercept (because the other roots are complex). The function also has one real root and 3 complex roots.

Result
2 of 2
a. 1 or 3

b. See explanation

c. $x=2$ and $x=dfrac{1pm sqrt{3}i}{2}$

d. 1, 1, 3

Exercise 75
Step 1
1 of 6
Quadratic function in the standard form is:

$$
fleft(xright)=ax^2+bx+c
$$

$text{where $a, b$ and $c$ are real numbers and $aneq0$.}$

The solutions of quadratic equation is:

$$
x_{1/2}=frac{-bpm sqrt{b^2-4ac}}{2a}
$$

#### a.

We determine the roots:

$$
begin{align*}
xleft(x^2+x-1right)&=0 && text{Substitute} p_1left(xright)=0. \
x&=0 text{or} x^2+x-1=0 && text{Use} a cdot b=0Rightarrow a=0 text{or} b=0. \
x&=0 text{or} x=frac{-1pm sqrt{1^2-4 cdot 1 cdot left(-1right)}}{2 cdot 1} && text{Quadratic equation.} \
x&=0 text{or} x=frac{-1pm sqrt{1+4}}{2} && text{Simplify.} \
x&=0 text{or} x=frac{-1pm sqrt{5}}{2} \
x&=0 text{or} x=frac{-1+sqrt{5}}{2} text{or} x=frac{-1-sqrt{5}}{2} \
end{align*}
$$

Exercise scan

Step 2
2 of 6
#### b.

We determine the roots:

$$
begin{align*}
left(x+1right)left(5x^2+x+1right)&=0 && text{Substitute} p_2left(xright)=0. \
x+1&=0 text{or} 5x^2+x+1=0 && text{Use} a cdot b=0Rightarrow a=0 text{or} b=0. \
x&=-1 text{or} x=frac{-1pm sqrt{1^2-4 cdot 1 cdot 5}}{2 cdot 5} && text{Quadratic equation.} \
x&=-1 text{or} x=frac{-1pm sqrt{1-20}}{10} && text{Simplify.} \
x&=-1 text{or} x=frac{-1pm isqrt{19}}{10} \
x&=-1 text{or} x=frac{-1+isqrt{19}}{10} text{or} x=frac{-1-isqrt{19}}{10} \
end{align*}
$$

Exercise scan

Step 3
3 of 6
#### c.

We determine the roots:

$$
begin{align*}
left(x^2+1right)left(x^2-4right)&=0 && text{Substitute} p_3left(xright)=0. \
x^2+1&=0 text{or} x^2-4=0 && text{Use} a cdot b=0Rightarrow a=0 text{or} b=0. \
x^2&=-1 text{or} x^2=4 && text{Solve for} x. \
x&=pm i text{or} x=pm 2 && text{Simplify.} \
x&=-i text{or} x=i text{or} x=-2 text{or} x=2 \
end{align*}
$$

Exercise scan

Step 4
4 of 6
#### d.

We determine the roots:

$$
begin{align*}
left(x^2+x-2right)left(x^2+x-1right)&=0 && text{Substitute} p_4left(xright)=0. \
x^2+x-2=0 text{or} x^2+x-1&=0 && text{Use} a cdot b=0Rightarrow a=0 text{or} b=0. \
x=frac{-1pmsqrt{1^2-4 cdot 1 cdot left(-2right)}}{2 cdot 1} text{or} x&=frac{-1pm sqrt{1^2-4 cdot 1 cdot left(-1right)}}{2 cdot 1} && text{Quadratic equation.} \
x=frac{-1pm sqrt{1+8}}{2} text{or} x&=frac{-1pm sqrt{1+4}}{2} && text{Simplify.} \
x=frac{-1pm3}{2} text{or} x&=frac{-1pm sqrt{5}}{2} \
x=-2 text{or} x=1 text{or} x&=frac{-1-sqrt{5}}{2} text{or} x=frac{-1+sqrt{5}}{2} \
end{align*}
$$

Exercise scan

Step 5
5 of 6
#### e.

The equations can be factored completely and the solutions are easily found with the Zero Product Rule.

Result
6 of 6
$textbf{a.}$ $x=0 text{or} x=dfrac{-1+sqrt{5}}{2} text{or} x=dfrac{-1-sqrt{5}}{2}$

$textbf{b.}$ $x=-1 text{or} x=dfrac{-1+isqrt{19}}{10} text{or} x=dfrac{-1-isqrt{19}}{10}$

$textbf{c.}$ $x=-i text{or} x=i text{or} x=-2 text{or} x=2$

$textbf{d.}$ $x=-2 text{or} x=1 text{or} x=dfrac{-1-sqrt{5}}{2} text{or} x=dfrac{-1+sqrt{5}}{2}$

Exercise 76
Step 1
1 of 2
#### a.

$$
text{In Problem $8$-$74$ we determined the roots of the polynomial:}
$$

$$
begin{align*}
x_1&=2 \
x_2&=frac{1-sqrt{3}i}{2} \
x_3&=frac{1+sqrt{3}i}{2}
end{align*}
$$

$$
text{We can write the polynomial as a product of $3$ linear factors:}
$$

$$
y=left(x-2right)left(x-frac{1-sqrt{3}i}{2}right)left(x-frac{1+sqrt{3}i}{2}right)
$$

#### b.

$$
text{In Problem $8$-$75$ we determined the roots of the polynomial:}
$$

$$
begin{align*}
x_1&=-i \
x_2&=i \
x_3&=-2 \
x_4&=2
end{align*}
$$

$$
text{We can write the polynomial as a product of $4$ linear factors:}
$$

$$
P_3left(xright)=left(x+iright)left(x-iright)left(x+2right)left(x-2right)
$$

#### c.

$$
text{In Problem $8$-$75$ we determined the roots of the polynomial:}
$$

$$
begin{align*}
x_1&=-2 \
x_2&=1 \
x_3&=frac{-1-sqrt{5}}{2} \
x_4&=frac{-1+sqrt{5}}{2}
end{align*}
$$

$$
text{We can write the polynomial as a product of $4$ linear factors:}
$$

$$
P_4left(xright)=left(x+2right)left(x-1right)left(x+dfrac{1+sqrt{5}}{2}right)left(x+dfrac{1-sqrt{5}}{2}right)
$$

Result
2 of 2
$textbf{a.}$ $y=left(x-2right)left(x-dfrac{1-sqrt{3}i}{2}right)left(x-dfrac{1+sqrt{3}i}{2}right)$

$textbf{b.}$ $P_3left(xright)=left(x+iright)left(x-iright)left(x+2right)left(x-2right)$

$textbf{c.}$ $P_4left(xright)=left(x+2right)left(x-1right)left(x+dfrac{1+sqrt{5}}{2}right)left(x+dfrac{1-sqrt{5}}{2}right)$

Exercise 77
Step 1
1 of 5
a.Exercise scan
Step 2
2 of 5
b.Exercise scan
Step 3
3 of 5
c.Exercise scan
Step 4
4 of 5
d.Exercise scan
Step 5
5 of 5
e. The lowest degree that the function can have is equal to the number of roots (real and complex):

(a) 5

(b) 5

(c) 4

(d) 6

Exercise 78
Step 1
1 of 2
If $x=a$ is a root of the function, then the function equation contains the factor $x-a$.

If $a,b$ are complex solutions of an equation, that this equation is of the form $x^2-2ax+(a^2+b^2)$.

a. $y=x^2-(-6)x+10=x^2+6x+10$

b. $y=(x-(5+sqrt{3}))(x-(5-sqrt{3}))=x^2-10x+12$

c. $y=(x+2)(x-sqrt{7})(x+sqrt{7})=(x+2)(x^2-7)$

d. $y=(x-4)(x^2+6x+10)$

Result
2 of 2
a. $y=x^2+6x+10$

b. $y=x^2-10x+12$

c. $y=(x+2)(x^2-7)$

d. $y=(x-4)(x^2+6x+10)$

Exercise 79
Step 1
1 of 6
$$
y=x^3-9x
$$
We are given the function:
Step 2
2 of 6
$$
y=x(x^2-9)=x(x-3)(x+3)
$$
a) We factor the function:
Step 3
3 of 6
$x_1=0$

$x-3=0Rightarrow x_2=3$

$x+3=0Rightarrow x_3=-3$

We determine the zeros:
Step 4
4 of 6
b) The degree is odd, therefore the ends go in opposite directions. Because the leading coefficient is positive, the left end goes down, while the right end goes up.
Step 5
5 of 6
Exercise scan
We plot the zeros and sketch the graph of the function considering its end behavior as well:
Result
6 of 6
a) ${-3,0,3}$

b) see graph

Exercise 80
Step 1
1 of 2
#### a.

$$
begin{align*}
frac{171}{3}&=frac{3left(5right)^x}{3} && text{Divide both sides by} 3. \
57&=5^x && text{Simplify.} \
ln 57&=ln 5^x && text{Take the natural logarithmic of both sides.} \
ln 57&=xln 5 && text{Logarithmic properties:} log_ab^k=klog_ab \
x&=frac{ln 57}{ln 5} && text{Divide both sides by} ln 5. \
x&approx 2.512 && text{Use a calculator.}
end{align*}
$$

#### b.

$$
begin{align*}
frac{171y}{3}&=frac{3x^5}{3} && text{Divide both sides by} 3. \
57y&=x^5 && text{Simplify.} \
x&=sqrt[5]{57y} && text{Take the fifth root.} \
end{align*}
$$

Result
2 of 2
$textbf{a.}$ $xapprox 2.512$ $textbf{b.}$ $x=sqrt[5]{57y}$
Exercise 81
Solution 1
Solution 2
Step 1
1 of 2
Given that

$$
fleft(xright)=x^2+7x-9
$$

a)

Replace $x$ with $-3$

$$
fleft(-3right)=left(-3right)^2+7left(-3right)-9=-21
$$

b)

Replace $x$ with $i$

$$
fleft(iright)=left(iright)^2+7left(iright)-9
$$

$$
=-1+7i-9=-10+7i
$$

c)

Replace $x$ with $-3+i$

$$
fleft(-3+iright)=left(-3+iright)^2+7left(-3+iright)-9
$$

$$
=9-6i+i^2-21+7i-9=-6i-1-21+7i
$$

$$
fleft(-3+iright)=-22+i
$$

Result
2 of 2
a)

$$
fleft(-3right)=-21
$$

b)

$$
fleft(iright)=-10+7i
$$

c)

$$
fleft(-3+iright)=-22+i
$$

Step 1
1 of 2
a. Replace $x$ with $-3$:

$$
f(-3)=(-3)^2+7(-3)-9=9-21-9=-21
$$

b. Replace $x$ with $i$:

$$
f(i)=(i)^2+7(i)-9=-1+7i-9=-10+7i
$$

c. Replace $x$ with $(-3+i)$:

$$
f(-3+i)=(-3+i)^2+7(-3+i)-9=9-6i+i^2-27+7i-9=-27+i+i^2=-28+i
$$

Result
2 of 2
a. $-21$

b. $-10+7i$

c. $-28+i$

Exercise 82
Step 1
1 of 7
Exercise scan
Let’s note:

$SB=x$

$AS=11-x$.

We are given:

Step 2
2 of 7
$$
SV+SF=sqrt{x^2+3^2}+sqrt{6^2+(11-x)^2}
$$
We have:
Step 3
3 of 7
Exercise scan
We graph the function $f(x)=sqrt{x^2+3^2}+sqrt{6^2+(11-x)^2}$:
Step 4
4 of 7
$$
xapprox 3.67
$$
The function’s minimum is:
Step 5
5 of 7
$FV^2=MV^2+MF^2$

$FV^2=11^2+3^2$

$FV=sqrt{130}$

$$
FVapprox 11.40
$$

We determine $FV$:
Step 6
6 of 7
$$
P_{triangle FSV}=SV+SF+FV=14.21+11.40=25.61
$$
We determine the perimeter of the triangle$FSV$
Step 7
7 of 7
Because $P_{triangle FSV}<26$,it fits to the Association's standard.
Exercise 83
Step 1
1 of 2
$$
text{Average rate of change}=frac{Delta y}{Delta x}=frac{y_2-y_1}{x_2-x_1}=m=text{slope}
$$

#### a.

$$
begin{align*}
text{Average rate of change}&=frac{y_2-y_1}{x_2-x_1} && text{Write the Formula.} \
&=frac{70^{circ}text{F}-85^{circ}text{F}}{3:00 text{p.m.}-2:04 text{p.m.}} && text{Substitute the given data.} \
&=frac{-15^{circ}text{F}}{56 text{minutes}} && text{Simplify.} \
&=-0.268^{circ}text{F}/text{minute}
end{align*}
$$

The point-slope form:

$$
y-y_1=mleft(x-x_1right)
$$

$$
begin{align*}
y-y_1&=mleft(x-x_1right) && text{The point-slope form.} \
y-85^{circ}text{F}&=-0.268^{circ}text{F}/text{minute}left(2:15 text{p.m.}-2:04 text{p.m.}right) && text{Substitute the given data.} \
y-85^{circ}text{F}&=-0.268^{circ}text{F}/text{minute}cdot 9 text{minutes} && text{Simplify} \
y-85^{circ}text{F}&=-2.41^{circ}text{F} \
y&=85^{circ}text{F}-2.41^{circ}text{F} && text{Add} 85^{circ}text{F} text{to both sides.} \
y&=82.59^{circ}text{F}
end{align*}
$$

#### b.

$$
begin{align*}
text{Average rate of change}&=frac{y_2-y_1}{x_2-x_1} && text{Write the Formula.} \
&=frac{70^{circ}text{F}-72^{circ}text{F}}{3:27 text{p.m.}-3:01 text{p.m.}} && text{Substitute the given data.} \
&=frac{-2^{circ}text{F}}{26 text{minutes}} && text{Simplify.} \
&=-0.077^{circ}text{F}/text{minute}
end{align*}
$$

$text{This means the temperature cooled by $0.077^{circ}text{F}/text{minute}$. The manager was wrong in his}$

$text{prediction because the average rate of change diminished as time went by from $3^{circ}text{F}$ in}$

$$
text{$11$ minutes to $1^{circ}text{F}$ in $9$ minutes.}
$$

Result
2 of 2
$textbf{a.}$ $82.59^{circ}text{F}$ $textbf{b.}$ $-0.077^{circ}text{F}/text{minute}$
Exercise 84
Step 1
1 of 2
The black elements are the known elements that have been entered in the table, while the green elements have been obtained by multiply a monomial with the given monomial to obtain the resulting monomial.Exercise scan
Result
2 of 2
$$
x^2+4x+1
$$
Exercise 85
Step 1
1 of 2
a. The term $2x^2$ in cell C3 was obtained by multiplying the term in B3 and the term in C1.

b. $-7x^3$ was obtained by adding the term in cell B3 to term C4.

c.

Exercise scan

Result
2 of 2
$$
8x^4-22x^2-4x+15
$$
Exercise 86
Step 1
1 of 1
a. Cell B2 is the largest term of the answer.

b. The third term in the answer is the sum of cell B5 and cell C4.

c. Cell B5 is 12x (part of the given solution) decreased by the value in cell C4.Exercise scan

Exercise 87
Step 1
1 of 1
$$
dfrac{6x^2+7x^2-16x+10}{2x+5}=3x^2-4x+2
$$

$$
(2x+5)cdot (3x^2-4x+2)=6x^3+7x^2-16x+10
$$

Exercise scan

Exercise 88
Step 1
1 of 2
a. That you cannot divide one polynomial by the other because you will keep a remainder.

b. $dfrac{6x^3+7x^2-16x+18}{2x+5}=3x^2-4x+2+dfrac{8}{2x+5}$

c. $dfrac{6x^3+11x^2-12x-1}{3x+1}=2x^2+3x-5-dfrac{4}{3x+1}$

Exercise scan

Result
2 of 2
a. See explanation

b. $3x^2-4x+2+dfrac{8}{2x+5}$

c. $2x^2+3x-5-dfrac{4}{3x+1}$

Exercise 89
Step 1
1 of 5
a. $dfrac{6x^4-5x^3+10x^2-18x+5}{3x-1}=2x^3+x^2+dfrac{11}{3}x-dfrac{43}{9}+dfrac{2}{9(3x-1)}$

Exercise scan

Step 2
2 of 5
b. $(x^4-6x^3+1x-4)div (x-2)=x^3-4x^2-8x+2$

Exercise scan

Step 3
3 of 5
c. $(x^3+x^2-14x+3)div (x-3)=x^2+4x-2-dfrac{3}{x-3}$

Exercise scan

Step 4
4 of 5
d. $dfrac{x^5-1}{x-1}=x^4+x^3+x^2+x+1$

Exercise scan

Result
5 of 5
a. $2x^3+x^2+dfrac{11}{3}x-dfrac{43}{9}$

b. $x^3-4x^2-8x+2$

c. $x^2+4x-2-dfrac{3}{x-3}$

d. $x^4+x^3+x^2+x+1$

Exercise 90
Step 1
1 of 3
Exercise scan
Step 2
2 of 3
This then implies:

$$
begin{align*}
x^3+2x^3-7x-2&=(x-2)(x^2+4x+1)
end{align*}
$$

We then know that 2 is a root due to the term $(x-2)$.

Next, we determine the roots of $x^2+4x+1$ using the quadratic formula $x=frac{-bpm sqrt{b^2-4ac}}{2a}$ for a quadratic equation $ax^2+bx+c$.:

$$
begin{align*}
x&=frac{-4pm sqrt{(-4)^2-4(1)(1)}}{2(1)}
\ &=frac{-4pm sqrt{16-4}}{2}
\ &=frac{-4pm sqrt{12}}{2}
\ &=frac{-4pm sqrt{4cdot 3}}{2}
\ &=frac{-4pm 2sqrt{3}}{2}
\ &=-2pm sqrt{3}
end{align*}
$$

Thus the roots of the function are then $x=2$, $x=-2+sqrt{3}approx -0.2679$ and $x=-2-sqrt{3}approx -3.7321$.

Result
3 of 3
$x=2$, $x=-2+sqrt{3}approx -0.2679$ and $x=-2-sqrt{3}approx -3.7321$.
Exercise 91
Step 1
1 of 3
#### a.

$$
text{Divide $P_1left(xright)$ by $D_1left(xright)$:}
$$

$polylongdiv{2x^3-21x^2-9x-30}{x-11}$

$$
text{We rewrite $P_1left(xright)$ in the form: $P_1left(xright)=D_1left(xright)Qleft(xright)+R$.}
$$

$$
P_1left(xright)=left(x-11right)left(2x^2+x+2right)-8
$$

#### b.

$$
text{Divide $P_2left(xright)$ by $D_2left(xright)$:}
$$

$polylongdiv{3x^4+5x^3-4x+3}{x+2}$

$$
text{We rewrite $P_2left(xright)$ in the form: $P_2left(xright)=D_2left(xright)Qleft(xright)+R$.}
$$

$$
P_2left(xright)=left(x+2right)left(3x^3-x^2+2x-8right)+19
$$

#### c.

$$
begin{align*}
P_1left(11right)&=2 cdot 11^3-21 cdot 11^2-9 cdot 11-30 && text{Use the original polynomial.} \
&=2662-2541-99-30=-8 && text{Simplify.} \
P_1left(11right)&=left(11-11right)left(2 cdot 11^2+11+2right)-8 && text{Use the rewritten polynomial.} \
&=0-8=-8 && text{Simplify.}
end{align*}
$$

$$
text{We notice that the value of $P_1left(xright)$ in $x=11$ is the remainder of the division of $P_1left(xright)$ by $x-11$.}
$$

Step 2
2 of 3
#### d.

$$
begin{align*}
P_2left(-2right)&=3 cdot left(-2right)^4+5 cdot left(-2right)^3-4 cdot left(-2right)+3 && text{Use the original polynomial.} \
&=48-40+8+3=19 && text{Simplify.} \
P_2left(-2right)&=left(-2+2right)left(3 cdot left(-2right)^3-left(-2right)^2+2 cdot left(-2right)-8right)+19 && text{Use the rewritten polynomial.} \
&=0+19=19 && text{Simplify.}
end{align*}
$$

$$
text{We notice that the value of $P_2left(xright)$ in $x=-2$ is the remainder of the division of $P_2left(xright)$ by $x+2$.}
$$

#### e.

$$
text{We rewrite $Pleft(xright)$ in the form: $Pleft(xright)=Dleft(xright)Qleft(xright)+R$.}
$$

$$
Pleft(xright)=left(x-cright)left(2x^2+x+2right)-8
$$

$$
text{For $x=c$ we get:}
$$

$$
begin{align*}
Pleft(cright)&=left(c-cright)Qleft(cright)+R \
Pleft(cright)&=0 cdot Qleft(cright)+R \
Pleft(cright)&=0+R \
Pleft(cright)&=R
end{align*}
$$

#### f.

$$
text{If $Pleft(xright)$ is divided by $x-c$ and the remainder is $0$, it means that $c$ is the root of $Pleft(xright)$.}
$$

Result
3 of 3
$textbf{a.}$ $P_1left(xright)=left(x-11right)left(2x^2+x+2right)-8$
$textbf{b.}$ $P_2left(xright)=left(x+2right)left(3x^3-x^2+2x-8right)+19$

$textbf{c.}$ $P_1left(11right)=-8$, $textbf{d.}$ $P_2left(-2right)=19$,

$textbf{e.}$ True $textbf{f.}$ $text{$c$ is the root of $Pleft(xright)$.}$

Exercise 92
Step 1
1 of 2
a. A solution of the equation is an intersection of the graph with the $x$-axis, then we note that $x=-7$ seems to be an integer solution.

b.
$$
(-7)^3+5(-7)^2-16(-7)-14=-343+245+112-14=0
$$

Thus $x=-7$ is a solution of the equation.

c. If $x=-7$ is a root, then the corresponding factor is $(x+7)$.

d.
$$
polylongdiv{x^3+5x^2-16x-14}{x+7}
$$

e.
$$
x^3+5x^2-16x-14=(x+7)(x^2-2x-2)=0
$$

f. Determine the discriminant of the given function $f(x)=x^2-2x-2$:

$$
D=b^2-4ac=(-2)^2-4(1)(-2)=4+8=12
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{2pm sqrt{12}}{2(1)}=dfrac{2pm 2sqrt{3}}{2}=1pm sqrt{3}
$$

Result
2 of 2
a. $x=-7$

b. $x=-7$ is a solution

c. $(x+7)$

d. $x^2-2x-2$

e. $x^2-2x-2$

f. $x=1pm sqrt{3}$

Exercise 93
Step 1
1 of 2
$$
polylongdiv{2x^3+3x^2-8x+3}{x-1}
$$

$$
2x^3+3x^2-8x+3=(x-1)(2x^2+5x-3)=0
$$

Determine the discriminant of the given function $f(x)=2x^2+5x-3$:

$$
D=b^2-4ac=(5)^2-4(2)(-3)=25+24=49
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{-5pm sqrt{49}}{2(2)}=-3text{ or } dfrac{1}{2}
$$

Result
2 of 2
$$
x=-3,frac{1}{2},1
$$
Exercise 94
Step 1
1 of 2
Since every $x$ terms has no constant in front of it, the highest term of the polynomial cannot contain a constant infront of it either.

If we multiply only the constants then we obtain 30 and thus the constant term of the polynomial should be 30.

Thus polynomial (c) is the correct polynomial.

Result
2 of 2
(c)
Exercise 95
Step 1
1 of 2
a.
$$
polylongdiv{5x^2-7x-6}{x-2}
$$

Thus the factors are $(x-2)$ and $(5x+3)$.

b. The solutions of the equation can then be obtained by setting every factor equal to zero:

$$
x-2=0 text{ or } 5x+3=0
$$

Solve each equation to $x$:

$$
x=2text{ and }x=-dfrac{3}{5}
$$

c. The roots of the factors are solutions of the equation.

d. The product of the numerators of the solutions are equal to the constant term, while the denominator of one of the solutions is equal to the lead coefficient.

Result
2 of 2
a. $(x-2)$ and $(5x+3)$

b. $x=2text{ and }x=-dfrac{3}{5}$

c. See explanation

d. See explanation

Exercise 96
Step 1
1 of 2
$$
begin{align*}
y&=left(x+1right)^2-3 && text{Substitute} y text{for} gleft(xright). \
y+3&=left(x+1right)^2 && text{Add} 3 text{to both sides.} \
sqrt{y+3}&=mid x+1mid && text{Square root each side}. \
sqrt{y+3}&=x+1 && text{Use} xgeq -1. \
sqrt{y+3}-1&=x && text{Subtract} 1 text{from both sides.} \
g^{-1}left(yright)&=sqrt{y+3}-1 && text{Substitute} g^{-1}left(yright) text{for} x. \
end{align*}
$$

$text{The domain of $g^{-1}left(xright)$ is: $left[-3, inftyright)$.}$

$$
text{The range of $g^{-1}left(xright)$ is: $left[-1, inftyright)$.}
$$

Exercise scan

Result
2 of 2
$g^{-1}left(xright)=sqrt{x+3}-1$

$text{The domain of $g^{-1}left(xright)$ is: $left[-3, inftyright)$.}$

$$
text{The range of $g^{-1}left(xright)$ is: $left[-1, inftyright)$.}
$$

Exercise 97
Step 1
1 of 3
(a) The first three terms of the series are found by substituting $n=1,2,3$ in the equation t(n); $t(1)=4times5^{1}=20$ ; $t(2)=4times5^{2}=100$ ; $t(3)=4times5^{3}=500$
Step 2
2 of 3
(b) Chelita is correct since $dfrac{312500}{4}=78125$ and this whole number can be expressed as an integer power of 5; $rightarrow5^{7}$ (c) Elisa is incorrect however as $dfrac{94500}{4}=23625$ and this whole number cannot be expressed as an integer power of 5;
Result
3 of 3
see answers
Exercise 98
Step 1
1 of 2
The equation of a line:

$$
y=mx+b
$$

$text{where $m$ is slope.}$

$$
text{The slope of $y=-5x+2$ is $m_1=-5$.}
$$

$$
begin{align*}
m_1 cdot m_2&=-1 && text{The lines are perpendicular.} \
m_2&=-frac{1}{m_1} && text{Divide both sides by} m_1. \
m_2&=-frac{1}{-5} && text{Substitute} m_1=-5 \
m_2&=frac{1}{5} && text{Simplify.}
end{align*}
$$

The point-slope form:

$$
y-y_1=mleft(x-x_1right)
$$

$$
begin{align*}
y-y_1&=mleft(x-x_1right) && text{The point-slope form.} \
y-5&=frac{1}{5}left(x-left(-2right)right) && text{Substitute the given data.} \
y-5&=frac{1}{5}left(x+2right) && text{Simplify} \
y-5&=frac{1}{5}x+frac{2}{5} && text{Distibutive Property.} \
y&=frac{1}{5}x+frac{2}{5}+5 && text{Add} 5 text{to both sides.} \
y&=frac{1}{5}x+frac{27}{5}
end{align*}
$$

Result
2 of 2
$$
y=dfrac{1}{5}x+dfrac{27}{5}
$$
Exercise 99
Step 1
1 of 2
The constant of the polynomial is 5 and thus the constant of the binomial has to be either $pm 1$ or $pm 5$ (because no other integers divide 5). and thus binomial (b) is the only possible factor.
Result
2 of 2
(b)
Exercise 100
Step 1
1 of 2
$$
polylongdiv{x^3-9x^2+19x+5}{x-5}
$$

$$
x^3-9x^2+19x+5div (x-5)=x^2-4x-1
$$

Result
2 of 2
$$
x^2-4x-1
$$
Exercise 101
Step 1
1 of 2
#### a.

$$
text{Divide $Pleft(xright)$ by $Dleft(xright)$:}
$$

$polylongdiv{2x^4-x^2+3x+5}{x-1}$

$$
text{We rewrite $Pleft(xright)$ in the form: $Pleft(xright)=Dleft(xright)Qleft(xright)+R$.}
$$

$$
Pleft(xright)=left(x-1right)left(2x^3+2x^2+x+4right)+9
$$

#### b.

$$
text{Divide $Pleft(xright)$ by $Dleft(xright)$:}
$$

$polylongdiv{x^5-2x^3+1}{x-3}$

$$
text{We rewrite $Pleft(xright)$ in the form: $Pleft(xright)=Dleft(xright)Qleft(xright)+R$.}
$$

$$
Pleft(xright)=left(x-3right)left(x^4+3x^3+7x^2+21x+63right)+190
$$

#### c.

$text{The rational solutions $dfrac{p}{q}$ to the equation $Pleft(xright)=0$ have $p$ dividing the constant term}$

$$
text{and $q$ dividing the leading coefficient.}
$$

Result
2 of 2
$textbf{a.}$ $Pleft(xright)=left(x-1right)left(2x^3+2x^2+x+4right)+9$

$textbf{b.}$ $Pleft(xright)=left(x-3right)left(x^4+3x^3+7x^2+21x+63right)+190$

$textbf{c.}$ $text{$dfrac{p}{q}$ where $p$ divides the constant term and $q$ divides the leading coefficient.}$

Exercise 102
Step 1
1 of 2
#### a.

$text{The graph of $y=fleft(xright)$ at right has degree $3$.}$

$text{It has $1$ real root with multiplicity $1$,}$

$$
text{$1$ real root with multiplicity $2$ and no complex roots.}
$$

#### b.

$text{The graph of $y=fleft(xright)$ at right has degree $3$.}$

$$
text{It has $1$ real root, and $2$ complex roots.}
$$

#### c.

$text{The graph of $y=fleft(xright)$ at right has degree $4$.}$

$$
text{It has $4$ real roots and no complex roots.}
$$

#### d.

$text{The graph of $y=fleft(xright)$ at right has degree $4$.}$

$$
text{It has $2$ real roots and $2$ complex roots.}
$$

Result
2 of 2
$textbf{a.}$ $text{Degree $=3$. It has $1$ real root with multiplicity $1$,}$

$text{$1$ real root with multiplicity $2$ and no complex roots.}$

$textbf{b.}$ $text{Degree $=3$. It has $1$ real root, and $2$ complex roots.}$

$textbf{c.}$ $text{Degree $=4$. It has $4$ real roots and no complex roots.}$

$textbf{d.}$ $text{Degree $=4$. It has $2$ real roots and $2$ complex roots.}$

Exercise 103
Step 1
1 of 8
$$
y=x(2x+5)(2x-7)
$$
a) We are given the function:
Step 2
2 of 8
$x=0Rightarrow x_1=0$

$2x+5=0Rightarrow 2x=-5Rightarrow x_2=-dfrac{5}{2}$

$2x-7=0Rightarrow 2x=7Rightarrow x_3=dfrac{7}{2}$

We determine the $x$-intercepts by solving the equation

$y=0$.

Step 3
3 of 8
The polynomial has odd degree, therefore its ends go in opposite directions.

Because the leading coefficient is positive, the left end goes down,while the right end goes up.

Step 4
4 of 8
Exercise scan
We graph the $x$-intercepts, then sketch the graph of the function using the end behavior as well:
Step 5
5 of 8
$$
y=(15-2x)^2(x+3)
$$
b) We are given the function:
Step 6
6 of 8
$(15-2x=0Rightarrow 15=2xRightarrow x_1=dfrac{15}{2}$ (double root)

$$
x+3=0Rightarrow x_2=-3
$$

We determine the $x$-intercepts by solving the equation

$y=0$.

Step 7
7 of 8
The polynomial has odd degree, therefore its ends go in opposite directions.

Because the leading coefficient is positive, the left end goes down,while the right end goes up.

Step 8
8 of 8
Exercise scan
We graph the $x$-intercepts, then sketch the graph of the function using the end behavior as well:
Exercise 104
Step 1
1 of 2
a-          $log (10)=1$          ($10^1=10$)

b-          $log (sqrt {10})=dfrac {1}{2}$          ($10^{ left(frac {1}{2} right)}=sqrt {10}$)

c-          $log (0)=-infty$          ($10^{-infty}=0)$

d-          $10^{ left(frac {2}{3} times log (27) right)}=10^{ left(log (27)^{(frac {2}{3})} right)}=(27)^{(frac {2}{3})}$          ($10^{(log (x))}=x$)

$10^{ left(frac {2}{3} times log (27) right)}=(sqrt [3] {27})^2=9$

Result
2 of 2
a-          $log (10)=1$

b-          $log (sqrt {10})=dfrac {1}{2}$

c-          $log (0)=-infty$

d-          $10^{ left(frac {2}{3} times log (27) right)}=9$

Exercise 105
Step 1
1 of 3
Exercise scan
We are given:
Step 2
2 of 3
$AB^2=CA^2+BC^2-2cdot CAcdot BCcot cos C$

$cos C=dfrac{CA^2+BC^2-AB^2}{2cdot CAcdot BC}$

$=dfrac{15^2+30^2-21^2}{2cdot 15cdot 30}$

$=dfrac{684}{900}$

$=0.76$

$$
C=cos^{-1} 0.76approx 40.5text{textdegree}
$$

We use the Law of Cosines:
Result
3 of 3
$$
Capprox 40.5text{textdegree}
$$
Exercise 106
Step 1
1 of 2
$$
polylongdiv{x^4-x^3-5x^2+3x+6}{x+1}
$$

$$
polylongdiv{x^3-2x^2-3x+6}{x-2}
$$

Thus we then obtain:
$$
x^4-x^3-5x^2+3x+6=(x+1)(x-2)(x^2-3)=(x+1)(x-2)(x-sqrt{3})(x+sqrt{3})
$$

Thus the zeros of the polynomial are then $x=-1, 2, pm sqrt{3}$.

Result
2 of 2
$$
x=-1, 2, pm sqrt{3}
$$

$$
(x+1)(x-2)(x-sqrt{3})(x+sqrt{3})
$$

Exercise 107
Step 1
1 of 9
$$
P(x)=x^4-x^3-5x^2+3x+6
$$
We are given the polynomial:
Step 2
2 of 9
$$
(x-1), (x+1), (x-2), (x+2), (x-3), (x+3), (x-6), (x+6)
$$
The possible factors of the polynomial are:
Step 3
3 of 9
a) $(x-5)$ cannot be included in the list of possible factors because doesn’t divide the constant term 6.
Step 4
4 of 9
$$
{ pm 1, pm 2, pm 3, pm 6}
$$
b) The possible rots of the polynomial are:
Step 5
5 of 9
$P(1)=1^4-1^3-5(1^2)+3(1)+6=4not =0$

$P(-1)=(-1)^4-(-1)^3-5(-1)^2+3(-1)+6=0checkmark$

$P(2)=2^4-2^3-5(2^2)+3(2)+6=0checkmark$

$P(-2)=(-2)^4-(-2)^3-5(-2)^2+3(-2)+6=4not =0$

$P(3)=3^4-3^3-5(3^2)+3(3)+6=24not =0$

$P(-3)=(-3)^4-(-3)^3-5(-3)^2+3(-3)+6=60not=0$

$P(6)=6^4-6^3-5(6^2)+3(6)+6=924not =0$

$P(-6)=(-6)^4-(-6)^3-5(-6)^2+3(-6)+6=1320not=0$

c) We determine the polynomial’s roots:
Step 6
6 of 9
d) We got that $x=-1$ and $x=2$ are roots.
Step 7
7 of 9
$$
P(x)=(x+1)(x^3-2x^2-3x+6)
$$
e) We have:
Step 8
8 of 9
$P(x)=(x+1)(x-2)(x^2-3)$

$$
=(x+1)(x-2)(x-sqrt 3)(x+sqrt 3)
$$

f) We have:
Step 9
9 of 9
$x+1=0Rightarrow x_1=-1$

$x-2=0Rightarrow x_2=2$

$x-sqrt 3=0Rightarrow x_3=sqrt 3$

$x+sqrt 3=0Rightarrow x_4=-sqrt 3$

$$
{-1, 2, -sqrt 3,sqrt 3}
$$

g) From the fully factored form of the polynomial we can find the roots of $P(x)$ by solving the linear equations determined by the polynomial’s factors:
Exercise 108
Step 1
1 of 20
The Integral Zero Theorem states that zeros, or roots of this polynomial, should be factors

$text{of the constant term. Thus, the possible real roots of this polynomial are $pm 1$, or $pm 5$.}$

$text{In this case there are $4$ possible roots to check. In order to do this, we should substitute}$

each zero into the polynomial to see which of them, if any, make the polynomial equal to zero.

We will still have to divide by the corresponding expression until we have the root.

Step 2
2 of 20
#### a.

$text{Substituting values for $Q_1left(xright)$, we get:}$

$$
begin{align*}
Q_1left(1right)&=1^4-8 cdot 1^3+18 cdot 1^2-16 cdot 1+5 \
&=1-8+18-16+5 \
&=0 \\
Q_1left(-1right)&=left(-1right)^4-8 cdot left(-1right)^3+18 cdot left(-1right)^2-16 cdot left(-1right)+5 \
&=1+8+18+16+5 \
&=48 \\
Q_1left(5right)&=5^4-8 cdot 5^3+18 cdot 5^2-16 cdot 5+5 \
&=625-1000+450-80+5 \
&=0 \\
Q_1left(-5right)&=left(-5right)^4-8 cdot left(-5right)^3+18 cdot left(-5right)^2-16 cdot left(-5right)+5 \
&=625+1000+450+80+5 \
&=2160 \\
end{align*}
$$

Step 3
3 of 20
$text{We found the roots: $x=1$ and $x=5$, therefore, $x-1$ and $x-5$ are factors of the polynomial.}$

Now we can divide the polynomial by this factor.

Step 4
4 of 20
$$
text{Divide $Q_1left(xright)$ by $x-1$:}
$$

$$
polylongdiv{x^4-8x^3+18x^2-16x+5}{x-1}
$$

Step 5
5 of 20
$$
text{Divide $x^3-7x^2+11x-5$ by $x-5$:}
$$

$$
polylongdiv{x^3-7x^2+11x-5}{x-5}
$$

Step 6
6 of 20
Now we have:

$$
begin{align*}
Q_1left(xright)&=left(x-1right)left(x-5right)left(x^2-2x+1right) \
&=left(x-1right)left(x-5right)left(x-1right)^2 \
&=left(x-1right)^3left(x-5right)
end{align*}
$$

Step 7
7 of 20
Exercise scan
Step 8
8 of 20
#### b.

$text{The possible real roots of this polynomial are $pm 1$, or $pm 7$.}$

$text{Substituting values for $Q_2left(xright)$, we get:}$

$$
begin{align*}
Q_2left(1right)&=1^3+1^2-7 cdot 1-7 \
&=1+1-7-7 \
&=-12 \\
Q_2left(-1right)&=left(-1right)^3+left(-1right)^2-7 cdot left(-1right)-7 \
&=-1+1+7-7 \
&=0 \\
Q_2left(7right)&=7^3+7^2-7 cdot 1-7 \
&=343+49-7-7 \
&=378 \\
Q_2left(-7right)&=left(-7right)^3+left(-7right)^2-7 cdot left(-7right)-7 \
&=-343+49+49-7 \
&=-252 \\
end{align*}
$$

Step 9
9 of 20
$text{We found the root: $x=-1$, therefore, $x+1$ is a factor of the polynomial.}$

Now we can divide the polynomial by this factor.

Step 10
10 of 20
$$
text{Divide $Q_2left(xright)$ by $x+1$:}
$$

$polylongdiv{x^3+x^2-7x-7}{x+1}$

Step 11
11 of 20
Now we have:

$$
begin{align*}
Q_2left(xright)&=left(x+1right)left(x^2-7right) \
&=left(x+1right)left(x-sqrt{7}right)left(x+sqrt{7}right) \
end{align*}
$$

Step 12
12 of 20
Exercise scan
Step 13
13 of 20
#### c.

$text{The possible real roots of this polynomial are $pm 1$, or $pm 5$.}$

$text{Substituting values for $Q_3left(xright)$, we get:}$

$$
begin{align*}
Q_3left(1right)&=1^3+3 cdot 1^2+1-5 \
&=1+3+1-5 \
&=0 \\
Q_3left(-1right)&=left(-1right)^3+3 cdot left(-1right)^2+left(-1right)-5 \
&=-1+3-1-5 \
&=-4 \\
Q_3left(5right)&=5^3+3 cdot 5^2+5-5 \
&=125+125+5-5 \
&=250 \\
Q_3left(-5right)&=left(-5right)^3+3 cdot left(-5right)^2+left(-5right)-5 \
&=-125+125-5-5 \
&=-10 \\
end{align*}
$$

Step 14
14 of 20
$text{We found the root: $x=1$, therefore, $x-1$ is a factor of the polynomial.}$

Now we can divide the polynomial by this factor.

Step 15
15 of 20
$$
text{Divide $Q_3left(xright)$ by $x-1$:}
$$

$polylongdiv{x^3+3x^2+x-5}{x-1}$

Step 16
16 of 20
Now we have:

$$
begin{align*}
Q_3left(xright)&=left(x-1right)left(x^2+4x+5right) \
end{align*}
$$

Step 17
17 of 20
The last polynomial is a quadratic so we can factor or use the Quadratic Formula

$$
begin{align*}
x^2+4x+5&=0 \
x&=frac{-4pm sqrt{4^2-4 cdot 1 cdot 5}}{2 cdot 1} \
&=frac{-4pm isqrt{4}}{2} \
&=frac{-4pm 2i}{2} \
&=-2pm i
end{align*}
$$

Step 18
18 of 20
Therefore,

$$
Q_3left(xright)=left(x-1right)left(x^2+4x+5right)=left(x-1right)left(x+2+iright)left(x+2-iright)
$$

Step 19
19 of 20
Exercise scan
Step 20
20 of 20
#### d.

$text{textbf{a.} $Rightarrow$ It has $1$ real root with multiplicity $1$, $1$ real root with multiplicity $3$ and no complex roots.}$

$text{textbf{b.} $Rightarrow$ It has $3$ real root with multiplicity $1$, and no complex roots.}$

$$
text{textbf{c.} $Rightarrow$ It has $1$ real root with multiplicity $1$, and $2$ complex roots.}
$$

Exercise 109
Step 1
1 of 7
$$
P(x)=6x^4+7x^3-36x^2-7x+6
$$
We are given the polynomial:
Step 2
2 of 7
a) This polynomial has a leading coefficient which is not 1.
Step 3
3 of 7
$(x-1), (x+1), (x-2), (x+2), (x-3), (x+3), (x-6), (x+6)$

$left(x-dfrac{1}{2}right), left(x+dfrac{1}{2}right), left(x-dfrac{1}{3}right), left(x+dfrac{1}{3}right), left(x-dfrac{1}{6}right)., left(x+dfrac{1}{6}right)$

$left(x-dfrac{2}{3}right), left(x+dfrac{2}{3}right), left(x-dfrac{3}{2}right), left(x+dfrac{3}{2}right)$

b) The possible linear factors can be obtained by considering possible roots in the form $dfrac{p}{q}$, where $p$ divides the constant term 6 and $q$ divides the leading factor $6$:
Step 4
4 of 7
$$
pm 1, pm 2, pm 3, pm 6, pmdfrac{1}{2}, pmdfrac{1}{3}, pmdfrac{1}{6}, pmdfrac{2}{3}, pmdfrac{3}{2}
$$
A complete list of possible roots is:
Step 5
5 of 7
$P(1)=6(1^4)+7(1^3)-36(1^2)-7(1)+6=-24not=0$

$P(-1)=-24not=0$

$P(2)=0checkmark$

$P(-2)=-84not=0$

$P(3)=336not=0$

$P(-3)=0checkmark$

c) We look for integer roots first:
Step 6
6 of 7
$polyhornerscheme[x=2]{6x^4+7x^3-36x^2-7x+6}$

$P(x)=(x-2)(6x^3+19x^2+2x-3)$

$polyhornerscheme[x=-3]{6x^3+19x^2+2x-3}$

$$
P(x)=(x-2)(x+3)(6x^2+x-1)
$$

We found that $x_1=2$ and $x_2=-3$ are roots. We divide $P)(x)$ by $x-2$, then by $x+3$:
Step 7
7 of 7
$P(x)=(x-2)(x+3)(6x^2+3x-2x-1)$

$=(x-2)(x+3)[3x(2x+1)-(2x+1)]$

$=(x-2)(x+3)(2x+1)(3x-1)$

$x_1=2$

$x_2=-3$

$2x+1=0Rightarrow x_3=-dfrac{1}{2}$

$3x-1=0Rightarrow x_4=dfrac{1}{3}$

We determine the roots of the quadratic polynomial by factoring or using the Quadratic Formula:
Exercise 110
Step 1
1 of 1
Check if the polynomial $P(x)$ is divisable by factors $(x-a)$ and $(x+a)$ with $a$ an integer that can divided the constant term of the polynomial.

For every quadratic term you can determine the roots using the quadratic formula to factor the equation as $(x-a)(x-b)$ with $a$ and $b$ the roots found using the quadratic formula.

Exercise 111
Step 1
1 of 3
a. i. Since all complex zeros come in pairs, the polynomial has either 1 or 3 real zeros.

ii. Then the function can have either 0 or 2 complex roots, because the total number of roots (real+complex) need to be equal to the degree of the function.

iii. For example $y=(x-1)(x-2)(x-3)$ has 3 real roots and $y=(x-1)(x^2+1)$ has one real root.

Step 2
2 of 3
b. i. Since all complex zeros come in pairs, the polynomial has either 0,2 or 4 real zeros.

ii. Then the function can have either 0 or 2 or 4 complex roots, because the total number of roots (real+complex) need to be equal to the degree of the function.

iii. For example $y=(x-1)(x-2)(x-3)(x-4)$ has 4 real roots and $y=(x-1)(x-2)(x^2+1)$ has two real roots and $y=(x^2+2)(x^2+1)$ has no real roots.

Step 3
3 of 3
c. i. Since all complex zeros come in pairs, the polynomial has either 1 or 3 or 5 real zeros.

ii. Then the function can have either 0 or 2 or 4 complex roots, because the total number of roots (real+complex) need to be equal to the degree of the function.

iii. For example $y=(x-1)(x-2)(x-3)(x-4)(x-5)$ has 5 real roots and $y=(x-1)(x-2)(x-3)(x^2+1)$ has 3 real roots and $y=(x-1)(x^2+2)(x^2+1)$ has one real root.

Exercise 112
Step 1
1 of 2
a. On the graph we note that $x=3$ seems to be a double root and thus the function will be divisable by $(x-3)$ twice.

b.
$$
polylongdiv{x^3-x^2-7x+3}{x-3}
$$

Thus we then obtain:
$$
p(x)=(x-3)^2(x^2+2x-1)
$$

Determine the discriminant of the given function $f(x)=x^2+2x-1$:

$$
D=b^2-4ac=(2)^2-4(1)(-1)=4+4=8
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{-2pm sqrt{8}}{2(1)}=dfrac{-2pm 2sqrt{2}}{2}=-1pm sqrt{2}
$$

Result
2 of 2
a. $(x-3)^2$ is a factor

b. $x=-1pm sqrt{2}$

Exercise 113
Step 1
1 of 2
a. On the graph we note that $x=2$ is a root and thus the equation of the graph is divisable by $(x-2)$.

b.
$$
polylongdiv{x^3+4x^2+x-26}{x-2}
$$

Determine the discriminant of the given function $f(x)=x^2+6x+13$:

$$
D=b^2-4ac=(6)^2-4(1)(13)=36-52=-16
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{-6pm sqrt{-16}}{2(1)}=dfrac{-6pm 4i}{2}=-3pm 2i
$$

Result
2 of 2
a. $x=2$

b. $x=2,-3pm 2i$

Exercise 114
Step 1
1 of 3
#### a.

$$
text{Set $y=2sqrt{3left(x-1right)}+5$, and solve for $x$ in term of $y$.}
$$

Step 2
2 of 3
$$
begin{align*}
y&=2sqrt{3left(x-1right)}+5 && text{Substitute} y text{for} fleft(xright). \
y-5&=2sqrt{3left(x-1right)} && text{Subtract} 5 text{from both sides.} \
frac{y-5}{2}&=sqrt{3left(x-1right)} && text{Divide both sides by} 2. \
left(frac{y-5}{2}right)^2&=3left(x-1right) && text{Square each side}. xgeq 1 \
frac{y^2-10y+25}{4}&=3x-3 && text{Distributive Property.} \
frac{y^2-10y+25}{4}+3&=3x && text{Add} 3 text{to both sides.} \
frac{y^2-10y+25+12}{4}&=3x && text{Simplify.} \
frac{y^2-10y+37}{12}&=x && text{Divide both sides by} 3. \
f^{-1}left(yright)&=frac{y^2-10y+37}{12} && text{Substitute} f^{-1}left(yright) text{for} x. \
end{align*}
$$
Step 3
3 of 3
#### b.Exercise scan
Exercise 115
Step 1
1 of 7
The general function of the exponential can be written as

$$
y=ab^x+k
$$

Step 2
2 of 7
$$
text{Since asymptote is at $y=5$, therefore $k=5$. Thus, the final function is the following:}
$$

$$
y=ab^x+5
$$

Step 3
3 of 7
Using the coordinates of the two points we get the system:

$$
begin{align*}
5.64&=ab^2+5 \
15&=ab^{-1}+5 \\
0.64&=ab^2 && text{Subtract} 5 text{from both sides.} \
10&=ab^{-1} && text{Subtract} 5 text{from both sides.} \
end{align*}
$$

Step 4
4 of 7
Now divide the first equation by the second equation:

$$
begin{align*}
frac{0.64}{10}&=frac{ab^2}{ab^{-1}} \
0.064&=b^3 \
b&=0.4
end{align*}
$$

Step 5
5 of 7
$$
text{Substitute $b=0.4$ in the first equation in order to find the value of $a$.}
$$

$$
begin{align*}
0.64&=a cdot left(0.4right)^2 \
0.64&=0.16a \
a&=4
end{align*}
$$

Step 6
6 of 7
So, the final function becomes:

$$
y=4left(0.4right)^x+5
$$

Result
7 of 7
$$
y=4left(0.4right)^x+5
$$
Exercise 116
Step 1
1 of 2
Rewrite the bases as a power of 2:

$$
(2^4)^{(x+2)}=(2^3)^x
$$

Power of power property:

$$
2^{4(x+2)}=2^{3x}
$$

The powers of the same base have to be equal:

$$
4(x+2)=3x
$$

Distributive property:

$$
4x+8=3x
$$

Subtract $3x$ of both sides of the equation:

$$
x+8=0
$$

Subtract 8 from both sides of the equation:

$$
x=-8
$$

Result
2 of 2
$$
x=-8
$$
Exercise 117
Step 1
1 of 5
Exercise scan
a) We are given the triangle:
Step 2
2 of 5
$sin C=dfrac{AB}{BC}$

$sin 60text{textdegree}=dfrac{x}{dfrac{1}{2}}$

$dfrac{sqrt 3}{2}=2x$

$$
x=dfrac{sqrt 3}{4}
$$

We use sine to determine $x$ (or directly knowing that the triangle is $30text{textdegree}-60text{textdegree}-90text{textdegree}$):
Step 3
3 of 5
Exercise scan
b) We are given the triangle:
Step 4
4 of 5
$sin B=dfrac{AC}{BC}$

$sin 45text{textdegree}=dfrac{dfrac{sqrt 2}{2}}{x}$

$dfrac{sqrt 2}{2}=dfrac{dfrac{sqrt 2}{2}}{x}$

$dfrac{sqrt 2}{2}cdot x=dfrac{sqrt 2}{2}$

$$
x=1
$$

We use sine to determine $x$ (or directly knowing that the triangle is $45text{textdegree}-45text{textdegree}-90text{textdegree}$):
Result
5 of 5
a) $x=dfrac{sqrt 3}{4}$

b) $x=1$

Exercise 118
Step 1
1 of 8
1 yard= 36 inches

100 yards = 3600 inches

$53dfrac{1}{3}$ yards$=dfrac{160}{3}cdot 36=1920$ inches

$dfrac{3600}{3.5}approx1028$ cards

$dfrac{1920}{2.5}=768$ cards

a) We determine the number of cards placed on each side of the rectangle:
Step 2
2 of 8
$$
1028cdot 768=789,504
$$
The total number of cards is:
Step 3
3 of 8
$$
P(joker)=dfrac{1}{789,504}approx 0.000001
$$
We determine the probability to find the joker:
Step 4
4 of 8
$dfrac{789,504}{52}=15,183$ packs

$$
15,183cdot 0.99approx 15,031.17
$$

b) If no one buys cards, we determine the total loss for the boosters:
Step 5
5 of 8
$$
(789,504-1)cdot 5=3,947,515
$$
c) We determine the maximum amount of money the boosters can make (in the case when all the cards except the joker were bought):
Step 6
6 of 8
$$
789,504cdot 5-1,000,000=2,947,520
$$
d) A reasonable profit for the booster club is made if all cards are sold:
Step 7
7 of 8
$$
dfrac{176,000,000}{789,504}-1approx 223-1=222
$$
e) We determine the number of fields covered with non-joker cards:
Result
8 of 8
a) $0.000001$

b) $$15,031.17$

c) $3,947,515$

d) $2,947,520$

e) $222$

Exercise 119
Step 1
1 of 3
a. We note on the graph that $x=-1$ is a root:

$$
polylongdiv{x^3+1}{x+1}
$$

Determine the discriminant of the given function $f(x)=x^2-x+1$:

$$
D=b^2-4ac=(-1)^2-4(1)(1)=1-4=-3
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{1pm sqrt{-3}}{2(1)}=dfrac{1}{2}pm dfrac{sqrt{2}}{2}i
$$

Exercise scan

Step 2
2 of 3
b. We note on the graph that $x=2$ is a root:

$$
polylongdiv{x^3-8}{x-2}
$$

Determine the discriminant of the given function $f(x)=x^2+2x+4$:

$$
D=b^2-4ac=(2)^2-4(1)(4)=4-16=-12
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{2pm sqrt{-12}}{2(1)}=dfrac{2pm 2sqrt{3}sqrt{-1}}{2}=1pm isqrt{3}
$$

Exercise scan

Result
3 of 3
a. $x=-1, dfrac{1}{2}pm dfrac{sqrt{2}}{2}i$

b. $x=2, 1pm isqrt{3}$

Exercise 120
Step 1
1 of 2
We know the roots and thus the function is of the form:

$$
y=(x+1)(x-(-2+5i))(x-(-2-5i))
$$

Use distributive property:

$$
y=(x+1)(x^2+4x+4-25i^2)
$$

Simplify and use $i^2=-1$.

$$
y=(x+1)(x^2+4x+29)
$$

Result
2 of 2
$$
y=(x+1)(x^2+4x+29)
$$
Exercise 121
Step 1
1 of 2
a. Replace $x$ with 2:

$$
p(2)=2^3-6(2)^2+7(2)+2=8-24+14+2=0
$$

b.
$$
polylongdiv{x^3-6x^2+7x+2}{(x-2)}
$$

c. $(x-2)$

d.
Determine the discriminant of the given function $f(x)=x^2-4x-1$:

$$
D=b^2-4ac=(-4)^2-4(1)(-1)=16+4=20
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{4pm sqrt{20}}{2(1)}=dfrac{4pm 2sqrt{5}}{2}=2pm sqrt{5}
$$

Result
2 of 2
a. 0

b. $(x-2)$

c. $(x-2)$

d. $x=2, 2pm sqrt{5}$

Exercise 122
Step 1
1 of 4
The formula for discriminant is the following:

$$
Delta=b^2-4ac
$$

$$
text{The equation has real solutions when the discriminant $Delta$ is greater or equal to zero.}
$$

Step 2
2 of 4
$$
begin{align*}
Delta=b^2-4 cdot5 cdot 20&geq0 && text{We compute the discriminant:} Delta=b^2-4ac \
&text{} && a=5, c=20. \
b^2-400&geq0 && text{Simplify.} \
b^2&geq 400 && text{Add} 400 text{to both sides.} \
mid bmid &geq 20 && text{Square root of each side.} \
end{align*}
$$
Step 3
3 of 4
The equation has real solutions when:

$$
bin left(-infty, -20right]cupleft[20, inftyright)
$$

Result
4 of 4
$$
bin left(-infty, -20right]cupleft[20, inftyright)
$$
Exercise 123
Step 1
1 of 4
$text{The score of $380$ is $100%$.}$
Step 2
2 of 4
$text{The objective is to find the minimum which is $75%$ of $380$.}$

$$
380 cdot 75%=380 cdot 0.75=285
$$

Step 3
3 of 4
$$
text{The minimum score he needs to achieve in order to be considered for a scholarship is $285$.}
$$
Result
4 of 4
$$
285
$$
Exercise 124
Step 1
1 of 4
$$
Q(t)=Q_{o}r^{t}=1e6times(0.87)^{t}
$$
(a) We have a geometric series here, with multiplier $r=1-13% =0.87$.

Here $Q_{o}$ is the initial number of lightbulbs at t=0

Step 2
2 of 4
$$
Q(t)=1e5=1e6times(0.87)^{t}
$$
Step 3
3 of 4
$$
log_{0.87}left( dfrac{1e5}{1e6}right)=t=16.53months
$$
$(a)$ for 1e5 lightbulbs;
Step 4
4 of 4
$$
log_{0.87}left( dfrac{1}{1e6}right)=99.21months
$$
$(b)$ for 1 lightbulb;
Exercise 125
Step 1
1 of 7
$$
8log_3(y)+log_3 (2x)
$$
a) We are given the expression:
Step 2
2 of 7
$$
8log_3(y)+log_3 (2x)=log_3(y^8)+log_3 (2x)
$$
We use the Power Property of Logarithms:

$log_a x^m=mlog_a x$.

Step 3
3 of 7
$log_3(y^8)+log_3 (2x)=log_3 (y^8cdot 2x)$

$$
=log_3 (2xy^8)
$$

We use the Product Property of Logarithms:

$log_a (xy)=log_a x+log_a y$.

Step 4
4 of 7
$$
log_4(5m)-9log_4 (n)
$$
b) We are given the expression:
Step 5
5 of 7
$$
log_4(5m)-9log_4 (n)=log_4 (5m)-log_4 (n^9)
$$
We use the Power Property of Logarithms:

$log_a x^m=mlog_a x$.

Step 6
6 of 7
$$
log_4 (5m)-log_4 (n^9)=log_4 dfrac{5m}{n^9}
$$
We use the Quotient Property of Logarithms:

$log_a left(dfrac{x}{y}right)=log_a x-log_a y$.

Result
7 of 7
a) $log_3 (2xy^8)$

b) $log_4 dfrac{5m}{n^9}$

Exercise 126
Step 1
1 of 2
If $x$ is the length of the square that is cutout of each corner, then the height is equal to $x$.

The length of the tank is then $11-2x$ (because on both sides of the length a square was cutout).

The length of the tank is then $8.5-2x$ (because on both sides of the width a square was cutout).

The volume of the tank is then the product of the length, width and the height:

$$
V(x)=x(11-2x)(8.5-2x)
$$

Result
2 of 2
$$
V(x)=x(11-2x)(8.5-2x)
$$
Exercise 127
Step 1
1 of 2
If $x$ is the length of the square that is cutout of each corner, then the height is equal to $x$.

The length of the tank is then $11-2x$ (because on both sides of the length a square was cutout).

The length of the tank is then $8.5-2x$ (because on both sides of the width a square was cutout).

The volume of the tank is then the product of the length, width and the height:

$$
V(x)=x(11-2x)(8.5-2x)
$$

For example if the cutout is 1”, replace $x$ with 1:

$$
V(x)=1(11-2)(8.5-2)=1(9)(6.5)=58.5
$$

Result
2 of 2
$$
V(x)=x(11-2x)(8.5-2x)
$$
Exercise 128
Step 1
1 of 3
a. You can find the maximum volume by determine an equation for the volume and then determining at which point the maximum volume is obtained.

b. If $x$ is the length of the square that is cutout of each corner, then the height is equal to $x$.

The length of the tank is then $11-2x$ (because on both sides of the length a square was cutout).

The length of the tank is then $8.5-2x$ (because on both sides of the width a square was cutout).

c. The volume of the tank is then the product of the length, width and the height:

$$
V(x)=x(11-2x)(8.5-2x)
$$

d.

Exercise scan

Step 2
2 of 3
e. The domain contains all possible $x$-values and since the volume cannot become negative or zero: $(0,4.25)$.

The range is then all the possible $y$-values and since the maximum on the domain seems to be less than 70: $(0,70)$.

f. The maximum volume is about 66in.$^3$ with height $x=1.6$”, length $11-2(1.6)=7.8$” and width $8.5-2(1.6)=5.3$”.

Result
3 of 3
a. See explanation

b. length: $11-2x$ and width: $8.5-2x$

c. $V(x)=x(11-2)(8.5-2x)$

d. See graph

e. Domain: $(0,4.25)$ and range: $(0,70)$

f. Maximum volume: 66in.$^3$ with height $1.6$”, length $7.8$” and width $5.3$”.

Exercise 129
Step 1
1 of 1
a. The domain contains all possible $x$-values and since the volume cannot become negative or zero: $(0,4.25)$.

The range is then all the possible $y$-values and since the maximum on the domain seems to be less than 70: $(0,70)$.

b. As the height increases, the length and width will decrease. As the height decreases, the length and the width will increase.

c.

Exercise scan

Exercise 130
Solution 1
Solution 2
Step 1
1 of 2
Solution to this example is given below

$$
begin{align*}
0&=x(x-3)^2(2x+1)&&boxed{text{Substitute }0 text{ for } P(x)}\
xleft(x-3right)^2left(2x+1right)&=0&&boxed{text{Switch sides}}\
end{align*}
$$

Using the zero factor principle

$$
begin{align*}
x&=color{#c34632}{0}&&boxed{text{Simplify}}\
end{align*}
$$

Using the zero factor principle

$$
begin{align*}
x-3&=0&&boxed{text{Simplify}}\
x-3+3&=0+3&&boxed{text{Add } 3 text{ to both sides}}\
x&=color{#c34632}{3}&&boxed{text{Simplify}}\
end{align*}
$$

Using the zero factor principle

$$
begin{align*}
2x+1&=0&&boxed{text{Simplify}}\
2x+1-1&=0-1&&boxed{text{Subtract } 1 text{ from both sides}}\
2x&=-1&&boxed{text{Simplify}}\
frac{2x}{2}&=frac{-1}{2}&&boxed{text{Divide both sides by }2}\
x&=color{#c34632}{-frac{1}{2}}&&boxed{text{Simplify}}\\
end{align*}
$$

The final solutions to the equations are:

$$
begin{align*}
&boxed{{color{#c34632}x=0, x=3, x=-frac{1}{2}} }&&boxed{text{Final solution}}\
end{align*}
$$

Result
2 of 2
$$
color{#4257b2} text{ } x=0, x=3, x=-frac{1}{2}
$$
Step 1
1 of 2
An $x$-intercept has $y=P(x)=0$:

$$
0=x(x-3)^2(2x+1)
$$

Zero product property:

$$
x=0text{ or } x-3=0 text{ or } 2x+1=0
$$

Solve each equation to $x$:

$$
x=0text{ or } x=3 text{ or } x=-dfrac{1}{2}
$$

Result
2 of 2
$$
x=0text{ and } x=3 text{ and } x=-dfrac{1}{2}
$$
Exercise 131
Step 1
1 of 2
The following graph contains two examples of a fourth-degree polynomial that contains no real roots (and thus does not intersect the $x$-axis).

Exercise scan

Result
2 of 2
See example
Exercise 132
Solution 1
Solution 2
Step 1
1 of 7
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
x^2-10&=0&&boxed{text{Given proportion}}\
x^2-10+10&=0+10&&boxed{text{Add }10 text{ to both sides}}\
x^2&=10&&boxed{text{Simplify}}\
x=sqrt{10},:x&=-sqrt{10}&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=sqrt{10},:x=-sqrt{10}} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{For:}x^2=fleft(aright)mathrm{:the:solutions:are:}x=sqrt{fleft(aright)},::-sqrt{fleft(aright)}}
$$

Step 2
2 of 7
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$x^2-3x-7=0$ Given proportion.

Solve with the quadratic formula

$$
begin{align*}
x_{1,:2}&=frac{-bpm sqrt{b^2-4ac}}{2a}&&boxed{text{ Use quadratic formula}}\
x_{1,:2}&=frac{-left(-3right)pm sqrt{left(-3right)^2-4cdot :1left(-7right)}}{2cdot :1}&&boxed{text{Substitute }1 text{ for }a, -3 text{ for } b, text{ and } -7 text{ for } c.} \
end{align*}
$$

First we solve $x_1$

$$
begin{align*}
x_1&=frac{-left(-3right)+sqrt{left(-3right)^2-4cdot :1left(-7right)}}{2cdot :1}&&boxed{text{Simplify}}\
x_1&=frac{3+sqrt{left(-3right)^2+4cdot :1cdot :7}}{2cdot :1}&&boxed{text{Remove parentheses}}\
x_1&=frac{3+sqrt{9+4cdot :1cdot :7}}{2cdot :1}&&boxed{text{Evaluate: }(-3)^2=9}\
x_1&=frac{3+sqrt{9+28}}{2cdot :1}&&boxed{text{Multiply the numbers: } 4cdot1cdot7=28}\
x_1&=frac{3+sqrt{9+28}}{2}&&boxed{text{Multiply the numbers: }2cdot1=2}\
x_1&=frac{3+sqrt{37}}{2}&&boxed{text{Add the numbers: }9+28=37}\
end{align*}
$$

Step 3
3 of 7
Second we solve $x_2$

$$
begin{align*}
x_2&=frac{-left(-3right)-sqrt{left(-3right)^2-4cdot :1left(-7right)}}{2cdot :1}&&boxed{text{Simplify}}\
x_2&=frac{3-sqrt{left(-3right)^2+4cdot :1cdot :7}}{2cdot :1}&&boxed{text{Remove parentheses}}\
x_2&=frac{3-sqrt{9+4cdot :1cdot :7}}{2cdot :1}&&boxed{text{Evaluate: }(-3)^2=9}\
x_2&=frac{3-sqrt{9+28}}{2cdot :1}&&boxed{text{Multiply the numbers: } 4cdot1cdot7=28}\
x_2&=frac{3-sqrt{9+28}}{2}&&boxed{text{Multiply the numbers: }2cdot1=2}\
x_2&=frac{3-sqrt{37}}{2}&&boxed{text{Add the numbers: }9+28=37}\\
&boxed{{color{#c34632}x_1=frac{3+sqrt{37}}{2}, x_2=frac{3-sqrt{37}}{2}} }&&boxed{text{Final solution}}\
end{align*}
$$

Step 4
4 of 7
$$
{color{#4257b2}text{c)}}
$$

Solution to this example is given below

$$
begin{align*}
x^2+4&=0&&boxed{text{Given proportion}}\
x^2+4-4&=0-4&&boxed{text{Subtract }4 text{ from both sides}}\
x^2&=-4&&boxed{text{Simplify}}\
x=sqrt{-4},:x&=-sqrt{-4}&&boxed{text{Simplify}}\
end{align*}
$$

First we solve $boldsymbol{x=sqrt{-4}}$

$$
begin{align*}
x&=sqrt{-1}sqrt{4}&&boxed{text{Apply radical rule}}\
x&=sqrt{4}i&&boxed{text{Apply imaginary number rule: }sqrt{-1}=i}\
x&=sqrt{2^2}i&&boxed{text{Factor the number }4=2^2}\
x&=2i&&boxed{text{Simplify}}\
end{align*}
$$

Second we solve $boldsymbol{x=-sqrt{-4}}$

$$
begin{align*}
x&=-sqrt{-1}sqrt{4}&&boxed{text{Apply radical rule}}\
x&=-sqrt{4}i&&boxed{text{Apply imaginary number rule: }sqrt{-1}=i}\
x&=-sqrt{2^2}i&&boxed{text{Factor the number }4=2^2}\
x&=-2i&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x=2i,:x=-2i} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{For:}x^2=fleft(aright)mathrm{:the:solutions:are:}x=sqrt{fleft(aright)},::-sqrt{fleft(aright)}}
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:radical:rule}:quad sqrt{-a}=sqrt{-1}sqrt{a} }
$$

$$
boxed{ color{#c34632} text{ }mathrm{Apply:radical:rule}:quad sqrt[n]{a^n}=a }
$$

Step 5
5 of 7
$$
{color{#4257b2}text{d)}}
$$

Solution to this example is given below

$x^2-2x+2=0$ Given proportion.

Solve with the quadratic formula

$$
begin{align*}
x_{1,:2}&=frac{-bpm sqrt{b^2-4ac}}{2a}&&boxed{text{ Use quadratic formula}}\
x_{1,:2}&=frac{-left(-2right)pm sqrt{left(-2right)^2-4cdot :1cdot :2}}{2cdot :1}&&boxed{text{Substitute }1 text{ for }a, -2 text{ for } b, text{ and } 2 text{ for } c.} \
end{align*}
$$

First we solve $x_1$

$$
begin{align*}
x_1&=frac{-left(-2right)+sqrt{left(-2right)^2-4cdot :1cdot :2}}{2cdot :1}&&boxed{text{Simplify}}\
x_1&=frac{2+sqrt{left(-2right)^2-4cdot :1cdot :2}}{2cdot :1}&&boxed{text{Remove parentheses}}\
x_1&=frac{2+sqrt{4-4cdot :1cdot :2}}{2cdot :1}&&boxed{text{Evaluate: }(-2)^2=4}\
x_1&=frac{2+sqrt{4-8}}{2cdot :1}&&boxed{text{Multiply the numbers: } 4cdot1cdot2=8}\
x_1&=frac{2+sqrt{4-8}}{2}&&boxed{text{Multiply the numbers: }2cdot1=2}\
x_1&=frac{2+sqrt{-4}}{2}&&boxed{text{Subtact the numbers: }4-8=-4}\
x_1&=frac{2+sqrt{-1}sqrt{4}}{2}&&boxed{text{Apply radical rule}}\
x_1&=frac{2+sqrt4 i}{2}&&boxed{text{Apply imaginary number rule: } -sqrt1=i}\
x_1&=frac{2+2i}{2}&&boxed{text{Simplify}}\
x_1&=frac{2left(1+iright)}{2}&&boxed{text{Factor}}\
x_1&=1+i&&boxed{text{Divide the numbers: } frac{2}{2}=1}\
end{align*}
$$

Step 6
6 of 7
Second we solve $x_2$

$$
begin{align*}
x_2&=frac{-left(-2right)-sqrt{left(-2right)^2-4cdot :1cdot :2}}{2cdot :1}&&boxed{text{Simplify}}\
x_2&=frac{2-sqrt{left(-2right)^2-4cdot :1cdot :2}}{2cdot :1}&&boxed{text{Remove parentheses}}\
x_2&=frac{2-sqrt{4-4cdot :1cdot :2}}{2cdot :1}&&boxed{text{Evaluate: }(-2)^2=4}\
x_2&=frac{2-sqrt{4-8}}{2cdot :1}&&boxed{text{Multiply the numbers: } 4cdot1cdot2=8}\
x_2&=frac{2-sqrt{4-8}}{2}&&boxed{text{Multiply the numbers: }2cdot1=2}\
x_2&=frac{2-sqrt{-4}}{2}&&boxed{text{Subtact the numbers: }4-8=-4}\
x_2&=frac{2-sqrt{-1}sqrt{4}}{2}&&boxed{text{Apply radical rule}}\
x_2&=frac{2-sqrt4 i}{2}&&boxed{text{Apply imaginary number rule: } -sqrt1=i}\
x_2&=frac{2-2i}{2}&&boxed{text{Simplify}}\
x_2&=frac{2left(1-iright)}{2}&&boxed{text{Factor}}\
x_2&=1-i&&boxed{text{Divide the numbers: } frac{2}{2}=1}\\
&boxed{{color{#c34632}x_1=1+i, x_2=1-i} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{Apply:radical:rule}:quad sqrt{-a}=sqrt{-1}sqrt{a}}
$$

Result
7 of 7
$$
color{#4257b2} text{ a) }x=sqrt{10}, x=-sqrt{10}
$$

$$
color{#4257b2} text{ b) }x_1=frac{3+sqrt{37}}{2}, x_2=frac{3-sqrt{37}}{2}
$$

$$
color{#4257b2} text{ c) } x=2i, x=-2i
$$

$$
color{#4257b2} text{ d) }x_1=1+i, x_2=1-i
$$

Step 1
1 of 5
a.
$$
x^2-10=0
$$

Add 10 to both sides of the equation:

$$
x^2=10
$$

Take the square root of both sides of the equation:

$$
x=pm sqrt{10}
$$

Step 2
2 of 5
b.
$$
x^2-3x-7=0
$$

Determine the discriminant:

$$
D=b^2-4ac=(-3)^2-4(1)(-7)=9+28=37
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{3pm sqrt{37}}{2}
$$

Step 3
3 of 5
c.
$$
x^2+4=0
$$

Subtract 4 from both sides of the equation:

$$
x^2=-4
$$

Take the square root of both sides of the equation:

$$
x=pm sqrt{-4}=pm 2i
$$

Step 4
4 of 5
d.
$$
x^2-2x+2=0
$$

Determine the discriminant:

$$
D=b^2-4ac=(-2)^2-4(1)(2)=4-8=-4
$$

Determine the roots using the quadratic formula:

$$
x=dfrac{-bpm sqrt{D}}{2a}=dfrac{2pm sqrt{-4}}{2}=dfrac{2pm 2i}{2}=1pm i
$$

Result
5 of 5
a. $x=pm sqrt{10}$

b. $x=dfrac{3pm sqrt{37}}{2}$

c. $x=pm 2i$

d. $x=1pm i$

Exercise 133
Step 1
1 of 2
a. Take the logarithm with base 3 of both sides of the equation:

$$
x=log_3{17}
$$

b. Take the cubic root of both sides of the equation:

$$
x=sqrt[3]{17}
$$

Result
2 of 2
a. $x=log_3{17}$

b. $x=sqrt[3]{17}$

Exercise 134
Step 1
1 of 4
Exercise scan
We are given:
Step 2
2 of 4
$sin B=dfrac{AC}{BC}=dfrac{9}{10}=0.9$

$$
B=sin^{-1} 0.9approx 64.2text{textdegree}
$$

We use the sine function to determine the angle $B$:
Step 3
3 of 4
As the angle is more than $60text{textdegree}$ the situation is unsafe.
Result
4 of 4
Unsafe situation
Exercise 135
Step 1
1 of 10
$$
(a+b)(a^2-ab+b^2)
$$
a) We are given the expression:
Step 2
2 of 10
$(a+b)(a^2-ab+b^2)=a^3-a^2b+ab^2+a^2b-ab^2+b^3$

$$
=a^3+b^3
$$

We multiply the factors:
Step 3
3 of 10
$$
(x-2)(x^2+2x+4)
$$
b) We are given the expression:
Step 4
4 of 10
$$
(x-2)(x^2+2x+4)=x^3+2x^2+4x-2x^2-4x-8=x^3-8
$$
We multiply the factors:
Step 5
5 of 10
$$
(y+5)(y^2-5y+25)
$$
c) We are given the expression:
Step 6
6 of 10
$(y+5)(y^2-5y+25)=y^3-5y^2+25y+5y^2-25y+125$

$$
=y^3+125
$$

We multiply the factors:
Step 7
7 of 10
$$
(x-y)(x^2+xy+y^2)
$$
d) We are given the expression:
Step 8
8 of 10
$(x-y)(x^2+xy+y^2)=x^3+x^2y+xy^2-x^2y-xy^2-y^3$

$$
=x^3-y^3
$$

We multiply the factors:
Step 9
9 of 10
$(a-b)(a^2+ab+b^2)=a^3-b^3$

$(a+b)(a^2-ab+b^2)=a^3+b^3$

e) The products follow one of the patterns:
Step 10
10 of 10
$$
(x-2y)(x^2+2xy+4y^2)=x^3-(2y)^3=x^3-8y^3
$$
We make up another multiplication problem that follows the same pattern(s):
Exercise 136
Step 1
1 of 5
#### a.

$text{The probability that the paint pellet will hit the $50$ point ring can be obtained through}$

$$
text{the division of the area of $50$ point ring by the area of the complete target.}
$$

Step 2
2 of 5
$$
begin{align*}
Pleft(50 text{point ring}right)&=frac{text{The area of} 50 text{point ring }}{text{The area of the complete target}} \
&=frac{pi cdot 1^2}{pi cdot 4^2} \
&=frac{1}{16} \
&=0.0625
end{align*}
$$
Step 3
3 of 5
#### b.

$text{The probability that the paint pellet will hit the $20$ point ring can be obtained through}$

$$
text{the division of the area of $20$ point ring by the area of the complete target.}
$$

Step 4
4 of 5
$$
begin{align*}
Pleft(20 text{point ring}right)&=frac{text{The area of} 20 text{point ring }}{text{The area of the complete target}} \
&=frac{pi cdot 2^2-pi cdot 1^2}{pi cdot 4^2} \
&=frac{4pi-pi}{16pi} \
&=frac{3pi}{16pi} \
&=frac{3}{16} \
&=0.1875
end{align*}
$$
Result
5 of 5
$textbf{a.}$ $0.0625$

$textbf{b.}$ $0.1875$

Exercise 137
Step 1
1 of 6
$text{The formula for textbf{difference of squares} is the following:}$

$$
a^2-b^2=left(a-bright)left(a+bright)
$$

Step 2
2 of 6
#### i.

$$
begin{align*}
a^2-4b^2&=a^2-left(2bright)^2=left(a-2bright)left(a+2bright) && text{Use the difference of squares.}
end{align*}
$$

Step 3
3 of 6
#### ii.

$$
begin{align*}
2x^2-16&=left(sqrt{2}xright)^2-4^2=left(sqrt{2}x-4right)left(sqrt{2}x+4right) && text{Use the difference of squares.}
end{align*}
$$

Step 4
4 of 6
#### iii.

$$
begin{align*}
-x^2+y^4&=left(y^2right)^2-x^2=left(y^2-xright)left(y^2+xright) && text{Use the difference of squares.}
end{align*}
$$

Step 5
5 of 6
#### iv.

The expression cannot be rewritten as a difference of squares.

Result
6 of 6
$textbf{i.}$ $left(a-2bright)left(a+2bright)$

$textbf{ii.}$ $left(sqrt{2}x-4right)left(sqrt{2}x+4right)$

$textbf{iii.}$ $left(y^2-xright)left(y^2+xright)$

$textbf{iv.}$ The expression cannot be rewritten as a difference of squares.

Exercise 138
Step 1
1 of 2
a.
$$
polylongdiv{x^3-1}{x-1}
$$

b.
$$
polylongdiv{x^3+8}{x+2}
$$

c.
$$
polylongdiv{x^3-27}{x-3}
$$

d.
$$
polylongdiv{x^3+125}{x+5}
$$

Result
2 of 2
a. $(x-1)(x^2+x+1)$

b. $(x+2)(x^2-2x+4)$

c. $(x-3)(x^2+3x+9)$

d. $(x+5)(x^2-5x+25)$

Exercise 139
Step 1
1 of 2
a.
$$
polylongdiv{x^3+a^3}{x+a}
$$

b.
$$
polylongdiv{x^3-b^3}{x-b}
$$

Result
2 of 2
a. $(x+a)(x^2-ax+a^2)$

b. $(x-b)(x^2+bx+b^2)$

Exercise 140
Step 1
1 of 6
$$
y=x^2+9
$$
a) We are given the function:
Step 2
2 of 6
Exercise scan
We graph the function:
Step 3
3 of 6
The graph of the function has no $x$-intercepts.
Step 4
4 of 6
$x^2+9=0$

$x^2=-9$

$x^2=(3i)^2$

$$
x=pm 3i
$$

b) We solve the equation:
Step 5
5 of 6
$$
y=x^2+9=(x-3i)(x+3i)
$$
c) We factor the function:
Step 6
6 of 6
$$
y=x^2-(ai)^2=(x-ai)(x+ai)
$$
We factor $y=x^2+a^2$:
Exercise 141
Step 1
1 of 3
$text{The formula for textbf{difference of squares} is the following:}$

$$
a^2-b^2=left(a-bright)left(a+bright)
$$

Step 2
2 of 3
$$
begin{align*}
x^4-b^4&=left(x^2right)^2-left(b^2right)^2 \
&=left(x^2-b^2right)left(x^2+b^2right) && text{Use the difference of squares.} \
&=left(x-bright)left(x+bright)left(x^2+b^2right) && text{Use the difference of squares again.} \
&=left(x-bright)left(x+bright)left(x-biright)left(x+biright) && text{Use} left(x-biright)left(x+biright)=x^2+b^2.
end{align*}
$$
Result
3 of 3
$$
left(x-bright)left(x+bright)left(x-biright)left(x+biright)
$$
Exercise 142
Step 1
1 of 5
$text{The formula for textbf{difference of squares} is the following:}$

$$
a^2-b^2=left(a-bright)left(a+bright)
$$

Step 2
2 of 5
#### a.

$$
begin{align*}
x^4-b^4&=left(x^2right)^2-left(b^2right)^2 \
&=left(x^2-b^2right)left(x^2+b^2right) && text{Use the difference of squares.} \
&=left(x-bright)left(x+bright)left(x^2+b^2right) && text{Use the difference of squares again.} \
end{align*}
$$

Step 3
3 of 5
#### b.

$$
text{We determine the root of $x^2+b^2$:}
$$

$$
begin{align*}
x^2+b^2&=0 \
x^2&=-b^2 && text{Subtract} -b^2 text{from both sides.} \
x^2&=left(biright)^2 && text{Use} i^2=-1. \
x&=pm bi && text{Square root of each side.}
end{align*}
$$

$$
text{The factor of the expression $x^2+b^2$ is $left(x-biright)left(x+biright)$.}
$$

Step 4
4 of 5
#### c.

$$
text{The final factored form of $x^4-b^4$ is}
$$

$$
left(x-bright)left(x+bright)left(x^2+b^2right)=left(x-bright)left(x+bright)left(x-biright)left(x+biright)
$$

Result
5 of 5
$textbf{a.}$ $left(x-bright)left(x+bright)left(x^2+b^2right)$

$textbf{b.}$ $x^2+b^2=left(x-biright)left(x+biright)$

$textbf{c.}$ $left(x-bright)left(x+bright)left(x-biright)left(x+biright)$

Exercise 143
Step 1
1 of 12
$$
a^2+2ab+b^2
$$
a) We are given the polynomial:
Step 2
2 of 12
$$
a^2+2ab+b^2=(a+b)^2
$$
We factor the polynomial using the pattern:

$(A+B)^2=A^2+2AB+B^2$.

Step 3
3 of 12
$$
8x^3+27y^6
$$
b) We are given the polynomial:
Step 4
4 of 12
$8x^3+27y^6=(2x)^3+(3y^2)^3$

$$
=(2x+3y^2)(4x^2-6xy^2+9y^4)
$$

We factor the polynomial using the pattern:

$A^3+B^3=(A+B)(A^2-AB+B^2)$.

Step 5
5 of 12
$$
100x^2+169
$$
c) We are given the polynomial:
Step 6
6 of 12
$100x^2+169=(10x)^2+13^2=(10x)^2-(13i)^2$

$$
=(10x-13i)(10x+13i)
$$

We factor the polynomial using the pattern:

$A^2-B^2=(A-B)(A+B)$.

Step 7
7 of 12
$$
32x^3-500
$$
d) We are given the polynomial:
Step 8
8 of 12
$32x^3-500=4(8x^3-125)$

$=4[(2x)^3-5^3]$

$$
=4(2x-5)(4x^2+10x+25)
$$

We factor out 4, then we factor the cubic polynomial using the pattern:

$A^3-B^3=(A-B)(A^2+AB+B^2)$.

Step 9
9 of 12
$$
16x^4-81y^8
$$
e) We are given the polynomial:
Step 10
10 of 12
$16x^4-81y^8=(4x^2)^2-(9y^4)^2$

$=(4x^2-9y^4)(4x^2+9y^4)$

$=(2x-3y^2)(2x+3y^2)[(2x)^2-(3y^2 i)^2]$

$$
=(2x-3y^2)(2x+3y^2)(2x-3y^2 i)(2x+3y^2 i)
$$

We factor the polynomial using the pattern 3 times:

$A^2-B^2=(A-B)(A+B)$.

Step 11
11 of 12
$$
x^6-y^6
$$
f) We are given the polynomial:
Step 12
12 of 12
$x^6-y^6=(x^3)^2-(y^3)^2$

$=(x^3-y^3)(x^3+y^3)$

$$
=(x-y)(x^2+xy+y^2)(x+y)(x^2-xy+y^2)
$$

We factor the polynomial first using the pattern:

$A^2-B^2=(A-B)(A+B)$,

then using the patterns:

$A^3-B^3=(A-B)(A^2+AB+B^2)$

$A^3+B^3=(A+B)(A^2-AB+B^2)$.

Exercise 144
Step 1
1 of 4
$text{The formula for textbf{difference of squares} is the following:}$

$$
a^2-b^2=left(a-bright)left(a+bright)
$$

Step 2
2 of 4
#### a.

Shinna ‘s expression is a difference of squares because

$$
begin{align*}
9x^2y^4-z^6&=left(3xy^2right)^2-left(z^3right)^2 \
end{align*}
$$

$$
text{The “squares” are $left(3xy^2right)^2$ and $left(z^3right)^2$.}
$$

Step 3
3 of 4
#### b.

$$
begin{align*}
left(3xy^2right)^2-left(z^3right)^2&=left(3xy^2-z^3right)left(3xy^2+z^3right) && text{Use the difference of squares.} \
end{align*}
$$

Result
4 of 4
$textbf{a.}$ $text{The “squares” are $left(3xy^2right)^2$ and $left(z^3right)^2$.}$

$textbf{b.}$ $left(3xy^2-z^3right)left(3xy^2+z^3right)$

Exercise 145
Step 1
1 of 2
a. Determine the discriminant:

$$
D=b^2-4ac=(0)^2-4(1)(-6)=0+24=24>0
$$

Since the discriminant is positive , the function has real roots.

b. Determine the discriminant:

$$
D=b^2-4ac=(0)^2-4(1)(6)=0-24=-24<0
$$

Since the discriminant is negative, the function has complex roots.

c. Determine the discriminant:

$$
D=b^2-4ac=(-2)^2-4(1)(10)=4-40=-360
$$

Since the discriminant is positive, the function has real roots.

e. Since the constant term is negative (it will become positive one it has been brought to the other side of the equation $(x-3)^2=4$), the function has real roots.

f. Since the constant term is positive (it will become negative one it has been brought to the other side of the equation $(x-3)^2=-4$), the function has complex roots.

Result
2 of 2
a. Real roots
b. Complex roots
c. Complex roots
d. Real roots
e. Real roots
f. Complex roots
Exercise 146
Step 1
1 of 2
a. Replace $x$ with 5:

$$
p(5)=5^3-3(5)^2-7(5)+9=125-75-35+9=24
$$

b. The remainder theorem states that if you divide the polynomial by $x-5$, then the remainder is $p(5)$:

$$
polylongdiv{x^3-3x^2-7x+9}{x-5}
$$

Result
2 of 2
a. $24$

b. $24$

Exercise 147
Solution 1
Solution 2
Step 1
1 of 3
$$
{color{#4257b2}text{a)}}
$$

Solution to this example is given below

$$
begin{align*}
&(x+i)(x-i)&&boxed{text{Given proportion}}\
&x^2+1^2&&boxed{text{Apply complex arithmetic rule}}\
&x^2+1&&boxed{text{Evaluate }1^2=1}\\
&boxed{{color{#c34632}x^2+1} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{Apply:complex:arithmetic:rule}:quad left(a+biright)left(a-biright)=a^2+b^2}
$$

Step 2
2 of 3
$$
{color{#4257b2}text{b)}}
$$

Solution to this example is given below

$$
begin{align*}
&(x-(1+sqrt2)(x-(1-sqrt2)&&boxed{text{Given proportion}}\
&(x-1-sqrt2)(x-1+sqrt2)&&boxed{text{Distribute parentheses}}\
&xcdot x-1cdot :x+sqrt{2}x-1cdot :x+1cdot :1-1cdot sqrt{2}-sqrt{2}x+1cdot sqrt{2}-sqrt{2}sqrt{2}&&boxed{text{Simplify}}\
&xcdot x-1cdot :x+sqrt{2}x-1cdot :x-sqrt{2}x+1cdot :1-sqrt{2}sqrt{2}&&boxed{text{Combine like terms}}\
&xcdot x-1cdot :x-1cdot :x+1cdot :1-sqrt{2}sqrt{2}&&boxed{text{Combine like terms}}\
&xcdot x-2x+1cdot :1-sqrt{2}sqrt{2}&&boxed{text{Combine like terms}}\
&x^{1+1}-2x+1cdot :1-sqrt{2}sqrt{2}&&boxed{text{Add exponents}}\
&x^2-2x+1cdot :1-sqrt{2}sqrt{2}&&boxed{text{Simplify exponents}}\
&x^2-2x+1-sqrt{2}sqrt{2}&&boxed{text{Multiply the numbers: } 1cdot1=1}\
&x^2-2x+1-2&&boxed{text{Apply radical rule}}\
&x^2-2x-1&&boxed{text{Simplify}}\\
&boxed{{color{#c34632}x^2-2x-1} }&&boxed{text{Final solution}}\
end{align*}
$$

$$
boxed{ color{#c34632} text{ } mathrm{Apply:radical:rule}:quad sqrt{a}sqrt{a}=a}
$$

Result
3 of 3
$$
color{#4257b2} text{ a) }x^2+1
$$

$$
color{#4257b2} text{ b) }x^2-2x-1
$$

Step 1
1 of 2
If $x=a$ is a root, then the function contains a factor $(x-a)$:

a.
$$
y=(x+i)(x-i)=x^2-i^2=x^2+1
$$

b.
$$
y=(x-(1+sqrt{2}))(x-(1-sqrt{2}))=x^2-2x+1-2=x^2-2x-1
$$

Result
2 of 2
a. $y=x^2+1$

b. $y=x^2-2x-1$

Exercise 148
Step 1
1 of 7
Exercise scan
A) We are given:
Step 2
2 of 7
The side $BC$ can be computed using the Law of Cosines.

Then we can determine the angle $C$ or $B$ using the Law of Cosines again.

The last angle is obtained by subtracting the other two angles from $180text{textdegree}$.

Step 3
3 of 7
Exercise scan
B) We are given:
Step 4
4 of 7
$AB^2=AC^2+BC^2-2cdot ACcdot BCcdotcos C$

$15^2=17^2+x^2-2cdot 17cdot xcos 56text{textdegree}$

$x^2-34cdot 0.5591929x+289-225=0$

$x^2-19.01x+64=0$ and so on

It is easier to first use the Law of Sines because we are given one side and the angle opposite to it and another side.

On the other hand, if we want to use the Law of Cosines we can do this, but we get a quadratic equation. Let’s note:

$BC=x$.

Step 5
5 of 7
Exercise scan
C) We are given:
Step 6
6 of 7
It is easier to first use the Law of Sines because we are given one side and the angle opposite to it and another side.

On the other hand, if we want to use the Law of Cosines we can do this, but we get a quadratic equation.

Result
7 of 7
A) Yes; B) No; C) No;
Exercise 149
Step 1
1 of 4
$textbf{Geometric sequence}$

The ratio of a geometric sequence is always common.

$$
text{The formula for the $n$-th term is}
$$

$$
tleft(nright)=ab^{n-1}
$$

$text{where $tleft(nright)=n$-th term of the sequence, $a=$ first term of the sequence and $b$ common ratio.}$

$textbf{Arithmetic sequence}$

$text{An arithmetic sequence has the difference $d$ between each consecutive term, which is a constant.}$

$$
text{The formula for the $n$-th term is}
$$

$$
tleft(nright)=a+dleft(n-1right)
$$

$text{where $tleft(nright)=n$-th term of the sequence, $a=$ first term of the sequence and $b$ difference}$

between consecutive terms.

Step 2
2 of 4
#### a.

The sequence is a geometric because

$$
begin{align*}
frac{2.5}{10}&=0.25 \
frac{0.625}{2.5}&=0.25
end{align*}
$$

$text{On the basis of this, we conclude that the first term of the sequence is $a=10$ and}$

$$
text{the common ratio is $b=0.25$.}
$$

$$
tleft(nright)=10left(0.25right)^{n-1}
$$

Step 3
3 of 4
#### b.

The sequence is an arithmetic because

$$
begin{align*}
-8-left(-2right)&=-6 \
-14-left(-8right)&=-6
end{align*}
$$

$text{On the basis of this, we conclude that the first term of the sequence is $a=-2$ and}$

$$
text{the difference between consecutive terms is $d=-6$.}
$$

$$
begin{align*}
tleft(nright)&=a+dleft(n-1right) \
&=-2-6left(n-1right) \
&=-2-6n+6 \
&=-6n+4
end{align*}
$$

Result
4 of 4
$textbf{a.}$ $tleft(nright)=10left(0.25right)^{n-1}$

$textbf{b.}$ $tleft(nright)=-6n+4$

Exercise 150
Step 1
1 of 4
The given tetrahedrons are congruent. We can rotate the first tetrahedron and make it balancing on an edge to match it to the other tetrahedron.
Step 2
2 of 4
The edge on which the second tetrahedron is balancing is one of the sides of the equilateral triangle. That triangle is the base of the other tetrahedron.
Step 3
3 of 4
The tetrahedron that has an equilateral triangle as a base is easier to print because the printer will print if from bottom to top. I will print the same shape the whole time, only the dimensions will get smaller.
Step 4
4 of 4
While printing the balancing tetrahedron, the shape the printer needs print will change because of the position of the tetrahedron.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Investigations and Functions
Chapter 2: Transformations of Parent Graphs
Page 53: Questions
Page 100: Closure Activity
Chapter 3: Solving and Inequalities
Page 107: Questions
Page 151: Closure Activity
Chapter 4: Normal Distributions and Geometric Modeling
Page 157: Questions
Page 217: Closure Activity
Chapter 7: Logarithms and Triangles
Page 321: Questions
Page 368: Closure Activity
Chapter 8: Polynomials
Page 373: Questions
Page 425: Closure Activity
Chapter 9: Trigonometric Functions
Page 431: Questions
Page 483: Closure Activity
Chapter 10: Series
Page 489: Questions
Page 557: Closure Activity
Chapter 11: Rational Expressions and Three-Variable Systems
Page 563: Questions
Page 605: Closure Activity
Chapter 12: Analytic Trigonometry
Page 611: Questions
Page 643: Closure Activity