Core Connections Integrated 3
Core Connections Integrated 3
1st Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283939
Table of contents
Textbook solutions

All Solutions

Page 321: Questions

Exercise 1
Solution 1
Solution 2
Step 1
1 of 5
The logarithm is a number which tells us how many of one number we need to multiply to get some other number.
Step 2
2 of 5
We can write this as:
$$log_ax=b,quad a^b=x.$$
For example,
$$log_232=5,quad 2^5=32.$$
Step 3
3 of 5
The calculator has two logarithm keys. The one called $log$ gives us the logarithm with the base $10$ and the other one called $ln$ gives us the natural logarithm with the base $e$.
Step 4
4 of 5
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/39bc118c-827e-4d24-b442-6656b4452360-1632736897309532.png)
Step 5
5 of 5
The graph of $y=log(x)$ is an ascending function. It is inverse of $y=10^x$.
Step 1
1 of 4
$log_a x=y$

$$
a^y=x
$$

a) A logarithm is the power to which a number must be raised in order to get some other number. We can convert a logarithmic equation into an exponential equation:
Step 2
2 of 4
$log_2 x=y$

$$
2^y=x
$$

Example:
Step 3
3 of 4
$log_a x=dfrac{log x}{log a}$

$log_a x=dfrac{ln x}{ln a}$

b) On the calculator there are two keys for logarithms:

– the common logarithms key $textcolor{#4257b2}{log}$ which is used for logarithms on base 10;

– the natural logarithms key $textcolor{#4257b2}{ln}$ which is used for logarithms on base $e$.

For any other base we use the conversion formula to either base 10 or base $e$:

Step 4
4 of 4
Exercise scan
c) The graph of $y=log (x)$ is an ascending curve, having a vertical asymptote $x=0$:
Exercise 2
Solution 1
Solution 2
Step 1
1 of 4
Let us graph $y=log_2x$ (red) and $y=log 2^x$ (blue).
Step 2
2 of 4
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/cdd3eb04-f439-4ea6-9f7a-1f5d02536709-1632737238170793.png)
Step 3
3 of 4
Let us rewrite the given logarithms in exponential form:
$$begin{align*}
y&=log_2xquadtoquad 2^y=x\
y&=log 2^xquadtoquad 10^y=2^x
end{align*}$$
Result
4 of 4
$2^y=x$ and $10^y=2^x$
Step 1
1 of 2
(a) $y=log_{2}x$ is non-linear and $y=log 2^{x}$ is linear since by the power rule for logs; $log 2^{x}=xlog2$ and $log2$ is a constant.

Exercise scan

Step 2
2 of 2
(b) $2^{y}=x$ and $10^{y}=10^{xlog2}=10^{0.301x}$ giving $dfrac{y}{0.301}=x$. Clearly $2^{y}nedfrac{y}{0.301}$ for all $y$
Exercise 3
Solution 1
Solution 2
Step 1
1 of 5
(a) False since $log_{5}25>1$ and $log_{25}5<1$
Step 2
2 of 5
(b) by power law; $log x^{2}=2log x$. Here; $2log x=log xlog x$ and $2nelog x$ so False
Step 3
3 of 5
(c) True by power law; $log 7^{x}=xlog 7$
Step 4
4 of 5
(d) By addition rule; $log(2x)=log2+log x$ Since $log2$ is a constant $k=0.301$ we have $k+log xnelog_{2}x$. False since the bases are different (different orders of growth)
Result
5 of 5
see multiple solutions
Step 1
1 of 12
Let us rewrite $y=log_525$ and $y=log_{25}5$ in exponential form.
Step 2
2 of 12
$$begin{align*}
y&=log_525quadtoquad 5^y=25\
y&=log_{25}5quadtoquad 25^y=5
end{align*}$$
Step 3
3 of 12
Since $5^2=25$ and $25^{tfrac{1}{2}}=5$, the given logarithms are not equal.
Step 4
4 of 12
The Logarithm Power Property states that $y=log x^2=2log x$.
Step 5
5 of 12
Therefore, if we set the given logarithms equal, we would get:
$$begin{align*}
log x^2&=(log x)^2\
2log x&=log xcdotlog x\
2&neqlog x
end{align*}
Step 6
6 of 12
Therefore, the given logarithms are not equal.
Step 7
7 of 12
Since the Logarithm Power Property states that $log x^a=alog x$, we can write:
$$log 7^x=xlog7.$$
Therefore, the given logarithms are equal.
Step 8
8 of 12
Let us rewrite the given logarithms in exponential form:
$$begin{align*}
y&=log2xquadtoquad 10^y=2x\
y&=log_2xquadtoquad 2^y=x
end{align*}$$
Step 9
9 of 12
Let us graph the given logarithms:
Step 10
10 of 12
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/79d00f96-b44d-40cd-b860-25d2b763d91f-1632738930318784.png)
Step 11
11 of 12
Therefore, the logarithms are not equal.
Result
12 of 12
False, false, true and false.
Exercise 4
Solution 1
Solution 2
Step 1
1 of 3
$$
log (7^x)=xlog (7)
$$
a) The true statement in Exercise 7-3 is:
Step 2
2 of 3
$log (5^2)stackrel{?}{=}2log (5)$

$x=log (5^2)Rightarrow 10^x=25$

$y=2log (5)Rightarrow dfrac{y}{2}=log (5)Rightarrow 10^{y/2}=5Rightarrow 10^y=5^2=25$

$Rightarrow x=y$

$log (5^2)=2log (5)checkmark$

$log (7^3)stackrel{?}{=}3log (7)$

$x=log (7^3)Rightarrow 10^x=343$

$y=3log (7)Rightarrow dfrac{y}{3}=log (7)Rightarrow 10^{y/3}=7Rightarrow 10^y=7^3=343$

$Rightarrow x=y$

$log (7^3)=3log (7)checkmark$

$log (3^5)stackrel{?}{=}5log (3)$

$x=log (3^5)Rightarrow 10^x=243$

$y=5log (3)Rightarrow dfrac{y}{5}=log (3)Rightarrow 10^{y/5}=3Rightarrow 10^y=3^5=343$

$Rightarrow x=y$

$log (3^5)=5log (3)checkmark$

$log (2^8)stackrel{?}{=}8log (2)$

$x=log (2^8)Rightarrow 10^x=256$

$y=8log (2)Rightarrow dfrac{y}{8}=log (2)Rightarrow 10^{y/8}=2Rightarrow 10^y=2^8=256$

$Rightarrow x=y$

$log (2^8)=8log (2)checkmark$

We make up 4 more statements that follow the same pattern:
Step 3
3 of 3
$$
log (m^n)=nlog (m)
$$
b) The Power Property of Logarithms:
Step 1
1 of 12
Let us make $4$ more similar examples:
Step 2
2 of 12
$$begin{align*}
y&=log2^xquadtoquad 10^y=2^x\
y&=xlog2quadtoquad dfrac{y}{x}=log2quadtoquad 10^{tfrac{y}{x}}=2
end{align*}$$
Step 3
3 of 12
Now if we raise both sides of the second exponential form to the power of $x$, we will get:
$$10^{y}=2^x.$$
Step 4
4 of 12
Therefore, $log2^x=xlog2$.
Step 5
5 of 12
$$begin{align*}
y&=log4^xquadtoquad 10^y=4^x\
y&=xlog4quadtoquad dfrac{y}{x}=log4quadtoquad 10^{tfrac{y}{x}}=4
end{align*}$$
Step 6
6 of 12
After raising both sides of the second exponential form to the power of $x$ we get that $log4^x=xlog4$.
Step 7
7 of 12
Let us write $log a^b$ and $blog a$, and $log 10^x$ and $xlog10$ in exponential forms and prove that they are equal:
Step 8
8 of 12
$$begin{align*}
y&=log a^bquadtoquad 10^y=a^b\
y&=blog aquadtoquad dfrac{y}{b}=log aquadtoquad 10^{tfrac{y}{b}}=a\
end{align*}$$
Step 9
9 of 12
$$begin{align*}
y&=log10^xquadtoquad 10^y=10^x\
y&=xlog10quadtoquad dfrac{y}{x}=log10quadtoquad 10^{tfrac{y}{x}}=10
end{align*}$$
Step 10
10 of 12
Now if we raise both sides of the second exponential form to the power of $x$, we will get:
$$log10^x=xlog10quad text{and}quad log a^b=blog a.$$
Step 11
11 of 12
The Power Property tells us that $log m^n=nlog m$.
Result
12 of 12
$log m^n=nlog m$
Exercise 5
Solution 1
Solution 2
Step 1
1 of 3
Method 1-Algebraically; Take logarithms of both sides of the expression; $xln1.04=ln2rightarrow x=dfrac{ln2}{ln1.04}=17.67…$
Step 2
2 of 3
Method 2-Graphically; Plot $y=1.04^{x}$ and $y=2$ and determine the intersection point shown below at $(x,y)=(17.67,2)$

Exercise scan

Result
3 of 3
$$
x=17.67…
$$
Step 1
1 of 4
We could graph the equations $y=2$ and $y=1.04^x$, and then find their intersections. The intersections of their graphs are the solutions.
Step 2
2 of 4
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/c56b69c9-9280-4718-bfe3-6220909ae5e5-1632740116305438.png)
Step 3
3 of 4
Therefore, the solution of the equation $1.04^x=2$ is $x=17.673$.
Result
4 of 4
The method for solving the equation is graphing the equations $y=2$ and $y=1.04^x$, and then finding the intersection of their graphs.
Exercise 6
Solution 1
Solution 2
Step 1
1 of 5
$$
1.04^x=2
$$
We are given the equation:
Step 2
2 of 5
a) The term on the left side has an inconvenient base and an inconvenient exponent.
Step 3
3 of 5
b) We can solve this equation by applying logarithm on both sides and then using the Power Property of Logarithms.
Step 4
4 of 5
$log (1.04^x)=log (2)$

$xlog (1.04)=log (2)$

$x=dfrac{log (2)}{log (1.04)}$

$$
xapprox 17.67
$$

c) We solve the equation:
Result
5 of 5
$$
xapprox 17.67
$$
Step 1
1 of 5
The equation is hard to solve because the exponent on the left side is equal to $x$.
Step 2
2 of 5
Let us find logarithms of both sides and use the Power Property to simplify and solve the equation:
Step 3
3 of 5
$$begin{align*}
log 1.04^x&=log2\
xlog1.04&=0.301\
end{align*}$$
Step 4
4 of 5
Let us divide both sides by $log1.04$:
$$begin{align*}
x&=dfrac{0.301}{log1.04}\
x&=17.673
end{align*}$$
Therefore, the solution to the equation is $x=17.673$.
Result
5 of 5
$x=17.673$
Exercise 7
Solution 1
Solution 2
Step 1
1 of 5
(a) $5=left( dfrac{9}{4}right)^{x}=left( dfrac{3}{2}right)^{2x}$; taking logs; $ln5=2xlnleft( dfrac{3}{2}right)$ then $x=dfrac{ln5}{2(ln3-ln2)}=1.985$
Step 2
2 of 5
(b) $10=left( dfrac{7}{2}right)^{x}$; taking logs; $log10=xlogleft( dfrac{7}{2}right)$ then $x=dfrac{1}{(log7-log2)}=1.838$
Step 3
3 of 5
(c) $8^{x}=64$ then $2^{3x}=2^{6}$. Equating exponents; $3x=6rightarrow x=2$
Step 4
4 of 5
(d) $x^{8}=64$ then $x=sqrt[8]{64}=sqrt[4]{8}=2^{dfrac{3}{4}}=1.682$
Result
5 of 5
see multiple solutions
Step 1
1 of 11
Let us find $log$ of both sides and use the property $log a^b=blog a$:
$$begin{align*}
log5&=log2.25^x\
0.7&=xlog2.25
end{align*}$$
Step 2
2 of 11
Let us divide both sides by $log2.25$ and simplify:
$$begin{align*}
dfrac{0.7}{log2.25}&=x\
1.99&=x
end{align*}$$
Step 3
3 of 11
Let us find $log$ of both sides and use the property $log a^b=blog a$:
$$begin{align*}
log3.5^x&=log10\
xlog3.5&=1
end{align*}$$
Step 4
4 of 11
Let us divide both sides by $log3.5$ and simplify:
$$begin{align*}
x&=dfrac{1}{log3.5}\
x&=1.84
end{align*}$$
Step 5
5 of 11
Let us divide both sides by $2$, find $log$ of both sides and use the property $log a^b=blog a$:
Step 6
6 of 11
$$begin{align*}
8^x&=64\
log8^x&=log64\
xlog8&=1.81\
end{align*}$$
Step 7
7 of 11
Let us divide both sides by $log8$ and simplify:
$$begin{align*}
x&=dfrac{1.81}{log8}\
x&=2
end{align*}$$
Step 8
8 of 11
Let us divide both sides by $2$:
$$x^8=dfrac{128}{2}=64.$$
Step 9
9 of 11
Since $x^8=64$, then:
$$begin{align*}
sqrt[8]{x}&=sqrt[8]{64}\
x&=sqrt[8]{8^2}\
x&=sqrt[4]{8}
end{align*}$$
Step 10
10 of 11
We can rewrite $8$ as $2^3$ so we have $x=2^{tfrac{3}{4}}=1.68$.
Result
11 of 11
$1.99$, $1.84$, $1.81$ and $1.68$
Exercise 8
Solution 1
Solution 2
Step 1
1 of 2
We have two equations:

$$
3^x=12
$$

$$
x^3=12
$$

The first equation is exponential. The second equation is cubic.

We solve the first equation. Take the $log$ of both sides.

$$
ln left(3^xright)=ln left(12right)
$$

Apply the rule $log _aleft(x^bright)=bcdot log _aleft(xright)$:

$$
xln left(3right)=ln left(12right)
$$

Isolate $x$:

$$
x=frac{ln left(12right)}{ln left(3right)}
$$

Use the calculator:

$$
x approx 2.26
$$

Now, let’s solve the second equation.

$$
x^3 = 12 Rightarrow x=sqrt[3]{12}
$$

Result
2 of 2
$2.26$ and $sqrt[3]{12}$
Step 1
1 of 4
Both given equations have $3$ and $x$ on the left side, but one has $x$ as an exponent and the other has $3$ as an exponent.
Step 2
2 of 4
We can solve $x^3=12$ by finding the third root of $12$:
$$x=sqrt[3]{12}=2.29.$$
Step 3
3 of 4
Let us solve $3^x=12$ by finding $log$ of both sides and using the Power Property:
$$begin{align*}
log3^x&=log12\
xlog3&=1.08
end{align*}$$
Step 4
4 of 4
Let us divide both sides by $log3$:
$$begin{align*}
x&=dfrac{1.08}{log3}\
x&=2.26
end{align*}$$
Exercise 9
Solution 1
Solution 2
Step 1
1 of 3
We can use $log$ to solve equations like $2=1.04^x$. We can find $log$ of both sides, use the Power Property and then solve the simplified equation for $x$.
Step 2
2 of 3
$$begin{align*}
log2&=log1.04^x\
log2&=xlog1.04\
dfrac{log2}{log1.04}&=x\
17.67&=x
end{align*}$$
Step 3
3 of 3
We do not use $log$ to solve equations like $56=x^8$ because we can directly find the eighth root (depending on the exponent of $x$) of both sides to get the value of $x$.
Step 1
1 of 1
Logarithms can be used to solve equations where the independent variable is contained in the exponent; $f(x)=Ak^{x}$. An equation such as $f(x)=kx^{8}$ is an n’th order polynomial function (e.g. n=8 here) and the variable does not appear in the exponent. The latter can be solved using suitable techniques such as polynomial division and factoring. These two types of equation have different orders of growth. An exponential function grows more rapidly than any polynomial function.
Exercise 10
Solution 1
Solution 2
Step 1
1 of 3
Since $10^2=100$, then $log x=2$ when $x=100$.
Step 2
2 of 3
Therefore, $log x>2$ for any $x$ greater than $100$:
Result
3 of 3
$x>100$
Step 1
1 of 2
If working in base 10 then since $10^{2}=100$ we can deduce $x>100$ if $log x>2$. Test this by calculating $log101=2.004$
Result
2 of 2
$$
x>100
$$
Exercise 11
Solution 1
Solution 2
Step 1
1 of 14
The standard form of the exponential function is $y=ab^x$.
Step 2
2 of 14
Let us substitute $2$ and $6$ for $x’s$, and $99$ and $8,019$ for $y’s$:
$$begin{align*}
99&=ab^2\
8,019&=ab^6
end{align*}$$
Step 3
3 of 14
Let us divide the left sides and the right sides of the given equations and simplify (we will make a proportion):
$$begin{align*}
dfrac{8,019}{99}&=dfrac{ab^6}{ab^2}\
81&=b^4
end{align*}$$
Step 4
4 of 14
Since $b^4=81$, then $b=3$.
Step 5
5 of 14
Let us substitute $3$ for $b$ in $99=ab^2$:
$$begin{align*}
99&=3^2a\
99&=9a\
11&=a
end{align*}$$
Step 6
6 of 14
Therefore, the equation is $y=11cdot3^x$.
Step 7
7 of 14
Let us substitute $-1$ and $2$ for $x’s$, and $50$ and $25.6$ for $y’s$:
$$begin{align*}
50&=ab^{-1}\
25.6&=ab^2
end{align*}
Step 8
8 of 14
Therefore, $a=50b$. Let us substitute $50b$ for $a$ in $25.6=ab^2$:
$$25.6=50b^3.$$
Step 9
9 of 14
Let us divide both sides by $50$ and find the third root of both sides:
$$begin{align*}
dfrac{25.6}{50}&=b^3\
0.512&=b^3\
0.8&=b
end{align*}$$
Step 10
10 of 14
Let us substitute $0.8$ for $b$ in $50=ab^{-1}$ and simplify:
Step 11
11 of 14
$$begin{align*}
50&=acdot0.8^{-1}\
50&=acdotleft(dfrac{4}{5}right)^{-1}\
50&=adfrac{5}{4}
end{align*}$$
Step 12
12 of 14
Let us multiply both sides by $dfrac{4}{5}$ to get the value of $a$:
$$a=50cdotdfrac{4}{5}=40.$$
Step 13
13 of 14
Therefore, the equation is $y=40cdot0.8^x$.
Result
14 of 14
$y=11cdot3^x$ and $y=40cdot0.8^x$
Step 1
1 of 3
a-

Assuming the exponential equation is:          $y=ab^x$

Substituting for the given points $(2, 99)$ and $(6, 8019)$

$99=ab^2$          (1)

$8019=ab^6$          (2)

$dfrac {8019}{99}=dfrac {ab^6}{ab^2}$

$81=b^4$

$$
b=3
$$

$99=a(3)^2$

$99=9a$

$$
a=11
$$

The equation is:

$$
y=11(3)^x
$$

Step 2
2 of 3
b-

Assuming the exponential equation is:          $y=ab^x$

Substituting for the given points $(-1, 50)$ and $(2, 25.6)$

$50=ab^{-1}$          (1)

$25.6=ab^2$          (2)

$dfrac {25.6}{50}=dfrac {ab^2}{ab^{-1}}$

$dfrac {64}{125}=b^3$

$$
b=dfrac {4}{5}
$$

$50=a times left(dfrac {4}{5}right)^{-1}$

$50=a times left(dfrac {5}{4}right)$

$a=50 times dfrac {4}{5}$

$$
a=40
$$

The equation is:

$$
y=40 times left(dfrac {4}{5}right)^x
$$

Result
3 of 3
a-          The equation is:          $y=11(3)^x$

b-          The equation is:          $y=40 times left(dfrac {4}{5}right)^x$

Exercise 12
Solution 1
Solution 2
Step 1
1 of 2
a) We have: $1.04^x=2$

Take the $log$ of both sides:

$$
ln left(1.04^xright) =ln left(2right)
$$

Apply the rule $log _aleft(x^bright)=bcdot log _aleft(xright)$:

$$
xln left(1.04right)=ln left(2right)
$$

$$
Rightarrow
$$

$$
x=frac{ln left(2right)}{ln left(1.04right)}
$$

$$
x approx 17.67
$$

b) We have $5^x=15$:
Take the $log$ of both sides:

$$
ln left(5^xright)=ln left(15right)
$$

Apply the rule $log _aleft(x^bright)=bcdot log _aleft(xright)$:

$$
xln left(5right)=ln left(15right)
$$

$$
Rightarrow
$$

$$
x=frac{ln left(15right)}{ln left(5right)}
$$

$$
x approx 1.68
$$

c) We have $3=8^x$:
Take the $log$ of both sides:

$$
ln left(3right)=ln left(8^xright)
$$

Apply the rule $log _aleft(x^bright)=bcdot log _aleft(xright)$:

$$
ln left(3right)=xln left(8right)
$$

$$
Rightarrow
$$

$$
x=frac{ln left(3right)}{3ln left(2right)}
$$

$$
xapprox0.528
$$

Result
2 of 2
a) $x approx 17.67$
b) $x approx 1.68$
c) $x approx 0.528$
Step 1
1 of 7
$$
1.04^x=2
$$
a) We are given the equation:
Step 2
2 of 7
$log (1.04^x)=log (2)$

$xlog (1.04)=log (2)$

$x=dfrac{log (2)}{log (1.04)}$

$$
xapprox 17.67
$$

We solve the equation:
Step 3
3 of 7
$$
5^x=15
$$
b) We are given the equation:
Step 4
4 of 7
$log (5^x)=log (15)$

$xlog (5)=log (15)$

$x=dfrac{log (15)}{log (5)}$

$$
xapprox 1.68
$$

We solve the equation:
Step 5
5 of 7
$$
3=8^x
$$
c) We are given the equation:
Step 6
6 of 7
$log (8^x)=log (3)$

$xlog (8)=log (3)$

$x=dfrac{log (3)}{log (8)}$

$$
xapprox 0.53
$$

We solve the equation:
Result
7 of 7
a) $xapprox 17.67$

b) $xapprox 1.68$

c) $xapprox 0.53$

Exercise 13
Step 1
1 of 5
$$
|2x+1|<5
$$
a) We are given the inequality:
Step 2
2 of 5
$-5<2x+1<5$

$-5-1<2x+1-1<5-1$

$-6<2x<4$

$-3<x<2$

$$
xin(-3,2)
$$

We rewrite the inequality:
Step 3
3 of 5
$$
2|3x-2|geq 10
$$
b) We are given the inequality:
Step 4
4 of 5
$|3x-2|geq 5$

$3x-2leq -5$ or $3x-2geq 5$

$3x-2+2leq -5+2$ or $3x-2+2geq 5+2$

$3xleq -3$ or $3xgeq 7$

$xleq -1$ or $xgeq dfrac{7}{3}$

$$
xin(-infty,-1]cupleft[dfrac{7}{3},inftyright)
$$

We rewrite the inequality:
Result
5 of 5
a) $xin(-3,2)$

b) $xin(-infty,-1]cupleft[dfrac{7}{3},inftyright)$

Exercise 14
Step 1
1 of 5
(a) We have an upward parabola with vertex at (-2,-7). To show the half of the parabola that is increasing and include the vertex, we can restrict the domain to $[-2,infty)$
Step 2
2 of 5
(b) interchange x and y in y(x) and solve for y to get the inverse function $y^{-1}(x)$ $rightarrow x=3(y+2)^{2}-7$
Step 3
3 of 5
$$
y^{-1}(x)=pmsqrt{dfrac{x+7}{3}}-2
$$
Step 4
4 of 5
(c) The domain of $y^{-1}(x)$ over the real number line is $[-7,infty)$. For $xtext{textless}-7$ the argument of the square root term is negative and the inverse function returns a complex number.
Result
5 of 5
see answers
Exercise 15
Step 1
1 of 6
$$
log_2 (30)
$$
We are given the expression:
Step 2
2 of 6
$log_2 (30)=x$

$2^x=30$

$$
2^4<2^x<2^5
$$

a) We have:
Step 3
3 of 6
$$
4<x<5
$$
We estimate $x$:
Step 4
4 of 6
begin{center}
begin{tabular}{|| c| c||}
hline
x & $2^x$ \ [0.5ex]
hline
4 & 16 \
hline
4.1 & 17.1 \
hline
4.2 & 18.4 \
hline
4.3 & 19.7 \
hline
4.4 & 21.1 \
hline
4.5 & 22.6\
hline
4.6 &24.3 \
hline
4.7 &26 \
hline
4.8 &27.9 \
hline
4.9 &29.9 \
hline
5 & 32 \[1ex]
hline
end{tabular}
end{center}
b) We estimate $log_2 (30)$:
Step 5
5 of 6
$log_2 (30)approx 4.9$
We estimate $log_2 (30)$:
Step 6
6 of 6
$log_{10} (2^x)=log_{10} 30)$

$xlog_{10} (2)=log_{10} (30)$

$x=dfrac{log_{10} (30)}{log_{10} (2)}$

$$
xapprox 4.91
$$

c) We apply logarithm:
Exercise 16
Step 1
1 of 4
$$
log_5 (200)
$$
a) We are given the expression:
Step 2
2 of 4
$log_5 (200)=x$

$5^x=200$

$log_{10} (5^x)=log_{10} (200)$

$xlog_{10} (5)=log_{10} (200)$

$x=dfrac{log_{10} (200)}{log_{10} (5)}$

$$
xapprox 3.29
$$

We have:
Step 3
3 of 4
$log_b y=x$

$b^x=y$

$log_{10} b^x=log_{10} y$

$xlog_{10} b=log_{10} y$

$$
x=dfrac{log_{10} y}{log_{10} b}
$$

b) We have:
Result
4 of 4
a) $xapprox 3.29$

b) $x=dfrac{log_{10} y}{log_{10} b}$

Exercise 17
Step 1
1 of 13
$x^m x^n=x^{m+n}$

$$
dfrac{x^m}{x^n}=x^{m-n}
$$

a) We have:
Step 2
2 of 13
$log (5)+log (6)=log (x)$

$log (5cdot 6)=log (x)$

$log (30)=log (x)$

$$
x=30
$$

b) i) We solve the equation:
Step 3
3 of 13
$log (5)+log (2)=log (x)$

$log (5cdot 2)=log (x)$

$log (10)=log (x)$

$$
x=10
$$

ii) We solve the equation:
Step 4
4 of 13
$log (5)+log (5)=log (x)$

$log (5cdot 5)=log (x)$

$log (25)=log (x)$

$$
x=25
$$

iii) We solve the equation:
Step 5
5 of 13
$log (10)+log (100)=log (x)$

$log (10cdot 100)=log (x)$

$log (1000)=log (x)$

$$
x=1000
$$

iv) We solve the equation:
Step 6
6 of 13
$log (9)+log (11)=log (x)$

$log (9cdot 11)=log (x)$

$log (99)=log (x)$

$$
x=99
$$

v) We solve the equation:
Step 7
7 of 13
$log (m)+log (n)=log (x)$

$log (mcdot n)=log (x)$

$log (mn)=log (x)$

$$
x=mn
$$

vi) We solve the equation:
Step 8
8 of 13
$log (20)-log (5)=log (x)$

$log left(dfrac{20}{5}right)=log (x)$

$log (4)=log (x)$

$$
x=4
$$

c) i) We solve the equation:
Step 9
9 of 13
$log (30)-log (3)=log (x)$

$log left(dfrac{30}{3}right)=log (x)$

$log (10)=log (x)$

$$
x=10
$$

ii) We solve the equation:
Step 10
10 of 13
$log (5)-log (2)=log (x)$

$log left(dfrac{5}{2}right)=log (x)$

$log (2.5)=log (x)$

$$
x=2.5
$$

iii) We solve the equation:
Step 11
11 of 13
$log (17)-log (9)=log (x)$

$log left(dfrac{17}{9}right)=log (x)$

$$
x=dfrac{17}{9}
$$

iv) We solve the equation:
Step 12
12 of 13
$log (375)-log (17)=log (x)$

$log left(dfrac{375}{17}right)=log (x)$

$$
x=dfrac{375}{17}
$$

v) We solve the equation:
Step 13
13 of 13
$log (m)-log (n)=log (x)$

$log left(dfrac{m}{n}right)=log (x)$

$$
x=dfrac{m}{n}
$$

vi) We solve the equation:
Exercise 18
Step 1
1 of 4
textcolor[RGB]{0,60,100}${textbf{Logarithm of a Product}}$

Suppose you have some numbers $a, b, c$, where $a$ is neither 0 nor 1, and $a, b,$ and $c$ are strictly positive (not zero).

Then, for any values of $a, b,$ and $c$ in these conditions, it will be true that

$$
color[RGB]{150,0,0}log_a (b cdot c) = log_ab + log_ac
$$

$textbf{Example:}$

We wish to find the value of

$$
log_2{32}
$$

We know that $32 = 4 cdot 8$. So we can rewrite the expression as

$$
log_2(4 cdot 8)
$$

Now we have the logarithm of a product. We apply the property:

$$
log_2(4 cdot 8) = log_24 + log_28 = 2 + 3 = 5
$$

We can check that our result is correct, since $2^5 = 32$.

Step 2
2 of 4
textcolor[RGB]{0,60,100}${textbf{Logarithm of a Quotient}}$

Suppose you have some numbers $a, b, c$, where $a$ is neither 0 nor 1, and $a, b,$ and $c$ are strictly positive (not zero).

Then, for any values of $a, b,$ and $c$ in these conditions, it will be true that

$$
color[RGB]{150,0,0}log_a left(frac{b}{c}right) = log_ab – log_ac
$$

$textbf{Example:}$

We wish to solve

$$
log_2{65536} – log_2{4096}
$$

Since we are subtracting two logarithms of the same base, we can turn the expression into the logarithm of a quotient.

$$
log_2{65536} – log_2{4096} = log_2 left(frac{65536}{4096}right)
$$

We can simplify the fraction and easily solve the logarithm:

$$
log_2 left(frac{65536}{4096}right) = log_216 = 4
$$

Step 3
3 of 4
textcolor[RGB]{0,60,100}${textbf{Change of Base Property}}$

Suppose you have some numbers $a, b, c$, where $a$ and $b$ are neither 0 nor 1, and $a, b,$ and $c$ are strictly positive (not zero).

Then, for any values of $a, b,$ and $c$ in these conditions, it will be true that

$$
color[RGB]{150,0,0}log_ac = frac{log_bc}{log_ba}
$$

$textbf{Example:}$

We wish to solve the logarithm

$$
log_{27}243
$$

Note that both 27 and 243 are powers of 3. We can rewrite the logarithm in terms of base 3 using the Change of Base Property:

$$
log_{27}243 = frac{log_3{243}}{log_3{27}} = frac{5}{3}
$$

Result
4 of 4
See sample entry
Exercise 19
Step 1
1 of 5
$$
log_{3}60=log_{3}6+log_{3}10=log_{3}3+log_{3}20=log_{3}120-log_{3}2=log_{3}240-log_{3}4
$$
Complete the rows by applying the log identities $log(ab)=loga+logb$ and $logleft( dfrac{a}{b}right)=loga-logb$. There are multiple possible correct solutions in most cases.
Step 2
2 of 5
$$
log_{7}36=log_{7}6+log_{7}6=log_{7}3+log_{7}12=log_{7}72-log_{7}2=log_{7}144-log_{7}4
$$
Step 3
3 of 5
$$
log_{6}18=log_{6}9+log_{6}2=log_{6}3+log_{6}6=log_{6}36-log_{6}2=log_{6}72-log_{6}4
$$
Step 4
4 of 5
$$
log_{25}50=log_{25}25+log_{25}2=log_{25}5+log_{25}5=log_{25}75-log_{25}1.5=log_{25}200-log_{25}4
$$
Step 5
5 of 5
$$
log40=log10+log4=log5+log8=log160-log4=log80-log2
$$
Exercise 20
Step 1
1 of 3
textbf{(a)}
begin{align*}
log_{1/2} (4) +log_{1/2} (2) -log_{1/2} (5)&=log_{1/2} (4 cdot 2) -log_{1/2} (5) &textrm{Using Product property}\
&=log_{1/2} (8) -log_{1/2} (5)\
&=log_{1/2} left(dfrac{8}{5} right) &textrm{Using Quotient property}\
&=log_{1/2} left( 1.6 right)
intertext{textbf{(b)}}
log_2(M) +log_3 (N)&=log_2(M)+dfrac{log_2 (N)}{log_2 (3)} & textrm{Change of base property}\
&=log_2(M)+dfrac{log_2 (N)}{frac{log (2)}{log (3)}} & textrm{Change of base property}\
&=log_2(M)+dfrac{log_2 (N)}{frac{0.3010299957}{0.4771212547}} \
&=log_2(M)+dfrac{log_2 (N)}{0.631} \
&=log_2(M)+log_2 (N)^{1/0.631} & textrm{Using Power property}\
&=log_2 (M cdot N^{1/0.631}) &textrm{Using Product property}\
intertext{textbf{(c)}}
log(k) + x log(m) &= log(k) + log(m^x) & textrm{Using Power property}\
&= log (kcdot m^x)&textrm{Using Product property}\
intertext{textbf{(d)}}
dfrac{1}{2} log_5(x)+2log_5(x+1)&= log_5(sqrt{x})+log_5((x+1)^2)& textrm{Using Power property}\
&= log_5(sqrt{x} cdot (x+1)^2)\
&= log_5(sqrt{x} cdot (x^2+2x+1))\
&= log_5(x^{2.5}+2x^{1.5}+sqrt{x})\
end{align*}
Step 2
2 of 3
begin{align*}
intertext{textbf{(e)}}
log(4) -log(3) + log( pi) +3 log (r)&=log(4) -log(3) + log( pi) + log (r^3)& textrm{Using Power property}\
&=log (4 pi r^3)-log(3) &textrm{Using Product property} \
&=log left(dfrac{4 pi r^3}{3}right) &textrm{Using Quotient property}\
intertext{textbf{(f)}}
log (6) + 23&= log(6)+ log(10^{23})\
&= log(6 cdot 10^{23})&textrm{Using Product property}
end{align*}
Result
3 of 3
(a) $log_{1/2} (1.6)$ (b) $log_2 (M cdot N^{1/0.631})$ (c) $log (km^x)$ (d) $log_5(x^{2.5}+2x^{1.5}+sqrt{x})$

(e) $log left( frac{4 pi r^3}{3} right)$ (f) $log (6 cdot 10^{23})$

Exercise 21
Step 1
1 of 1
For $log(x)0$ and for any positive number including 10, we must have $0textless10^{-n}textless1$
Exercise 22
Step 1
1 of 7
$m=b^x$

$$
n=b^y
$$

a) We have:
Step 2
2 of 7
$$
mn=b^xcdot b^y=b^{x+y}
$$
We determine $mn$:
Step 3
3 of 7
$m=b^xRightarrow log_b (m)=log_b (b^x)$

$log_b (m)=xlog_b (b)$

$log_b (m)=x$

$n=b^yRightarrow log_b (n)=log_b (b^y)$

$log_b (n)=ylog_b (b)$

$log_b (n)=y$

$mn=b^{x+y}Rightarrow log_b (mn)=log_b (b^{x+y})$

$log_b (mn)=(x+y)log_b (b)$

$log_b (mn)=x+y$

b) We rewrite the exponential equations in logarithmic form:
Step 4
4 of 7
$x=log_b (m)$

$y=log_b (n)$

$$
x+y=log_b (mn)
$$

c) We have:
Step 5
5 of 7
$$
log_b (m)+log_b (n)=log_b (mn)
$$
We substitute the expressions of $x$ and $y$ from the first two equations into the third:
Step 6
6 of 7
$dfrac{m}{n}=dfrac{b^x}{b^y}=b^{x-y}$

$log_b left(dfrac{m}{n}right)=log_b (b^{x-y})$

$log_b left(dfrac{m}{n}right)=(x-y)log_b b$

$log_b left(dfrac{m}{n}right)=x-y$

d) We have:
Step 7
7 of 7
$log_b left(dfrac{m}{n}right)=log_b (m)-log_b (n)$
We substitute the expressions of $x$ and $y$ from the equations $x=log_b (m), y=log_b (n)$ into the above one:
Exercise 23
Step 1
1 of 3
$$
log_b (m^n)=nlog_b (m)
$$
We have to prove the statement:
Step 2
2 of 3
Let’s note:

$U=log_b (m)$.

Step 3
3 of 3
$m=b^U$

$m^n=(b^U)^n$

$m^n=b^{Un}$

$log_b (m^n)=log_b (b^{Un})$

$log_b (m^n)=Unlog_b b$

$log_b (m^n)=Un$

$$
log_b (m^n)=nlog_b (m)
$$

We have:
Exercise 24
Step 1
1 of 8
$$
log_2 (3)=x
$$
a) We are given the equation:
Step 2
2 of 8
$$
dfrac{log_{10} (3)}{log_{10} (2)}=x
$$
We rewrite the equation using log base 10:
Step 3
3 of 8
$$
log_5 (8)=x
$$
b) We are given the equation:
Step 4
4 of 8
$log_5 (2^3)=x$

$3log_5 (2)=x$

$$
dfrac{3log_{10} (2)}{log_{10} (5)}=x
$$

We rewrite the equation using log base 10:
Step 5
5 of 8
$$
log_7 (12)=x
$$
c) We are given the equation:
Step 6
6 of 8
$$
dfrac{log_{10} (12)}{log_{10} (7)}=x
$$
We rewrite the equation using log base 10:
Step 7
7 of 8
$$
log_a (b)=x
$$
d) We are given the equation:
Step 8
8 of 8
$$
dfrac{log_{10} (b)}{log_{10} (a)}=x
$$
We rewrite the equation using log base 10:
Exercise 25
Step 1
1 of 6
$$
(x-3)log5.825=log120
$$
Solve by taking logarithms to base 10 for (a)$;$
Step 2
2 of 6
$$
x=dfrac{log120}{log5.825}+3=5.717
$$
Step 3
3 of 6
$$
1.2^{(2x-1)}=50
$$
$$
(b)
$$
Step 4
4 of 6
$$
(2x-1)log1.2=log50
$$
Step 5
5 of 6
$$
x=dfrac{1}{2}left[ dfrac{log50}{log1.2}+1right]=11.228
$$
Result
6 of 6
see solutions
Exercise 26
Step 1
1 of 6
$$
dfrac{log_2 32}{log_2 4}
$$
a) We are given:
Step 2
2 of 6
$dfrac{log_2 32}{log_2 4}=dfrac{log_2 (2^5)}{log_2 (2^2)}$

$$
=dfrac{5log_2 (2)}{2log_2 (2)}=dfrac{5}{2}
$$

We have:
Step 3
3 of 6
$$
dfrac{log 32}{log 4}
$$
b) We are given:
Step 4
4 of 6
$dfrac{log 32}{log 4}=dfrac{log (2^5)}{log (2^2)}$

$$
=dfrac{5log (2)}{2log (2)}=dfrac{5}{2}
$$

We have:
Step 5
5 of 6
$dfrac{log_b 32}{log_b 4}=log_4 32=log_4 (4^{5/2})=dfrac{5}{2}$
c) The results in parts $(a)$ and $(b)$ are the same.

We use the change of base formula:

Step 6
6 of 6
$$
log_2 (7)=dfrac{log_5 (7)}{log_5 (2)}
$$
d) We determine $log_2 (7)$:
Exercise 27
Step 1
1 of 1
Exercise scan
The function $y=log_{3}(x+4)$ shown plotted is the parent function
$$
y=log_{3}x
$$
shifted 4 units in the negative x direction.
Exercise 28
Step 1
1 of 3
We have $xepsilonmathbb{Z}$ with $xgeq0$ and y is a power of 3;

Exercise scan

Step 2
2 of 3
$$
y=3^{x}
$$
Result
3 of 3
see table
Exercise 29
Step 1
1 of 7
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/a6983ed4-4875-4c04-b0d0-fc485ba5851c-1632753855169863.png)
Step 2
2 of 7
The cross section will be a circular region if we slice the trunk horizontally somewhere at the bottom.
Step 3
3 of 7
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/c4781911-041d-4853-a32b-5ef7d5210185-1632753895889756.png)
Step 4
4 of 7
To get the three separate circular regions as a cross section, we need to slice the tree horizontally somewhere at the top of the given portion.
Step 5
5 of 7
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/24467042-e97e-4fc7-86b0-11892b20505d-1632753937208824.png)
Step 6
6 of 7
To get the amoeba shaoed cross section, we need to slice the tree trunk where it starts to separate.
Step 7
7 of 7
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/c29c655f-692a-47d4-b29d-bcce4d373ec6-1632753974517264.png)
Exercise 30
Step 1
1 of 3
The general form of the parabola is:          $y=a(x-h)^2+k$, where $(h, k)$ is the vertex.

The vertex is $(2,3)$          (Given)

The parabola passes the point $(0, 0)$          Given

Substituting in the general form for the vertex and the given point.

$0=a(0-2)^2+3$

$4a=-3$

$a=-dfrac {3}{4}$

The equation of the parabola is:

$$
y=-dfrac {3}{4}(x-2)^2+3
$$

Step 2
2 of 3
Exercise scan
Result
3 of 3
$$
y=-dfrac {3}{4}(x-2)^2+3
$$
Exercise 31
Step 1
1 of 8
$$
y=ab^x
$$
We are given the function:
Step 2
2 of 8
$x_1=0; y_1=200$

$$
x_1=2; y_2=392
$$

a) We are given:
Step 3
3 of 8
$$
begin{cases}
ab^0=200\
ab^2=392
end{cases}
$$

$a=200$

$200b^2=392$

$b^2=dfrac{392}{200}$

$b^2=dfrac{49}{25}$

$$
b=dfrac{7}{5}=1.4
$$

We determine $a, b$:
Step 4
4 of 8
$$
y=200(1.4)^x
$$
Th function is:
Step 5
5 of 8
$200(1.4)^x=5$

$(1.4)^x=dfrac{5}{200}$

$(1.4)^x=0.25$

$log (1.4)^x=log 0.025$

$xlog 1.4=log 0.025$

$x=dfrac{log 0.025}{log 1.4}$

$$
xapprox-11
$$

We determine $x$ for which $y=5$:
Step 6
6 of 8
This means the embryo was implanted on March 10th$ and she visited the doctor 11 days later.
Step 7
7 of 8
$38cdot 7=266$ days

Until April 1st: $31-10=21$ days

Until May 1st: $21+30=51$ days

Until June 1st: $51+31=82$ days

Until July 1st: $82+30=112$ days

Until August 1st: $112+31=143$ days

Until September 1st: $143+31=174$ days

Until October 1st: $174+30=204$ days

Until November 1st: $204+31=235$ days

Until December 1st: $235+30=265$ days

b) We compute 38 weeks after March 10th:
Step 8
8 of 8
The baby should be born around December 2nd.
Exercise 32
Step 1
1 of 7
$$
y=ab^x
$$
We are given the equation:
Step 2
2 of 7
a) Problem 7-31 required the use of an exponential equation. One could consider $x=0$ the day of the first visit to the doctor or the day of the implant.
Step 3
3 of 7
$(21,200)$

$$
(23,392)
$$

b) Solving the problem using a system of equations is a very good idea.

i) We are given:

Step 4
4 of 7
$$
begin{cases}
ab^{21}=200\
ab^{23}=392
end{cases}
$$
We write the system:
Step 5
5 of 7
$dfrac{ab^{23}}{ab^{21}}=dfrac{392}{200}$

$b^2=1.96$

$b=sqrt{1.96}$

$$
b=1.4
$$

ii) The best way to solve this system is to divide the equations side by side to eliminate $a$ and determine $b$:
Step 6
6 of 7
$a(1.4)^{21}=200$

$a=dfrac{200}{(1.4)^{21}}$

$$
aapprox 0.1707
$$

We determine $a$:
Step 7
7 of 7
$$
y=0.1707(1.4)^x
$$
The function is:
Exercise 33
Step 1
1 of 9
$(3,12.5)$

$$
(4,11.25)
$$

a) We are given the points:
Step 2
2 of 9
As for $311.25=f(4)$, it means that the function is decreasing.
Step 3
3 of 9
Exercise scan
b) We sketch a graph of the function considering the asymptote $y=10$:
Step 4
4 of 9
$$
y=ab^x+k
$$
c) The function has the form:
Step 5
5 of 9
$$
k=10
$$
As the function is decreasing, it means $ab^xrightarrow 0$, so the value of $k$ is:
Step 6
6 of 9
$$
begin{cases}
ab^3+10=12.5\
ab^4+10=11.25
end{cases}
$$

$$
begin{cases}
ab^3=12.5-10\
ab^4=11.25-10
end{cases}
$$

$$
begin{cases}
ab^3=2.5\
ab^4=1.25
end{cases}
$$

$dfrac{ab^4}{ab^3}=dfrac{1.25}{2.5}$

$b=0.5$

$a(0.5)^3=2.5$

$a=dfrac{2.5}{0.125}$

$a=20$

$$
y=20(0.5)^x+10
$$

We use the two points on the graph and determine $a, b$:
Step 7
7 of 9
As $x$ increases, $20(0.5)^xrightarrow 0$, therefore $yrightarrow 10$.
Step 8
8 of 9
$$
x=0Rightarrow y=20(0.5)^0+10=30
$$
d) We determine the $y$-intercept:
Step 9
9 of 9
The $y$-intercept is 20 units above the asymptote.
Exercise 34
Step 1
1 of 9
$P=1000$

$A=40,000$

$n=1$

$$
t=8
$$

a) We are given:
Step 2
2 of 9
$A=Pleft(1+dfrac{r_1}{n}right)^{nt}$

$$
A=P(1+r)^t
$$

We write an equation that models Janice’s financial situation:
Step 3
3 of 9
$40,000=1000(1+r_1)^8$

$dfrac{40,000}{1000}=(1+r_1)^8$

$40=(1+r_1)^8$

$1+r_1=sqrt[8]{40}$

$r_1=1.5858-1$

$r_1=0.5868$

$$
r_1=58.58%
$$

We determine $r_1$:
Step 4
4 of 9
$P=7800$

$A=18,400$

$n=1$

$$
t=20
$$

b) We are given:
Step 5
5 of 9
$18,400=7800(1+r_2)^{20}$

$dfrac{18,400}{7800}=(1+r_2)^{20}$

$2.359=(1+r_2)^{20}$

$1+r_2=sqrt[20]{2.359}$

$r_2=1.0438-1$

$r_2=0.0438$

$$
r_2=4.38%
$$

We determine $r_2$:
Step 6
6 of 9
c) Janice’s goal is much less realistic as it involves an interest rate way too reasonable.
Step 7
7 of 9
$$
dfrac{40,000-1000}{8-0}=dfrac{39,000}{8}=4875
$$
d) We determine the average rate of change for Janice over 8 years:
Step 8
8 of 9
$$
dfrac{18,400-7800}{20-0}=dfrac{10,600}{20}=530
$$
We determine the average rate of change for Sarah over 20 years:
Step 9
9 of 9
$$
4875>>530
$$
The average rate of change supports the result in part $(c)$.
Exercise 35
Step 1
1 of 6
$(1,60)$

$$
(3,135)
$$

a) We are given the points:
Step 2
2 of 6
$y=ab^x$

$$
begin{cases}
ab^1=60\
ab^3=135
end{cases}
$$

$dfrac{ab^3}{ab^1}=dfrac{135}{60}$

$b^2=dfrac{9}{4}$

$b=dfrac{3}{2}$

$$
a=dfrac{60}{dfrac{3}{2}}=60cdot dfrac{2}{3}=40
$$

We determine the values of $a$ and $b$ from the function’s formula:
Step 3
3 of 6
$$
y=40(1.5)^x
$$
The function is:
Step 4
4 of 6
$40(1.5)^x=1$

$(1.5)^x=dfrac{1}{40}$

$log_{10} (1.5)^x=log_{10} 0.025$

$xlog_{10} (1.5)=log_{10} 0.025$

$x=dfrac{log_{10} 0.025}{log_{10} (1.5)}$

$$
xapprox -9
$$

b) We solve the equation:
Step 5
5 of 6
Thus he had the first chickenpox pockmark 9 days ago, which means October 22nd$.
Result
6 of 6
See slution
Exercise 36
Step 1
1 of 5
$P=100$

$t=20$

$t_1=6$

$$
A_1=132
$$

We are given:
Step 2
2 of 5
$A=Pleft(1+dfrac{r}{n}right)^{nt}$

$$
A=P(1+r)^t
$$

We have:
Step 3
3 of 5
$A_1=P(1+r)^{t_1}$

$132=100(1+r)^6$

$dfrac{132}{100}=(1+r)^6$

$1.32=(1+r)^6$

$1+r=sqrt[6]{1.32}$

$r=1.0474-1$

$$
r=0.0474=4.74%
$$

We determine $r$ using $t=6$:
Step 4
4 of 5
$A=Pleft(1+rright)^{t}$

$A=100(1+0.0474)^{20}$

$A=100(1.0474)^{20}$

$$
Aapprox 252.49
$$

We determine $A$ for $t=20$
Result
5 of 5
$A=P(1+r)^t$

$$
Aapprox $252.49
$$

Exercise 37
Step 1
1 of 3
$T(t)=T_s+(T_0-T_s)e^{-kt}$

where

$T$=the temperature of the cup at time $t$

$t$=time

$T_s$=the temperature of the room

$T_0$=the initial temperature of the cocoa

$k$=a cooling constant, specific to the cocoa

The temperature of the hot chocolate will decrease starting with the boiling temperature down to the room’s temperature.

We usually consider Newton’s Law of Cooling:

Step 2
2 of 3
$T_s=293.15$

$T_0=373.15$

$T(t)=293.15+(373.15-293.15)e^{-0.0015t}$

$$
T(t)=293.15+80e^{-0.0015t}
$$

If we consider the cocoa having a similar cooling constant with soup (k=0.0015$), we can write:
Step 3
3 of 3
Exercise scan
We graph the function:
Exercise 38
Step 1
1 of 1
An interesting example of an equation involving logarithms, arises when calculating the number of digits in a large number e.g. $8^{1000}$. We can equate this number to a number of the form $10^{x-1}$ and since we have unknowns in the exponent, we solve by taking logarithms. The number of digits is given by $x-1=log8^{1000}=903.09$ So rounding down, the number of digits in $8^{1000}$ is $lfloor left( 903.09+1right)=904$
Exercise 39
Step 1
1 of 3
We have two inequalities $y>|x+3|$ and $yleq 5$.

Sketch the graph in Desmos.

We graph both functions and shade the region above the first function and below the second and intersect them to get the solution region:

Exercise scan

Step 2
2 of 3
We determinne the area of $triangle ABC$ after determining it’s base $AB$ and height $h$:

$$
AB = sqrt{(5-5)^2+(2-(-8))^2}
$$

$$
AB =sqrt{0+100}
$$

$$
AB= 10
$$

We know:

$$
P_{triangle ABC} = dfrac{AB cdot h}{2}
$$

From the graph we see $h=5$.
Substitute the values and we have:

$$
P_{triangle ABC} = dfrac{10 cdot 5 }{2}
$$

$$
P_{triangle ABC} = colorbox{yellow}{25}
$$

Result
3 of 3
$$
25
$$
Exercise 40
Step 1
1 of 2
Since $i=sqrt{-1}$, we know that $i^2=-1$. Then we obtain:

$$
i^3=icdot i^2=icdot (-1)=-i
$$

$$
i^4=i^2cdot i^2=(-1)cdot (-1)=1
$$

Result
2 of 2
$$
1
$$
Exercise 41
Step 1
1 of 4
Solve each equation as shown below, follow the steps:

a) $(x+4)(2x-5)=0qquadqquadqquadqquadqquad$ $color{#c34632} text{[apply the zero product property]}$

Set each factor equal to zero and solve:

$bullet,,$ $x+4=0Rightarrow color{#4257b2} text{$x=-4$}$

$bullet,,$ $2x-5=0Rightarrow 2x=5Rightarrow color{#4257b2} text{$x=dfrac{5}{2}$}$

The solutions of the initial equation are: $color{#4257b2} text{$,,,x=-4$}$ and $color{#4257b2} text{$x=dfrac{5}{2}$}$

Step 2
2 of 4
b) $(x+4)(x^2-5x+6)=0qquadqquadqquadqquad$ $color{#c34632} text{[apply the zero product property]}$

Set each factor equal to zero and solve:

$bullet,,$ $x+4=0Rightarrow color{#4257b2} text{$x=-4$}$

$bullet,,$ $x^2-5x+6=0qquadqquadqquadqquadqquad$ $color{#c34632} text{[$a=1$ , $b=-5$ , $c=6$]}$

$color{#c34632} text{Apply the quadratic formula:}$

$color{#c34632} text{$x_{1,2}=dfrac{-bpm sqrt{b^2-4ac}}{2a}$}$

$Rightarrow x_{1,2}=dfrac{5pm sqrt{(-5)^2-4(1)(6)}}{2(1)}$

$Rightarrow x_{1,2}=dfrac{5pm sqrt{25-24}}{2}$

$Rightarrow x_{1,2}=dfrac{5pm 1}{2}$

$Rightarrow color{#4257b2} text{$x=2,,$}$ or $color{#4257b2} text{$,,x=3$}$

The solutions of the initial equation are: $color{#4257b2} text{$,,,x=-4$}$ , $color{#4257b2} text{$x=2$}$ and $color{#4257b2} text{$x=3$}$

Step 3
3 of 4
c) $3x(x+1)(2x-7)(3x+4)^2(x-13)(x+7)=0quadquadquadquad$

$color{#c34632} text{[apply the zero product property]}$

Set each factor equal to zero and solve the resulting equations as shown below:

$bullet,,$ $3x=0Rightarrow color{#4257b2} text{$x=0$}$

$bullet,,$ $x+1=0Rightarrow color{#4257b2} text{$x=-1$}$

$bullet,,$ $2x-7=0Rightarrow 2x=7Rightarrow color{#4257b2} text{$x=dfrac{7}{2}$}$

$bullet,,$ $3x+4=0Rightarrow 3x=-4Rightarrow color{#4257b2} text{$x=-dfrac{4}{3}quadquad$}$ $color{#4257b2} text{Multiplicity $2$}$

$bullet,,$ $x-13=0Rightarrow color{#4257b2} text{$x=13$}$

$bullet,,$ $x+7=0Rightarrow color{#4257b2} text{$x=-7$}$

The solutions of the initial equation are:

$color{#4257b2} text{$x=0$}$ , $color{#4257b2} text{$x=-1$}$ , $color{#4257b2} text{$x=dfrac{5}{2}$}$ , $color{#4257b2} text{$x=dfrac{7}{2}$ , $x=-dfrac{4}{3}$ , $x=13,,$}$ and $color{#4257b2} text{$,,x=-7$}$

Step 4
4 of 4
d) Given an equation in factored form(equal to zero), the most efficient way to solve it(to find the roots) is by using the zero product property.

That is, we set each factor equal to zero and solve the equations that occur one by one. The solutions we find for each equation are the solutions of the original equation.

Exercise 42
Step 1
1 of 8
a) We make a sketch of Dr. Dedman’s body temperature and time:
Step 2
2 of 8
$$
y=17
$$
b) Yes, there isan asymptote forthis relationship: the temperature of the coroner’s office (the body cannot have a lower temperature than that):
Step 3
3 of 8
$y=ab^x+k$

$$
y=ab^x+17
$$

c) The equation is:
Step 4
4 of 8
$$
begin{cases}
ab^{-1}+17=27\
ab^0+17=24
end{cases}
$$

$$
begin{cases}
dfrac{a}{b}=27-17=10\
a=24-17=7
end{cases}
$$

$dfrac{a}{b}=10$

$dfrac{7}{b}=10$

$$
b=dfrac{7}{10}=0.7
$$

We consider $t=0$ the moment when the thermometer shows $24text{textdegree}$.
We determine $a,b$ using the points $(-1,27), (0, 24)$:
Step 5
5 of 8
$$
y=7left(0.7right)^x+17
$$
The equation is:
Step 6
6 of 8
$y=37$

$7left(0.7right)^x+17=37$

$7left(0.7right)^x=37-17$

$7left(0.7right)^x=20$

$(0.7)^x=dfrac{20}{7}$

$log (0.7)^x=log dfrac{20}{7}$

$xlog (0.7)=log dfrac{20}{7}$

$x=dfrac{log dfrac{20}{7}}{log (0.7)}$

$$
xapprox -2.94
$$

d) We solve the equation:
Step 7
7 of 8
$2.94 h=2h+0.94cdot 60’=2h+56.4’$

$$
6h12′-2h56.4’=5h72′-2h56.4’=3h 15.4′
$$

e) The thermometer shows $24text{textdegree}$ one hour after 5:12, which means at 6:12. The time of death is $2.94$ hours before this time:
Step 8
8 of 8
Since no one from the list was inside the building at that time and since Sergeant Foust lied about talking to the doctor at a time when the doctor was already dead, the murderer is Sergeant Foust.
Exercise 43
Step 1
1 of 8
$A(t)=P(1-0.2)^t$

$$
A(t)=P(0.8)^t
$$

a) Let’s note:

$P$=the initial value of the car.

After the first year its value will be $100%-20%=80%$ from the initial value, after the second year its value will be $80%$ from the value after the first year and so on. We can write the model:

Step 2
2 of 8
$$
P=23,500
$$
b) We are given:
Step 3
3 of 8
$$
A(t)=23,500(0.8)^t
$$
We write the model for the given $P$:
Step 4
4 of 8
$$
A(4)=23,500(0.8)^4=9625.6
$$
c) We determine $A(4)$:
Step 5
5 of 8
$$
dfrac{A(4)-P}{4-0}=dfrac{9625-23,500}{4}=3468.75
$$
d) We determine the average rate of change during the first 4 years:
Step 6
6 of 8
This means that the car’s value diminished by $$3468.75$ per year.
Step 7
7 of 8
$23,500(0.8)^t=6000$

$(0.8)^t=dfrac{6000}{23,500}$

$(0.8)^t=0.255319$

$log_{10} (0.8)^t=log_{10} 0.255319$

$tlog_{10} (0.8)=log_{10} 0.255319$

$t=dfrac{log_{10} 0.255319}{log_{10} (0.8)}$

$tapprox 6$ years

e) We determine $t$ so that $A(t)=6000$:
Step 8
8 of 8
$23,500=P_0(0.8)^{2.7}$

$P_0=dfrac{23,500}{(0.8)^{2.7}}$

$$
P_0=42,926.44
$$

f) We determine $P_0$ given that $t=2.7$:
Exercise 44
Step 1
1 of 11
$x^6=125$
a) We are given the equation:
Step 2
2 of 11
$x=pmsqrt[6]{125}$

$$
x=pm 2.236
$$

We solve the equation:
Step 3
3 of 11
$x^{3.8}=240$
b) We are given the equation:
Step 4
4 of 11
$(x^{3.8})^5=240^5$

$x^{19}=796,262,400,000$

$x=sqrt[19]{796,262,400,000}$

$$
xapprox 4.230
$$

We solve the equation:
Step 5
5 of 11
$$
x^{-4}=100
$$
c) We are given the equation:
Step 6
6 of 11
$x^{-4}cdot x^4=100x^4$

$1=100x^4$

$x^4=dfrac{1}{100}$

$x=pmdfrac{1}{sqrt[4]{100}}$

$$
x=pm 0.316
$$

We solve the equation:
Step 7
7 of 11
$$
(x+2)^3=65
$$
d) We are given the equation:
Step 8
8 of 11
$x+2=sqrt[3]{65}$

$x=4.021-2$

$$
x=2.021
$$

We solve the equation:
Step 9
9 of 11
$$
4(x-2)^{12.5}=2486
$$
e) We are given the equation:
Step 10
10 of 11
$(4(x-2)^{12.5})^2=2486^2$

$16(x-2)^{25}=6,180,196$

$(x-2)^{25}=dfrac{6,180,196}{16}$

$(x-2)^{25}=386,262.25$

$x-2=sqrt[25]{386,262.25}$

$x=2+1.673$

$$
x=3.673
$$

We solve the equation:
Result
11 of 11
a) $pm 2.236$; b) $4.230$; c) $pm 0.316$; d) $2.021$; e) $3.673$
Exercise 45
Step 1
1 of 2
$$
xlog(2)=log(3)
$$
Solve by taking logarithms to base 10$;$
Step 2
2 of 2
$$
x=dfrac{log(3)}{log(2)}=1.585
$$
Exercise 46
Step 1
1 of 2
a. The function is a logarithmic function and thus its parent is $y=ln{x}$.

b. The vertical equation has equation (about) $x=2$.

c. Since $ln{1}=0$, a possible function is $y=ln{(x-2)}$ (thus the parent function translates to the right by 2 units).

Result
2 of 2
a. $y=log{x}$

b. $x=2$

c. $y=ln{(x-2)}$

Exercise 47
Step 1
1 of 3
Let us create a process control chart for the given data:
Step 2
2 of 3
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/eb2fd0ec-c664-471f-90ef-6e8563b2b936-1632764749427314.png)
Step 3
3 of 3
The values of the process control vary from hour to hour, but not much. They are all in the interval $(0.04,0.11)$. The proportion of the defective increases and decreases from time to time. The chart does not follow any pattern.
Exercise 48
Step 1
1 of 12
$$
x=3left( p^{3}+6right)
$$
in (a) interchange $x$ and p in p=p(x) to obtain the inverse $p^{-1}(x)$
Step 2
2 of 12
$$
p^{-1}(x)=p=sqrt[3]{dfrac{x}{3}-6}
$$
Step 3
3 of 12
$$
x=3k^{3}+6
$$
in (b) interchange $x$ and k in k=k(x) to obtain the inverse $k^{-1}(x)$
Step 4
4 of 12
$$
k=sqrt[3]{dfrac{x-6}{3}}
$$
Step 5
5 of 12
$$
x=dfrac{h+1}{h-1}
$$
in (c) interchange $x$ and h in h=h(x) to obtain the inverse $h^{-1}(x)$
Step 6
6 of 12
$$
x=dfrac{h}{h-1}+dfrac{1}{h-1}
$$
Step 7
7 of 12
$$
x(h-1)=h+1
$$
Step 8
8 of 12
$$
xh-x-h-1=0
$$
Step 9
9 of 12
$$
h^{-1}(x)=h=dfrac{x+1}{x-1}
$$
Step 10
10 of 12
$$
x=dfrac{2}{3-j}
$$
in (d) interchange $x$ and j in j=j(x) to obtain the inverse $j^{-1}(x)$
Step 11
11 of 12
$$
j^{-1}(x)=j=3-dfrac{2}{x}
$$
Result
12 of 12
see solutions
Exercise 49
Solution 1
Solution 2
Step 1
1 of 3
a)

$f$(x) = 3(x – 4)$^{2}$ – 5

Exercise scan

Step 2
2 of 3
b)

g(x) = 2x$^{2}$ – 3x – 5

Exercise scan

Result
3 of 3
See graphs above
Step 1
1 of 2
a.Exercise scan
Step 2
2 of 2
b.Exercise scan
Exercise 50
Step 1
1 of 2
1) Either $3$ sides of a triangle

2) $2$ sides of a triangle and $1$ angle

3) $1$ side and $2$ angles of a triangle

4) all the $3$ angles of a triangle

Result
2 of 2
1) Either $3$ sides of a triangle

2) $2$ sides of a triangle and $1$ angle

Exercise 51
Step 1
1 of 6
Exercise scan
Step 2
2 of 6
Exercise scan
Step 3
3 of 6
Exercise scan
Step 4
4 of 6
Exercise scan
Step 5
5 of 6
Exercise scan
Result
6 of 6
Attached
Exercise 52
Step 1
1 of 12
a) The Pythagorean Theorem is useful for right triangles.
Step 2
2 of 12
Exercise scan
In Exercise 7-51b we are given:
Step 3
3 of 12
$AB^2+AC^2=BC^2$

$AB^2+4^2=5^2$

$AB^2=25-16$

$AB^2=9$

$$
AB=3
$$

We determine the missing side using the Pythagorean Theorem:
Step 4
4 of 12
Exercise scan
In Exercise 7-51e we are given:
Step 5
5 of 12
$sin B=dfrac{AC}{BC}$

$AC=18sin 30text{textdegree}$

$AC=18cdot dfrac{1}{2}$

$AC=9$

$AB^2+AC^2=BC^2$

$AB^2=18^2-9^2$

$AB^2=243$

$AB=sqrt{243}$

$$
AB=9sqrt 3
$$

We determine $AC$ using sine, then $AB$ using the Pythagorean Theorem:
Step 6
6 of 12
b) Using trigonometric ratios he can solve the triangles in 7_51c,d,f,g.
Step 7
7 of 12
$7^2+8^2=49+64=113not=10^2Rightarrow$ not a right triangle
c) We check if the triangle in 7_51a is right:
Step 8
8 of 12
$a^2=14^2+20^2-2(14)(20)cos 60text{textdegree}$

$a^2=14^2+20^2-2(14)(20)cdot dfrac{1}{2}$

$a^2=316$

$a=sqrt{316}$

$aapprox 17.78$

$14<17.78<20$

$14^2+17.78^2=512not=20^2Rightarrow$the triangle is not right

We check if the triangle in 7_51c is right:
Step 9
9 of 12
$dfrac{5}{sin 40text{textdegree}}=dfrac{7}{sin B}$

$5sin B=7sin 40text{textdegree}$

$sin B=dfrac{7cdot 0.64278761}{5}$

$sin B=0.8999$

$Bapprox 64.1text{textdegree}$

$C=180text{textdegree}-40text{textdegree}-64.1text{textdegree}=75.9text{textdegree}Rightarrow$the triangle is not right

We check if the triangle in 7_51d is right:
Step 10
10 of 12
$180text{textdegree}-45text{textdegree}-30text{textdegree}=105text{textdegree}Rightarrow$ the triangle is not right
We check if the triangle in 7_51f is right:
Step 11
11 of 12
$180text{textdegree}-29text{textdegree}-48text{textdegree}=103text{textdegree}Rightarrow$ the triangle is not right
We check if the triangle in 7_51g is right:
Step 12
12 of 12
d) In both triangles we are gven two sides and an angle which is not between the two sides. We can solve both triangles using the Law of Sines.
Exercise 53
Step 1
1 of 12
Exercise scan
a) We build $ADperp BC$:
Step 2
2 of 12
$sin BAD=dfrac{BD}{AB}$

$sin 30text{textdegree}=dfrac{BD}{14}$

$dfrac{1}{2}cdot 14=BD$

$$
BD=7
$$

We determine $BD$:
Step 3
3 of 12
$AD^2+BD^2=AB^2$

$AD^2+7^2=14^2$

$AD^2=196-49$

$AD^2=147$

$$
AD=7sqrt 3
$$

We compute $AD$ using the Pythagorean Theorem:
Step 4
4 of 12
$CD=BC-BD=20-7=13$

$CD^2+AD^2=AC^2$

$13^2+147=AC^2$

$AC^2=316$

$AC=sqrt{316}$

$$
ACapprox 17.78
$$

We determine $CD$, then $AC$:
Step 5
5 of 12
$sin C=dfrac{AD}{AC}$

$sin C=dfrac{7sqrt 3}{17.78}$

$sin Capprox 0.6819$

$$
Capprox 43text{textdegree}
$$

We determine the angle $C$:
Step 6
6 of 12
$A=180text{textdegree}-B-C$

$=180text{textdegree}-60text{textdegree}-43text{textdegree}$

$$
=77text{textdegree}
$$

We determine angle $A$:
Step 7
7 of 12
Exercise scan
b) We build $ADperp BC$:
Step 8
8 of 12
$sin C=dfrac{AD}{AC}$

$AD=dfrac{1}{2}cdot 18$

$$
AD=9
$$

We determine $AD$:
Step 9
9 of 12
$AD^2+CD^2=AC^2$

$CD^2=18^2-9^2$

$CD^2=275$

$CD=sqrt{243}$

$$
CD=9sqrt 3
$$

We determine $CD$ using the Pythagorean Theorem:
Step 10
10 of 12
$BD=AD=9$

$BD^2+AD^2=AB^2$

$9^2+9^2=AB^2$

$162=AB^2$

$$
AB=9sqrt 2
$$

We determine $BD, AB$:
Step 11
11 of 12
$$
BC=CD+BD=9sqrt 3+9approx 24.59
$$
We determine $BC$:
Step 12
12 of 12
$A=180text{textdegree}-B-C$

$$
=180text{textdegree}-45text{textdegree}-30text{textdegree}=105text{textdegree}
$$

We determine the angle $A$:
Exercise 54
Step 1
1 of 7
Exercise scan
We are given:
Step 2
2 of 7
$sin B=dfrac{AD}{AB}$

$AD=sin 48text{textdegree}cdot 5$

$AD=0.74314483cdot 5$

$$
ADapprox 3.72
$$

We determine $AD$:
Step 3
3 of 7
$ACD=48text{textdegree}+29text{textdegree}=77text{textdegree}$

$ACB=180text{textdegree}-48text{textdegree}-29text{textdegree}$

$$
=103text{textdegree}
$$

We determine angles $ACB$ and $ACD$:
Step 4
4 of 7
$sin ACD=dfrac{AD}{AC}$

$AC=dfrac{3.72}{sin 77text{textdegree}}=dfrac{3.72}{0.97437006}$

$$
ACapprox 3.82
$$

We determine $AC$:
Step 5
5 of 7
$CAD=90text{textdegree}-ACD=90text{textdegree}-77text{textdegree}=13text{textdegree}$

$sin CAD=dfrac{CD}{AC}$

$CD=sin 13text{textdegree}cdot 3.82=0.22495105cdot 3.82$

$$
CDapprox 0.86
$$

We determine $CD$:
Step 6
6 of 7
$cos B=dfrac{BD}{AB}$

$BD=cos 48text{textdegree}cdot 5=0.66913061cdot 5$

$$
BDapprox 3.35
$$

We determine $BD$:
Step 7
7 of 7
$BC=BD-CD=3.35-0.86$

$$
BC=2.49
$$

We compute $BC$:
Exercise 55
Step 1
1 of 7
We can get the lengths of all $3$ sides, the lengths of $2$ sides and measure of one of the angles, the lenghts of one of the sides and measures of two of the angles or measures of all three angles.
Step 2
2 of 7
When given the lengths of $2$ sides and measure of one of the angles, we have $3$ special cases. We can either have a right angle and two sides, two sides and the angle between them or two sides and an angle not between them.
Step 3
3 of 7
When given the lenght of one of the sides and measures of two of the angles, we have $3$ special cases. We can either have a right angle, another angle and a side, two angles and a side not between them or two angles and a side between them.
Step 4
4 of 7
When we have only the lengths of all three sides or only the measures of all three angles, we cannot calculate the missing side lengths or angle measures.
Step 5
5 of 7
If we have a right angle, we can find the missing angle measure and the missing side length if we have measures of two angles and lengths of two of the sides.
Step 6
6 of 7
If we have measures of two of the angles, we can always find the measure of the third one, in any triangle.
Step 7
7 of 7
If a triangle does not have a right angle, we cannot find the length of the third side no matter what other information we have. We would need the perimeter of the triangle.
Exercise 56
Step 1
1 of 6
Exercise scan
a) We are given the triangle:
Step 2
2 of 6
$A+B+C=108text{textdegree}+40text{textdegree}+22text{textdegree}$

$$
=170text{textdegree}
$$

We compute $A+B+C$:
Step 3
3 of 6
Since the sum of the anles is not $180text{textdegree}$, the triangle doesn’t exist.
Step 4
4 of 6
Exercise scan
b) We are given:
Step 5
5 of 6
$triangle ABC$ is a right triangle. Its hypotenuse must be greater than the legs. We notice that the hypotenuse equals one leg. Therefore the triangle doesn’t exist.
Result
6 of 6
The triangles do not exist (see explanation)
Exercise 57
Step 1
1 of 6
Exercise scan
We are given:
Step 2
2 of 6
A. Option A is wrong because it says that the sum of two angles is $90text{textdegree}$. This would mean that the third angle is a right angle, but the diagram shows differently.
Step 3
3 of 6
B. Option B is wrong because it states that the sum of two angles is $180text{textdegree}$, which would lead to a third angle with measure 0, which is not true.
Step 4
4 of 6
C. Option C s true because the angles $A$ and $B$ from the diagram are marked as congruent.
Step 5
5 of 6
D. Option D is wrong as the product of angles has no meaning in geometry.
Result
6 of 6
Answer $C$
Exercise 58
Step 1
1 of 5
a) We have $log(8) + log(125)$.
Apply the rule $log _cleft(aright)+log _cleft(bright)=log _cleft(abright)$ :

$$
log _{10}left(8right)+log _{10}left(125right)=log _{10}left(8cdot :125right)
$$

Multiply.

$$
log _{10}left(8cdot :125right)=log _{10}left(1000right)
$$

Rewrite.

$$
log _{10}left(1000right)=log _{10}left(10^3right)
$$

Apply the rule $log _aleft(x^bright)=bcdot log _aleft(xright)$:

$$
log _{10}left(10^3right)=3log _{10}left(10right)
$$

Apply the rule $log _aleft(aright)=1$:

$$
3log _{10}left(10right)=3cdot :1 = 3
$$

Step 2
2 of 5
b) We have $log_{25}(125)$.
Rewrite.

$$
log _{25}left(125right)=log _{5^2}left(125right)
$$

Apply the rule $log _{a^b}left(xright)=frac{1}{b}log _aleft(xright)$:

$$
log _{5^2}left(125right)=frac{1}{2}log _5left(125right)
$$

Rewrite.

$$
frac{1}{2}log _5left(125right)=frac{1}{2}log _5left(5^3right)
$$

Apply the rule $log _aleft(a^xright)=x$:

$$
frac{1}{2}log _5left(5^3right)=frac{1}{2}cdot :3=frac{3}{2}
$$

Step 3
3 of 5
c) We have $dfrac{1}{2}log(25) + log(20)$.
Apply the rule $log _cleft(aright)+log _cleft(bright)=log _cleft(abright)$:

$$
log _{10}left(5right)+log _{10}left(20right) =log _{10}left(5cdot :20right)
$$

Multiply.

$$
log _{10}left(5cdot :20right)=log _{10}left(100right)
$$

Apply the rule $log _aleft(x^bright)=bcdot log _aleft(xright)$:

$$
log _{10}left(100right)=log _{10}left(10^2right)=2log _{10}left(10right)
$$

Apply the rule $log _aleft(aright)=1$:

$$
2log _{10}left(10right)=2cdot :1 = 2
$$

Step 4
4 of 5
d) We have $7^{log_7(12)}$.

Apply the rule $a^{log _aleft(bright)}=b$:

$$
7^{log _7left(12right)}=12
$$

Result
5 of 5
a) $3$
b) $1.5$
c) $2$
d) $12$
Exercise 59
Step 1
1 of 1
Note that $x^2+y^2=25$ is the circle with center the origin and radius 5, the inequality then also contains all points inside the circle.

Exercise scan

Exercise 60
Step 1
1 of 4
The following information is given,

Mean score of French exam ($bar x_f$) = 81
Standard Deviation ($sigma_f$) = 5
Mean score of Spanish exam ($bar x_s$) = 72
Standard Deviation ($sigma_s$) = 12

In order to earn honors in language at graduation, a student must score in the 90th percentile on all their language finals.

Brynne has scored 88 in both French and Spanish finals. We have to see whether he has earned his honors or not.

Step 2
2 of 4
Here, we will use the concept of $z$- score. $z$- score tells us the distance i.e. the standard deviation between the mean and the sample score.
In this case we are given the standard deviation and the mean. The sample scores are the scores of Brynne in his Spanish and French language final exams.

It is pertinent to note,
$$z=dfrac{x-bar{x}}{sigma}$$

Step 3
3 of 4
**French**
$$begin{aligned}
x_f&=88 \
bar{x}_f& = 81 \
sigma_f &= 5\
end{aligned}$$
Calculating the $z$-score,
$$begin{aligned}
z_b&=dfrac{x_f-bar{x}_f}{sigma_f} \\
&=dfrac{88-81}{5} \\
&=-dfrac{7}{5}\\
&=1.4
end{aligned}$$

Now we will use the normal distribution table,

We get
$z<1.4 = 0.91924$

This implies Brynne falls in the $91.92^{text{th}}$ which is greater than the $90^{text{th}}$ percentile.Therefore, Brynne has qualified for honors in French.

Step 4
4 of 4
**Spanish**
$$begin{aligned}
x_s&=88 \
bar{x}_s& = 72 \
sigma_f &= 12\
end{aligned}$$
Calculating the $z$-score,
$$begin{aligned}
z_b&=dfrac{x_s-bar{x}_s}{sigma_s} \\
&=dfrac{88-72}{12} \\
&=-dfrac{16}{12}\\
&=1.333
end{aligned}$$

Now we will use the normal distribution table,

We get
$z<1.333 = 0.90879$

This implies Brynne falls in the $90.88^{text{th}}$ which is greater than the $90^{text{th}}$ percentile.Therefore, Brynne has qualified for honors in Spanish as well.

Since, Brynne's score for both the exams is 88 which is above the $90^{text{th}}$ percentile, he has earned the language honor at graduation.

Exercise 61
Step 1
1 of 6
Work as shown below, follow the steps:

$$
a)
$$

$color{#c34632} text{$y=7+2x^2+4x-5$}$

First write this quadratic equation in the standard form $color{#c34632} text{$,,y=ax^2+bx+c,,$}$ as shown:

$y=7+2x^2+4x-5$

$Rightarrow color{#4257b2} text{$y=2x^2+4x+2$}$

Step 2
2 of 6
$bullet,,$For the $x$-intercept(s) set $color{#c34632} text{$,,y=0,,$}$ and solve the resulting equation for $color{#c34632} text{$,,”x”$}$:

$y=0$

$Rightarrow 2x^2+4x+2=0qquadqquadqquadqquadqquad$ $color{#c34632} text{[factor out $2$]}$

$Rightarrow 2(x^2+2x+1)=0qquadqquadqquadqquad$ $color{#c34632} text{[factor the perfect square trinomial]}$

$Rightarrow 2(x+1)^2=0$

$Rightarrow (x+1)^2=0$

$Rightarrow x+1=0qquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[subtract $1$ in both sides]}$

$Rightarrow color{#4257b2} text{$x=-1$}$

The $x$-intercept of the graph of this equation is the point $color{#4257b2} text{$,,(-1 , 0)$}$.

$bullet,,$For the $y$-intercept set $color{#c34632} text{$,,x=0,,$}$ and solve the resulting equation for $color{#c34632} text{$,,”y”$}$:

$y=2x^2+4x+2qquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[set $x=0$]}$

$Rightarrow y=2(0)^2+4(0)+2qquadqquadqquadqquadqquad$

$Rightarrow color{#4257b2} text{$y=2qquadqquadqquadqquad$}$

The $y$-intercept of the graph of this equation is the point $color{#4257b2} text{$,,(0 , 2)$}$.

Step 3
3 of 6
$bullet,,$The vertex of the graph of a quadratic function written in the standard form $color{#c34632} text{$,,f(x)=ax^2+bx+c,,$}$ is:

$color{#4257b2} text{$(h,k)=bigg(dfrac{-b}{2a} ,,, fbigg(dfrac{-b}{2a}bigg)bigg)$}$

In this case we have:

$color{#4257b2} text{$f(x)=2x^2+4x+2$}qquadqquadqquadqquadqquad$ $color{#c34632} text{[$a=2$ , $b=4$ , $c=2$]}$

$h=dfrac{-b}{2a}=dfrac{-4}{2(2)}=dfrac{-4}{4}=color{#4257b2} text{$-1$}$

$k=fbigg(dfrac{-b}{2a}bigg)=f(-1)=2(-1)^2+4(-1)+2=color{#4257b2} text{$0$}$

$bullet,,$The vertex of the graph of this function is the point $color{#4257b2} text{$,,(h,k)=(-1,0)$}$.

$bullet,,$Write this equation in the vertex form $color{#c34632} text{$,,y=a(x-h)^2+k,,$}$ as shown below:

$y=2x^2+4x+2qquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[factor out $2$]}$

$Rightarrow y=2(x^2+2x+1)qquadqquadquadquadquad$ $color{#c34632} text{[factor the perfect square trinomial]}$

$$
Rightarrow color{#4257b2} text{$y=2(x+1)^2+0$}
$$

Step 4
4 of 6
$$
b)
$$

$color{#c34632} text{$x^2=2x+x(2x-4)+y$}$

First write this quadratic equation in the standard form $color{#c34632} text{$,,y=ax^2+bx+c,,$}$ as shown:

$x^2=2x+x(2x-4)+yqquadqquadqquadqquadqquad$ $color{#c34632} text{[solve for $y$]}$

$Rightarrow y=x^2-2x-x(2x-4)$

$Rightarrow y=x^2-2x-2x^2+4x$

$Rightarrow color{#4257b2} text{$y=-x^2+2x$}$

Step 5
5 of 6
$bullet,,$For the $x$-intercept(s) set $color{#c34632} text{$,,y=0,,$}$ and solve the resulting equation for $color{#c34632} text{$,,”x”$}$:

$y=0$

$Rightarrow -x^2+2x=0qquadqquadqquadqquadqquad$ $color{#c34632} text{[factor out $x$]}$

$Rightarrow x(2-x)=0qquadqquadqquadqquad$ $color{#c34632} text{[zero product property]}$

$Rightarrow x=0quad$ or $quad 2-x=0$

$Rightarrow color{#4257b2} text{$x=0quad$}$ or $color{#4257b2} text{$quad x=2$}$

The $x$-intercepts of the graph of this equation are the points $color{#4257b2} text{$,,(0 , 0),,$}$ and $color{#4257b2} text{$,,(2,0),,$}$.

$bullet,,$For the $y$-intercept set $color{#c34632} text{$,,x=0,,$}$ and solve the resulting equation for $color{#c34632} text{$,,”y”$}$:

$y=-x^2+2xqquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[set $x=0$]}$

$Rightarrow y=-(0)^2+2(0)qquadqquadqquadqquadqquad$

$Rightarrow color{#4257b2} text{$y=0qquadqquadqquadqquad$}$

The $y$-intercept of the graph of this equation is the point $color{#4257b2} text{$,,(0 , 0)$}$.

Step 6
6 of 6
$bullet,,$The vertex of the graph of a quadratic function written in the standard form $color{#c34632} text{$,,f(x)=ax^2+bx+c,,$}$ is:

$color{#4257b2} text{$(h,k)=bigg(dfrac{-b}{2a} ,,, fbigg(dfrac{-b}{2a}bigg)bigg)$}$

In this case we have:

$color{#4257b2} text{$f(x)=-x^2+2x$}qquadqquadqquadqquadqquad$ $color{#c34632} text{[$a=-1$ , $b=2$ , $c=0$]}$

$h=dfrac{-b}{2a}=dfrac{-2}{2(-1)}=dfrac{-2}{-2}=color{#4257b2} text{$1$}$

$k=fbigg(dfrac{-b}{2a}bigg)=f(1)=-1^2+2(1)=color{#4257b2} text{$1$}$

$bullet,,$The vertex of the graph of this function is the point $color{#4257b2} text{$,,(h,k)=(1,1)$}$.

$bullet,,$Write this equation in the vertex form $color{#c34632} text{$,,y=a(x-h)^2+k,,$}$ as shown below:

$y=-x^2+2xqquadqquadqquadqquadqquadqquad$ $color{#c34632} text{[factor out $-1$]}$

$Rightarrow y=-(x^2-2x)qquadqquadquadquadquad$ $color{#c34632} text{[add and subtract $1$ inside the parenthesses]}$

$Rightarrow y=-(x^2-2x+1-1)$

$Rightarrow y=-(x^2-2x+1)-(-1)$

$color{#c34632} text{[factor the perfect square trinomial]}$

$$
Rightarrow color{#4257b2} text{$y=-(x-1)^2+1$}
$$

Exercise 62
Step 1
1 of 9
Given.
construct a line that is parallel to AD to simply the figure.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/c5f1e9c4-a47b-4290-a659-47ab2a3b7dbf-1622204127458983.png)

Step 2
2 of 9
We determine AD:

As shown in the figure AM = 4, so we can say that
AM = AN = ND = 4

From this, we get the value of AD i.e,
AD = BE
2 . 4 = 8

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/e43b1735-e4a4-4df7-9d35-c5fd229383e8-1622205191444142.png)

Step 3
3 of 9
We determine CE:
$$begin{aligned}
tanB &= dfrac{BE}{CE}\\
CE &= dfrac{8}{tan 78degree}\\
CE &= dfrac{8}{4.7046}\\
CE &approx 1.70\
end{aligned}$$
Step 4
4 of 9
We determine DC:
$$begin{aligned}
DC &= DE + CE\\
DC &= 10 + 1.70\\
DC &= 11.70\
end{aligned}$$
Step 5
5 of 9
(a.) We determine the area of the shaded region:
$$begin{aligned}
Area &=A_{ABCD} – dfrac{1}{4} pi(r)^{2}\\
&= dfrac{1}{2} (h)(b_{1}+b_{2}) – dfrac{1}{4} pi(r)^{2}\\
&= (11.70)(8) – dfrac{1}{4} pi(4)^{2}\\
&= 86.802 – 12.566\
Area &approx 74.2 m^{2}\
end{aligned}$$
Step 6
6 of 9
(b.) We determine BC:
$$begin{aligned}
SinC &= dfrac{BE}{CE}\\
CE &= dfrac{8}{Sin78degree}\\
CE &= dfrac{8}{0.9781}\\
CE &approx8.18
end{aligned}$$
Step 7
7 of 9
We determine the perimeter of the shaded region:
$$begin{aligned}
Perimeter &= DC+CB+BM+MN+ND\\
&= 11.7+8.18+6+ dfrac{1}{4}.2pi.4+4\\
&= 36.16\
end{aligned}$$
Step 8
8 of 9
(c.) It is given that each goat to have at least 1.1 square meters to frolic.

The total number of goats is 6. So,

Goats covered the frolic area is
$$begin{aligned}
6times1.1 &= 6.6\
end{aligned}$$
Since the area is 74.23 square meters.

Thus, yes this pen design meets animal rights advocate criteria.

Result
9 of 9
$$(a.) 74.2 m^{2}$$
$$(b.) 36.16 m^{2}$$
$$(c.) text{ Yes}$$
Exercise 63
Step 1
1 of 3
Exercise scan
We are given:
Step 2
2 of 3
$B=180text{textdegree}-105text{textdegree}-63text{textdegree}=12text{textdegree}$

$B<C<A$

$$
AC<AB<BC
$$

The order in sizes of the sides and the order in measures of the angles of a triangle is the same, therefore we have:
Result
3 of 3
$AC$ is the shortest side
Exercise 64
Step 1
1 of 7
Exercise scan
We are given:
Step 2
2 of 7
$$
B<CRightarrow AC<x
$$
a) Madelyn is right:
Step 3
3 of 7
$sin C=dfrac{AD}{AC}$

$AD=sin 42text{textdegree}cdot 4=0.66913061cdot 4$

$$
ADapprox 2.68
$$

b) We build $ADperp BC$. We determine $AD$:
Step 4
4 of 7
$sin B=dfrac{AD}{AB}$

$sin 26text{textdegree}=dfrac{2.68}{x}$

$x=dfrac{2.68}{0.43837115}$

$$
xapprox 6.11
$$

We determine $x$:
Step 5
5 of 7
$cos C=dfrac{CD}{AC}$

$CD=cos 42text{textdegree}cdot 4=0.74314483cdot 4$

$CDapprox 2.97$

$cos B=dfrac{BD}{AB}$

$BD=cos 26text{textdegree}cdot 6.11=0.89879405cdot 6.11$

$BDapprox 5.49$

b) We determine $CD$ and $BD$:
Step 6
6 of 7
$dfrac{BCcdot AD}{2}=dfrac{(CD+BD)cdot AD}{2}=dfrac{(2.97+5.49)cdot 2.68}{2}$

$$
approx 11.34
$$

We compute the area of the triangle $ABC$:
Result
7 of 7
a) Yes

b) $x=6.11$

c) $11.34$

Exercise 65
Step 1
1 of 5
Exercise scan
We are given:
Step 2
2 of 5
$sin C=dfrac{AD}{AC}$

$$
sin 24text{textdegree}=dfrac{h}{25}
$$

a) Ivan used $triangle ADC$.
Step 3
3 of 5
$sin 58text{textdegree}=dfrac{h}{12}$

$$
h=12sin 58text{textdegree}=12cdot 0.8480481approx 10.177
$$

b) We calculate $h$ using Thui’s equation:
Step 4
4 of 5
$sin 24text{textdegree}=dfrac{h}{25}$

$$
h=25sin 24text{textdegree}=25cdot 0.40673664approx 10.169
$$

We calculate $h$ using Ivan’s equation:
Step 5
5 of 5
The results are similar up to decimals.
Exercise 66
Step 1
1 of 9
Exercise scan
We are given:
Step 2
2 of 9
$sin A=dfrac{h}{b}$

$$
sin B=dfrac{h}{a}
$$

a) We use sine in $triangle ACD$ and $triangle BCD$:
Step 3
3 of 9
$h=bsin A$

$$
h=asin B
$$

b) We rewrite the above equations:
Step 4
4 of 9
$bsin A=asin B$

$$
dfrac{sin B}{b}=dfrac{sin A}{a}
$$

We have:
Step 5
5 of 9
c) The ratios contain the sine of the angle in the numerator and the opposite side in the denominator.
Step 6
6 of 9
$bsin A=asin B$

$$
dfrac{sin B}{b}=dfrac{sin A}{a}=dfrac{sin C}{c}
$$

d) The Law of Sines:
Step 7
7 of 9
Exercise scan
We are given:
Step 8
8 of 9
$dfrac{sin B}{x}=dfrac{sin A}{BC}$

$xsin A=BCsin B$

$$
x=dfrac{BCsin B}{sin A}=dfrac{10cdot 0.8660254}{0.46947156}=18.45
$$

We use the Law of Sines to determine $x$:
Result
9 of 9
$$
x=18.45
$$
Exercise 67
Step 1
1 of 6
First, we sketch the $triangle ABC$ in GeoGebra.

Based on the image, we solve problems.

Step 2
2 of 6
Exercise scan
Step 3
3 of 6
a) We determine the area of $triangle ABC$ usign $b$ and $h$.

We know that the area of triangle is:

$$
P = dfrac{b cdot h_b}{2}
$$

So, in this case:

$$
P= dfrac{bcdot h}{2}
$$

Step 4
4 of 6
b) We write the equation for $sin C$.
From the definition of $sin x$ we have:

$$
sin C = dfrac{h}{a}
$$

$$
h = a sin C
$$

Step 5
5 of 6
c) We replace $h$ in the are formula:

$$
P = dfrac{ba sin C}{2}
$$

Step 6
6 of 6
d) In exercise $7-66d$ we determined:
$x= 18.45$.

We compute tha angle between $x$ and the side of $10$:

$$
180 text{textdegree} – 28 text{textdegree} -120 text{textdegree} = 32 text{textdegree}
$$

We determine the triangle’s area using the sinus formula in $c$:

$$
P = dfrac{18.45 cdot 10 cdot sin 32 text{textdegree} }{2} = dfrac{18.45 cdot 10 cdot 0.53}{2}
$$

Therefore,

$$
P approx 48.89
$$

Exercise 68
Step 1
1 of 3
The Law of Sines is the property that tells us that for any triangle $ABC$, the ratio of the sine of an angle to the length of the opposite side is constant.
Step 2
2 of 3
We can write this as:
$$dfrac{sin A}{a}=dfrac{sin B}{b}=dfrac{sin C}{c}.$$
Step 3
3 of 3
We can use the sine ratio to. find the angle measures and side lengths of any triangle.
Exercise 69
Step 1
1 of 5
Exercise scan
We are given:
Step 2
2 of 5
$dfrac{sin P}{QR}=dfrac{sin R}{QP}=dfrac{sin Q}{PR}$

$Pcong RRightarrow sin P=sin R$

$$
dfrac{sin P}{QR}=dfrac{sin R}{QP}Rightarrow QR=QP
$$

a) We write the Law of Sines:
Step 3
3 of 5
$$
Q=180text{textdegree}-48text{textdegree}-48text{textdegree}=84text{textdegree}
$$
b) We determine the angle $Q$:
Step 4
4 of 5
$dfrac{sin R}{QP}=dfrac{sin Q}{PR}$

$PRsin R=QPsin Q$

$PR=dfrac{QPsin Q}{sin R}$

$$
=dfrac{5cdot sin 84text{textdegree}}{sin 48text{textdegree}}=dfrac{5cdot 0.9945219}{0.74314483}approx 6.69
$$

We apply the Law of Sines to find $PR$:
Result
5 of 5
a) $QR=QP$

b) $PR=6.69$ mm

Exercise 70
Step 1
1 of 3
Exercise scan
We are given:
Step 2
2 of 3
$$
dfrac{12cdot 24sin 30text{textdegree}}{2}=dfrac{12cdot 24cdotdfrac{1}{2}}{2}=72
$$
We determine the triangle’s area:
Result
3 of 3
$$
72
$$
Exercise 71
Step 1
1 of 12
$A(-1,-0.2)$

$B(4,2499)$

$$
y=-1
$$

a) We are given the points $A, B$ and the asymptote of the function $y=ab^x+k$:
Step 2
2 of 12
$ab^{-1}+k=-0.2$

$ab^{4}+k=2499$

Substituting the points’ coordinates we have:
Step 3
3 of 12
$$
k=-1
$$
As the function $y=ab^x$ has the asymptote $y=0$, we can determine $k$:
Step 4
4 of 12
$ab^{-1}-1=-0.2$

$ab^{4}-1=2499$

$ab^{-1}=-0.2+1$

$ab^{4}=2499+1$

$ab^{-1}=0.8$

$ab^{4}=2500$

We have:
Step 5
5 of 12
$dfrac{ab^4}{ab^{-1}}=dfrac{2500}{0.8}$

$b^5=3125$

$b=sqrt[5]{3125}$

$$
b=5
$$

We divide the second equation by the first, side by side, and find $b$:
Step 6
6 of 12
$acdot5^4=2500$

$a=dfrac{2500}{625}$

$$
a=4
$$

We determine $a$:
Step 7
7 of 12
$$
y=4(5)^x-1
$$
The function is:
Step 8
8 of 12
$A(2,7.96)$

$B(4,7.1536)$

$$
y=7
$$

b) We are given the points $A, B$ and the asymptote of the function $y=ab^x+k$:
Step 9
9 of 12
$$
k=7
$$
We determine $k$:
Step 10
10 of 12
$ab^2+7=7.96$

$ab^4+7=7.1536$

$ab^2=7.96-7$

$ab^4=7.1536-7$

$ab^2=0.96$

$ab^4=0.1536$

$dfrac{ab^4}{ab^2}=dfrac{0.1536}{0.96}$

$b^2=0.16$

$b=sqrt{0.16}$

$b=0.4$

$a=dfrac{0.96}{0.16}$

$$
a=6
$$

We solve for $a, b$:
Step 11
11 of 12
$$
y=6(0.4)^x+7
$$
The function is:
Result
12 of 12
a) $y=4(5)^x-1$

b) $y=6(0.4)^x+7$

Exercise 72
Step 1
1 of 3
Let us make a chart with the given data:
Step 2
2 of 3
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/a95808bf-e5a1-41c6-975d-c7e45aef1864-1632824016867680.png)
Step 3
3 of 3
All of the values are between the UCL and LCL which is great (except one which is exactly equal to the value of UCL). The process is stable, meeting the expectations.
Exercise 73
Step 1
1 of 6
$log_x (2)=a$

$log_x (5)=b$

$log_x (7)=c$

We are given:
Step 2
2 of 6
$$
log_x (10)=log_x (2cdot 5)=log_x (2)+log_x (5)=a+b
$$
a) We determine $log_x (10)$:
Step 3
3 of 6
$$
log_x (49)=log_x (7^2)=2log_x (7)=2c
$$
b) We determine $log_x (49)$:
Step 4
4 of 6
$log_x (50)=log_x (2cdot 5^2)=log_x (2)+log_x (5^2)$

$=log_x (2)+2log_x (5)$

$$
=a+2b
$$

c) We determine $log_x (50)$:
Step 5
5 of 6
$log_x (56)=log_x (2^3cdot 7)=log_x (2^3)+log_x (7)$

$=3log_x (2)+log_x (7)$

$$
=3a+c
$$

d) We determine $log_x (56)$:
Result
6 of 6
a) $a+b$

b) $2c$

c) $a+2b$

d) $3a+c$

Exercise 74
Step 1
1 of 6
$f(x)=dfrac{1}{x}$

$$
g(x)=dfrac{1}{x+2}-3
$$

a) We are given the functions:
Step 2
2 of 6
We start with the graph of $f(x)=dfrac{1}{x}$, we shift it 2 units to the left to get $y=dfrac{1}{x+2}$, then 3 units down to get $g(x)$.
Step 3
3 of 6
$y=x^2$

$$
y=-(x-1)^2+20
$$

b) We are given the functions:
Step 4
4 of 6
We start with the graph of $y=x^2$, which we shift 1 unit to the right to get $y=(x-1)^2$, then reflect across the $x$-axis to get $y=-(x-1)^2$ and finally shift 20 units up to get $y=-(x-1)^2+20$.
Step 5
5 of 6
$y=|x|$

$$
y=-3|x+71|
$$

c) We are given the functions:
Step 6
6 of 6
We start with the function $y=|x|$. We shift it 71 units to the left to get $y=|x+71|$, then reflect across the $x$-axis to get $y=-|x+71|$ and finally vertically stretched by a factor of 3 to get $y=-3|x+71|$.
Exercise 75
Step 1
1 of 2
$left(dfrac {1}{8} right)^{(2x-3)}=left(dfrac {1}{2} right)^{(x+2)}$          (Given)

$left(dfrac {1}{2} right)^{3(2x-3)}=left(dfrac {1}{2} right)^{(x+2)}$          (Unifying base)

$3(2x-3)=x+2$

$6x-9=x+2$

$6x-x=9+2$          (Grouping similar terms)

$5x=11$

$$
x=dfrac {11}{5}
$$

Result
2 of 2
$$
x=dfrac {11}{5}
$$
Exercise 76
Step 1
1 of 5
We are given:

Step 2
2 of 5
**a)** To determine $DA$ in terms of $x$, as we can see from the Figure:
$$DA=b-x$$
Step 3
3 of 5
**b)** We can write an equation relating $a,x$ and $y$ as follows:
$$a^2=x^2+y^2$$

Write an equation relating $c,y$ and $DA$:
$$c^2=y^2+(b-x)^2$$
Then, we isolate $y^2$ in both equations:
$$begin{aligned}
y^2&=a^2-x^2\
y^2&=c^2-(b-x)^2
end{aligned}$$
Expand the second equation:
$$begin{aligned}
a^2-x^2&=c^2-(b-x)^2\
a^2-x^2&=c^2-b^2+2bx-x^2
end{aligned}$$
Therefore, it follows that:
$$a^2+b^2-c^2=2bx$$

Step 4
4 of 5
**d)** Express $x$ in terms of $cos C$:

$$cos C=dfrac{x}{a} implies x=acos C$$
We replace $x$ in the equation:
$$a^2+b^2-c^2=2bacos C$$
Solve for $c^2$ and we get the Law of Cosines.
$$c^2=a^2+b^2-2abcos C$$

Step 5
5 of 5
**f)** Let’sdetermine $x$:
$$begin{aligned}
x^2&=6^2+7^2-2(6)(7)cos 120degree\
&=36+47-84cdot left(-dfrac{1}{2}right)\
&=125
end{aligned}$$
By taking the square root of both sides we obtain:
$$x=sqrt{125}=5sqrt 5$$
Exercise 77
Step 1
1 of 7
Exercise scan
a) We are given:
Step 2
2 of 7
$$
dfrac{sin 20text{textdegree}}{x}=dfrac{sin 35text{textdegree}}{8.3}
$$
Since we are given one side and its opposite angle and the opposite angle of $x$ we can use the Law of Sines:
Step 3
3 of 7
Exercise scan
b) We are given:
Step 4
4 of 7
$tan x=dfrac{5}{9}$

$$
x=tan^{-1}{dfrac{5}{9}}
$$

We are given the opposite side of angle $x$ and the adjacent side,so we can use tangent:
Step 5
5 of 7
Exercise scan
c) We are given:
Step 6
6 of 7
$$
x^2=11^2+8^2-2(11)(8)cos 16text{textdegree}
$$
Because we are given the opposite angle of side $x$ and the other two sides, we can use the Law of Cosines:
Result
7 of 7
a) the Law of Sines

b) tangent

c) the Law of Cosines

Exercise 78
Step 1
1 of 5
Based on the image, we solve problems.

We can use the $textbf{Law of cosines. }$

$$
c^2 = a^2+b^2 – 2abcos c
$$

Step 2
2 of 5
a) We use the Law of Cosines to determine $alpha$. We substitute the values: $c=10, a = 7, b= 8$.

$$
begin{align*}
10^2 &= 7^2 + 8^2 – 2cdot 7 cdot 8 cos alpha \
100 &= 49 + 64 – 112 cos alpha && text{Calculate} \
100 &= 113 – 112 cos alpha \
112 cos alpha &= 113 – 110 \
cos alpha &= dfrac{3}{112} &&text{Isolate $cos alpha$} \
cos alpha &approx 0.02679 \
alpha &approx 88.5text{textdegree}
end{align*}
$$

Step 3
3 of 5
We use the Law of Cosines to determine angle $B$. We substitute the values: $c=7, a = 10, b= 8$.

$$
begin{align*}
7^2 &= 10^2 + 8^2 – 2cdot 10 cdot 8 cos B \
49 &= 100+64 – 160 cos B && text{Calculate.} \
160 cos B &= 164 – 49 \
160 cos B&= 115 \
cos B &= dfrac{115}{160} &&text{We need to isolate $cos B$} \
cos B &= 0.7188 \
B &approx 44 text{textdegree}
end{align*}
$$

Step 4
4 of 5
We determine the angle $C$. Substitute the values of $B$ and $alpha$.

$$
A = 180 text{textdegree} – 88.5 text{textdegree} -44 text{textdegree} = 47.5 text{textdegree}
$$

Result
5 of 5
a) $88.5$

b) $47.5$

Exercise 79
Step 1
1 of 3
$textcolor{#4257b2}{text{The Law of Cosines}}$

The Law of Cosines gives a rule by which we can compute one side of a triangle when we are given the opposite angle and the sides near it.

Step 2
2 of 3
Exercise scan
For example:

When given:

Step 3
3 of 3
$AC^2=BC^2+BA^2-2cdot BCcdot BAcdotcos B$

$AC^2=7^2+5^2-2(7)(5)cos 60text{textdegree}$

$AC^2=49+25-70cdotdfrac{1}{2}$

$AC^2=39$

$$
AC=sqrt{39}approx 6.24
$$

We determine $AC$:
Exercise 80
Step 1
1 of 5
Exercise scan
We are given the triangle:
Step 2
2 of 5
$A+B+C=180text{textdegree}$

$A=180text{textdegree}-B-C$

$A=180text{textdegree}-33text{textdegree}-64text{textdegree}$

$$
A=83text{textdegree}
$$

a) First we determine the angle $A$:
Step 3
3 of 5
$dfrac{sin A}{x}=dfrac{sin B}{AC}$

$xsin B=ACsin A$

$x=dfrac{ACsin A}{sin B}$

$x=dfrac{3.5cdot sin 83text{textdegree}}{sin 33text{textdegree}}$

$x=dfrac{3.5cdot 0.99254615}{0.54463904}$

$$
xapprox 6.38
$$

We determine $x$ using the Law of Sines:
Step 4
4 of 5
$dfrac{BCcdot ACcdot sin C}{2}$

$$
=dfrac{6.38cdot 3.5cdot 0.89879405}{2}approx 10.04
$$

b) We determine the area of the triangle:
Result
5 of 5
a) $x=6.38$

b) $10.04$

Exercise 81
Step 1
1 of 4
Exercise scan
We are given:
Step 2
2 of 4
$$
cos C=dfrac{y}{42}
$$
a) If he want to use cosine to compute $y$ he should consider the angle $C$ because the adjacent leg of the right triangle for angle $C$ is $y$:
Step 3
3 of 4
$y=42cos C=42cdot cos 29text{textdegree}=42cdot 0.87461971$

$$
approx 36.73
$$

b) We solve for $y$:
Result
4 of 4
a) $29text{textdegree}$

b) $y=36.73$

Exercise 82
Step 1
1 of 3
Exercise scan
We are given the triangle:
Step 2
2 of 3
$A_{triangle ABC}=dfrac{ABcdot ACcdot sin A}{2}$

$=dfrac{165cdot 100cdot sin 43text{textdegree}}{2}=dfrac{165cdot 100cdot 0.68199836}{2}$

$approx 5626.49$ square miles

We determine the triangle’s area:
Result
3 of 3
$5626.49$ square miles
Exercise 83
Step 1
1 of 2
The graph that intersects the $y$-axis at $y=1$ is $y=3^x$ and at $y=2$ is $y=2^x+1$. We then note that the graph of $y=2^x+1$ lies lower than the graph of $y=3^x$ if $x>1$ (note that both graphs have the same value at $x=1$) and thus the solution is then ${x|x>1}$.
Result
2 of 2
$$
{x|x>1}
$$
Exercise 84
Step 1
1 of 9
$$
f(t)=ab^t+k
$$
Let’s consider the function:
Step 2
2 of 9
$f(1)=1.5$

$$
f(50)=25.25
$$

We are given:
Step 3
3 of 9
$$
k=0.20
$$
We determine $k$:
Step 4
4 of 9
$$
begin{cases}
ab+0.20=1.5\
ab^{50}+0.20=25.25
end{cases}
$$

$$
begin{cases}
ab=1.3\
ab^{50}=25.05
end{cases}
$$

We write the system for $a, b$:
Step 5
5 of 9
$dfrac{ab^{50}}{ab}=dfrac{25.05}{1.3}$

$b^{49}=19.269231$

$B=sqrt[49]{19.269231}$

$bapprox 1.06$

We divide the equations side by side to determine $b$:
Step 6
6 of 9
$ab=1.3$

$a=dfrac{1.3}{1.06}$

$$
aapprox 1.23
$$

We determine $a$:
Step 7
7 of 9
$$
f(t)=1.23(1.06)^t+0.20
$$
The function is:
Step 8
8 of 9
$$
f(110)=1.23(1.06)^{110}+0.20approx 747.60
$$
b) We determine the value of the dinner 60 years from now, which means $f(50+60)=f(110)$:
Result
9 of 9
a) $f(t)=1.23(1.06)^t+0.20$

b) $$747.60$

Exercise 85
Step 1
1 of 5
$f(x)=sqrt[3] x$

$$
g(x)=sqrt[3]{x+2}
$$

We are given the functions:
Step 2
2 of 5
Exercise scan
a) We graph $f(x)$. To graph $g(x)$ we shift $f(x)$ 2 units to the left.
Step 3
3 of 5
From the graphs we get that there is no intersection point.
Step 4
4 of 5
$f(x)=g(x)$

$sqrt[3] x=sqrt[3]{x+2}$

$(sqrt[3] x)^3=(sqrt[3]{x+2})^2$

$x=x+2$

$$
0=2
$$

b) We check the result algebraically:
Result
5 of 5
No intersection point
Exercise 86
Step 1
1 of 7
$$
f(x)=x^2+3
$$
a) We are given the function:
Step 2
2 of 7
$y=x^2+3$

$x=y^2+3$

$y^2=x-3$

$y=sqrt{x-3}$

$$
f^{-1}(x)=sqrt{x-3}
$$

We restrict the function to the domain $(0,infty)$.

We determine its inverse:

Step 3
3 of 7
$$
f(x)=left(dfrac{1}{4}x+6right)^3
$$
b) We are given the function:
Step 4
4 of 7
$y=left(dfrac{1}{4}x+6right)^3$

$x=left(dfrac{1}{4}y+6right)^3$

$sqrt[3] x=dfrac{1}{4}y+6$

$4sqrt[3] x=y+24$

$$
y=4sqrt[3] x-24
$$

We don’t need to restrict this function’s domain.

We determine the inverse:

Step 5
5 of 7
$f(x)=sqrt{5x-6}$
c) We are given the function:
Step 6
6 of 7
$y=sqrt{5x-6}$

$x=sqrt{5y-6}$

$x^2=(sqrt{5y-6})^2$

$x^2=5y-6$

$5y=x^2+6$

$y=dfrac{x^2+6}{5}$

$$
f^{-1}(x)=dfrac{x^2+6}{5}
$$

We restrict the function to the domain $left(dfrac{6}{5},inftyright)$.

We determine its inverse:

Result
7 of 7
a) $f^{-1}(x)=sqrt{x-3}$

b) $f^{-1}(x)=4sqrt[3] x-24$

c) $f^{-1}(x)=dfrac{x^2+6}{5}$

Exercise 87
Step 1
1 of 12
Exercise scan
We are given the triangle:
Step 2
2 of 12
$$
x>40text{textdegree}
$$
a) As the side opposite to angle $C$ is longer than the side opposite to angle $B$, it means that we have:
Step 3
3 of 12
$dfrac{sin x}{7}=dfrac{sin 40text{textdegree}}{5}$

$5sin x=7sin 40text{textdegree}$

$sin x=dfrac{7sin 40text{textdegree}}{5}$

$sin x=dfrac{7cdot 0.64278761}{5}$

$sin xapprox 0.8999$

$sin^{-1} 0.8999approx 64.1text{textdegree}$

$$
x=64.1text{textdegree}
$$

b) We apply the Law of Sines to determine $x$:
Step 4
4 of 12
The conclusion from part $(a)$ is correct ($64.1>40$).
Step 5
5 of 12
$$
x=115.9text{textdegree}
$$
c) Missy got the solution:
Step 6
6 of 12
Exercise scan
We draw the second triangle:
Step 7
7 of 12
$$
dfrac{sin 115.9text{textdegree}}{7}=0.8999=dfrac{sin 40text{textdegree}}{5}checkmark
$$
We check if the answer is correct:
Step 8
8 of 12
Exercise scan
d)
Step 9
9 of 12
$$
ADB=64.1text{textdegree}
$$
We see that we can draw two triangles which fit the problem ($triangle ACD$ is isosceles). The acute angle $ADB$ was computed in part $(a)$:
Step 10
10 of 12
$$
DAC=180text{textdegree}-2cdot 64.1text{textdegree}=51.8text{textdegree}
$$
We determine the angle $DAC$:
Step 11
11 of 12
$$
ACB=ADB+DAC=64.1text{textdegree}+51.8text{textdegree}=115.9text{textdegree}
$$
We determine the angle $ACB$:
Step 12
12 of 12
$$
64.1text{textdegree}+115.9text{textdegree}=180text{textdegree}
$$
e) The two solutions are supplementary:
Exercise 88
Step 1
1 of 8
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/a1608582-2b4e-48fb-8a14-6fab2ada32b9-1632825509358797.png)
Step 2
2 of 8
We can make only two triangles with the given side length. If we try to connect $AC$ somewhere else, the sides will intersect and go through one another, not just touch.
Step 3
3 of 8
If $AC$ would be longer than $AB$, then we would only get one triangle.
Step 4
4 of 8
Now if we have an obtuse angle and the side we want to connect to the given two sides is shorter than $AB$, we will not be able to make a triangle.
Step 5
5 of 8
![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/97029534-9c84-4ab2-a453-7ee98cc7854c-1632825241742424.png)
Step 6
6 of 8
The length of the new side has to be greater than the length of $AB$ in order for it to connect to the left side.
Step 7
7 of 8
Therefore, we can at most make $2$ triangles with one set of SSA information. It is impossible to make a triangle when one of the sides is too short to touch the other.
Step 8
8 of 8
We can create only one triangle if two of the sides have the same length and if the side we try to connect is longer than the side next to the acute angle.
Exercise 89
Step 1
1 of 9
(a.) There are 3 given sides (SSS), only a triangle can be built.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/e3c6b9fa-060f-4ee9-bc3c-7e19329288ad-1622296780154346.png)

Step 2
2 of 9
Choose the Law of Cosine’s formula to find the angle A.
$$begin{aligned}
a^{2} &= b^{2}+c^{2}-2cdot bcdot ccdot cos A\\
(10)^{2} &= (7)^{2} + (8)^{2} – 2cdot7cdot8cdotcos x\\
100 &= 49+64-112 cos x\\
cos x &= dfrac{49+64-100}{112} approx 0.1161\\
x &= cos^{-1}(0.1161)\\
end{aligned}$$
The equation has only one equation.
Step 3
3 of 9
(b.) There are 2 given sides and 1 angle (SAS), only a triangle can be built.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/f3d32d82-a60c-433d-984e-612d04622c9f-1622303867302638.png)

Step 4
4 of 9
Choose the Law of Cosine’s formula to find the angle A.
$$begin{aligned}
a^{2} &= b^{2}+c^{2}-2 cdot b cdot ccdot cos A\\
(x)^{2} &= (14)^{2} + (20)^{2} – 2.14.20.cos(60degree)\\
(x)^{2} &= 196 + 400 – 560 cos x\\
(x)^{2} &= 596 -560cdotleft(dfrac{1}{2}right)\\
x &= sqrt{316}\\
x &= 17.77
end{aligned}$$
The equation has only one equation.
Step 5
5 of 9
(c.) There are 2 given angles and 1 side (AAS), only a triangle can be built.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/815bc45b-4102-4893-8360-78f2dacc4b20-1622311795972682.png)

Step 6
6 of 9
It’s easy to find angle B by using angles of a triangle add to 180°:

$$begin{aligned}
A &= 180degree − 30degree − 45degree\\
A &= 105°\\
end{aligned}$$

Step 7
7 of 9
Choose the Law of Sine’s formula to find the angle x.
$$begin{aligned}
dfrac {sin A}{a} &= dfrac {sin B}{b}\\
dfrac {sin (105degree)}{x} &= dfrac {sin (45degree)}{18}\\
x &= dfrac{18 times sin(105degree)}{sin (45degree)}\\
x &= dfrac{18 times 0.9659 }{0.7071}\\
x &= 24.58 approx 24.60
end{aligned}$$
Step 8
8 of 9
(d.) There are 3 given angles $(AAA)$, an infinite of triangles can be built.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/efba57d8-c935-489d-a5f6-6bb5fbab6a7d-1622315126539146.png)

Step 9
9 of 9
Using angles of a triangle:

$$begin{aligned}
180degree &= 60degree + 75degree + 45degree\\
180° &= 180degree \\
end{aligned}$$
The solution are all the similar triangles.

Exercise 90
Step 1
1 of 7
Exercise scan
a) We are given the triangle:
Step 2
2 of 7
$x^2=16^2+10^2-2cdot 16cdot 10cdot cos 42text{textdegree}$

$x^2=356-320cdot 0.74314483$

$x^2=118.19365$

$xapprox sqrt{118.19365}$

$$
xapprox 10.87
$$

We use the Law of Cosines because we know an angle and the sides near it:
Step 3
3 of 7
Exercise scan
b) We are given the triangle:
Step 4
4 of 7
$sin 56text{textdegree}=dfrac{x}{9}$

$x=9sin 56text{textdegree}$

$x=9cdot 0.82903757$

$$
xapprox 7.46
$$

As the triangle is a right one, we use sine:
Step 5
5 of 7
Exercise scan
c) We are given the triangle:
Step 6
6 of 7
$C=180text{textdegree}-A-B=180text{textdegree}-120text{textdegree}-51text{textdegree}=9text{textdegree}$

$dfrac{sin 9text{textdegree}}{x}=dfrac{sin 120text{textdegree}}{25}$

$xsin 120text{textdegree}=25sin 9text{textdegree}$

$x=dfrac{25cdot 0.15643447}{0.8660254}$

$$
xapprox 4.52
$$

We are given 2 angles and a side opposite to one of them. We determine the third angle and use the Law of Sines:
Result
7 of 7
a) $10.87$

b) $7.46$

c) $4.52$

Exercise 91
Step 1
1 of 5
Exercise scan
We are given the triangle:
Step 2
2 of 5
a) As $AC<AB$, it means that $x<41text{textdegree}$.
Step 3
3 of 5
$dfrac{sin x}{15}=dfrac{sin 41text{textdegree}}{17}$

$17sin x=15sin 41text{textdegree}$

$sin x=dfrac{15cdot 0.65605903}{17}$

$sin xapprox 0.57887561$

$$
sin^{-1} 0.57887561approx 35.4text{textdegree}
$$

b) We use the Law of Sines:
Step 4
4 of 5
$x_1=35.4text{textdegree}$

$x_2=180text{textdegree}-35.4text{textdegree}=144.6text{textdegree}$

$B+C=x+41text{textdegree}$

$x_1=35.4text{textdegree}$

$B+C=35.4text{textdegree}+41text{textdegree}=76.4text{textdegree}180text{textdegree}$

We check if there are two solutions:
Step 5
5 of 5
Thus only the first solution fits.
Exercise 92
Step 1
1 of 4
It is given that:

The lengths of the two sides that are still standing are116 feet and 224 feet and the angle between them 58°.

Step 2
2 of 4
(a.) The pictorial view of this statement is shown below, which helps us to understand the condition properly.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/7f59ddd9-264b-40f9-b47c-c044d29a1517-1622316049761700.png)

Step 3
3 of 4
(b.) As per the above sketch, we know that there are two sides and one angle is given (SAS).

We can use the law of Cosine to find the length of the BC side fence that needs to be replaced.

$$begin{aligned}
BC^{2} &= AB^{2} + AC^{2} – 2 cdot AB cdot ACcdot cos A\\
BC^{2} &= (116)^{2} + (224)^{2} – 2 times 116 times224 times Cos(58degree)\\
BC^{2} &= 13456 + 50176 – 51968 times 0.5299\\
BC^{2}&= 63632 – 26589.229\\
BC^{2} &= 36093.156\\
end{aligned}$$

Squaring both sides, we get,

$$begin{aligned}
BC &= sqrt {36093.156}\\
BC &approx 189.98 text{ feet}
end{aligned}$$

Step 4
4 of 4
(c.) We know that,
The area of the triangle of (SAS) is stated below :

$$begin{aligned}
Area &= dfrac {1}{2} times AB times AC times sin A\\
&= dfrac {116 times 224 times sin (58degree)}{2}\\
&= dfrac {116 times 224 times 0.848048}{2}\\
Area &approx 11017.84\
end{aligned}$$

Exercise 93
Step 1
1 of 18
$$
|x+1|geq 3
$$
a) We are given the inequality:
Step 2
2 of 18
$x+1leq -3$ or $x+1geq 3$
We rewrite the inequality:
Step 3
3 of 18
$x+1-1leq -3-1$ or $x+1-1geq 3-1$

$xleq -4$ or $xgeq 2$

We solve the inequalities:
Step 4
4 of 18
$$
(-infty,-4]cup[2,infty)
$$
The solution is:
Step 5
5 of 18
Exercise scan
We graph the solution:
Step 6
6 of 18
$$
x^2-9<0
$$
b) We are given the inequality:
Step 7
7 of 18
$$
(x-3)(x+3)<0
$$
We solve the inequality:
Step 8
8 of 18
$x-3=0Rightarrow x_1=3$

$x+3=0Rightarrow x_2=-3$

We determine the key points:
Step 9
9 of 18
$$
(-infty,-3), (-3,3), (3,infty)
$$
We determine the intervals:
Step 10
10 of 18
$f(-4)=(-4)^2-9=7>0$

$f(0)=0^2-9=-00$

$$
(-3,3)
$$

We find the solution:
Step 11
11 of 18
Exercise scan
We graph the solution:
Step 12
12 of 18
$$
y+3>x^2
$$
c) We are given the inequality:
Step 13
13 of 18
$$
y>x^2-3
$$
We rewrite the inequality:
Step 14
14 of 18
Exercise scan
We graph the parabola $y=x^2-3$ and shade the solution:
Step 15
15 of 18
$$
begin{cases}
y>x\
yleq -x^2+2x+3
end{cases}
$$
d) We are given the system of inequalities:
Step 16
16 of 18
Exercise scan
We graph the line $y=x$ and the parabola $y=-x^2+2x+3$, then we shade the region above the line and under the parabola:
Step 17
17 of 18
$$
begin{cases}
yleq -2x+3\
ygeq x\
xgeq -1
end{cases}
$$
e) We are given the system of inequalities:
Step 18
18 of 18
Exercise scan
We graph the three lines and dash the corresponding regions, then intersect them to find the solution:
Exercise 94
Step 1
1 of 3
$a$. We would advice Katelyn that going for a normal data will allow her to check her consistency about her selling. Moreover the normal data will be more comfortable for her to understand.
Step 2
2 of 3
$b$. The percentile is shown as follows:
$$=dfrac{15}{100}$$
$$=0.15 %$$
She will have the profit at the rate of $0.15 % text{per hour}$.
Step 3
3 of 3
$c$.
New percentile as she is selling 48 cups of coffee now,
$$=dfrac{48}{100}$$
$$=0.48 %$$

From the above calculation we can see that the percentile is increasing. Thus, we can say that the advice by Duncan is right.

Exercise 95
Step 1
1 of 9
$$
log_2 (x)=10
$$
a) We are given the equation:
Step 2
2 of 9
$$
x=2^{10}
$$
We write it in exponential form:
Step 3
3 of 9
$$
log_3 (x+1)=5
$$
b) We are given the equation:
Step 4
4 of 9
$x+1=3^5$

$x+1=243$

$x=243-1$

$$
x=242
$$

We write it in exponential form and simplify:
Step 5
5 of 9
$$
log_3 (3^x)=4
$$
c) We are given the equation:
Step 6
6 of 9
$xlog_3 3=4$

$$
x=4
$$

We use the Power Property of Logarithms:
Step 7
7 of 9
$$
4^{log_4 (x)}=7
$$
d) We are given the equation:
Step 8
8 of 9
$$
x=7
$$
We use the property:

$a^{log_a (x)}=x$.

Result
9 of 9
a) $x=2^{10}$

b) $x=242$

c) $x=4$

d) $x=7$

Exercise 96
Step 1
1 of 3
a) We have the function $g(x) = x^2+3$, while $f(x) = x^2$.
Sketch the graph in GeoGebra. From the graph we see:
The parabola is shifted $3$ units up.

Exercise scan

Step 2
2 of 3
b) We have the function $h(x) = 3x^2$, while $f(x) = x^2$.
Sketch the graph in GeoGebra. From the graph we see:
The parabola is vertically narrowed by a factor of $3$ .

Exercise scan

Step 3
3 of 3
c) We have the function $j(x) = (x+3)^2$ while $f(x) = x^2$.
Sketch the graph in GeoGebra.

From the graph we see:
The parabola is shifted $3$ units to the left.

Exercise scan

Exercise 97
Solution 1
Solution 2
Step 1
1 of 2
The given equation is

$$
sqrt{5-2x}+7=4
$$

Subtract $7$ from both sides

$$
sqrt{5-2x}=-3
$$

Squaring both sides

$$
left(sqrt{5-2x}right)^2=left(-3right)^2
$$

$$
5-2x=9
$$

$$
-2x=4
$$

$$
x=-2
$$

Replace $x$ with $-2$ in the original equation

$$
sqrt{5+4}+7=4
$$

$$
10=4
$$

which is a contradiction, then the equation has no real solution

Result
2 of 2
The equation has no real solution
Step 1
1 of 2
Subtract 7 from both sides of the equation:

$$
sqrt{5-2}=-3
$$

Since the square root can not take on negative values, the equation has no solutions.

Result
2 of 2
No solutions
Exercise 98
Step 1
1 of 8
$$
f(x)=-2(x-3)^2+4
$$
a) We are given the function:
Step 2
2 of 8
Exercise scan
The parent function $y=x^2$ is shifted 3 units to the right to get $y=(x-3)^2$, then vertically stretched by a factor of 2 to get $y=2(x-3)^2$, then reflected across the $x$-axis to get $y=-2(x-3)^2$ and finally shifted 4 units up to get $f(x)$:
Step 3
3 of 8
$$
f(x)=dfrac{1}{2}(x+2)^3-3
$$
b) We are given the function:
Step 4
4 of 8
Exercise scan
The parent function $y=x^3$ is shifted 3 units to the left to get $y=(x+2)^3$, then vertically shrunk by a factor of $dfrac{1}{2}$ to get $y=dfrac{1}{2}(x+2)^3$, then shifted 3 units down to get $f(x)$:
Step 5
5 of 8
$$
f(x)=2|x-5|
$$
c) We are given the function:
Step 6
6 of 8
Exercise scan
We start with teh parent function $y=|x|$. We shift it 5 units to the right to get $y=|x-5|$, then vertically stretch it by a factor of 2 to get $f(x)$:
Step 7
7 of 8
$$
f(x)=sqrt{x-2}-3
$$
d) We are given the function:
Step 8
8 of 8
Exercise scan
The parent function $y=sqrt x$ is shifted 2 units to the right to get $y=sqrt{x-2}$, then shifted 3 units down to get $f(x)$:
Exercise 99
Step 1
1 of 3
Exercise scan
We are given the data:
Step 2
2 of 3
$dfrac{sin B}{AC}=dfrac{sin C}{AB}$

$ACsin C=ABsin B$

$AC=dfrac{ABsin B}{sin C}=dfrac{684cdot sin 79text{textdegree}}{sin 53text{textdegree}}$

$=dfrac{684cdot 0.98162718}{0.79863551}$

$$
approx 840.73
$$

We use the Law of Sines to determine $AC$:
Result
3 of 3
$840.73$ feet
Exercise 100
Step 1
1 of 4
Exercise scan
We are given the data:
Step 2
2 of 4
$AC^2=AD^2+CD^2-2cdot ADcdot CDcdot cos D$

$=800^2+694^2-2cdot 800cdot 694cdot cos 68text{textdegree}$

$=1,121,636-1,110,400cdot 0.37460659$

$=705,672.84$

$$
AC=sqrt{705672.84}approx840.04
$$

We use the Law of Cosines to compute $AC$:
Step 3
3 of 4
This process confirms the results from Problem 7-99.
Result
4 of 4
$840.04$ feet

Yes

Exercise 101
Step 1
1 of 4
Exercise scan
We are given the data:
Step 2
2 of 4
$$
A=180text{textdegree}-23text{textdegree}-60text{textdegree}=97text{textdegree}
$$
First we determine the angle $A$:
Step 3
3 of 4
$dfrac{sin A}{BC}=dfrac{sin B}{AC}$

$BCsin B=ACsin A$

$BC=dfrac{ACsin A}{sin B}=dfrac{2cdotsin 97text{textdegree}}{sin 23text{textdegree}}$

$=dfrac{2cdot 0.99254615}{0.39073113}$

$$
approx 5.08
$$

We use the Law of Sines:
Result
4 of 4
$5.08$ feet
Exercise 102
Step 1
1 of 5
Exercise scan
We are given the data:
Step 2
2 of 5
$PE^2=HP^2+HE^2-2cdot HPcdot HEcdotcos H$

$=97^2+138^2-2cdot 97cdot 138cdot cos 28text{textdegree}$

$=28,453-26,772cdot 0.88294759$

$=4814.7271$

$$
PE=sqrt{4814.7271}approx 69.4
$$

We determine $PE$ using the Law of Cosines:
Step 3
3 of 5
$$
HE+PE+HP=138+69.4+97=304.4
$$
We determine the length of the trip:
Step 4
4 of 5
Since a tank of gas is enough only for 300 miles, the team will need more than one.
Result
5 of 5
One tank will not be enough
Exercise 103
Step 1
1 of 4
Exercise scan
We are given:
Step 2
2 of 4
$BC^2=15.5^2+72.3^2=5467.54$

$$
BC=sqrt{5467.54}approx 73.9
$$

The longest pipe she can buy has to be of the prism’s diagonal $AB$.

First we determine $BC$ using the Pythagorean Theorem:

Step 3
3 of 4
$AB^2=AC^2+BC^2=40.4^2+5467.54$

$=7099.7$

$$
AB=sqrt{7099.7}approx 84.3
$$

Then we determine $AB$ using the Pythagorean Theorem:
Result
4 of 4
$84.3$ inches
Exercise 104
Step 1
1 of 4
$$
mangle Q=mangle R
$$

Exercise scan

We are given:
Step 2
2 of 4
$$
dfrac{sin Q}{PR}=dfrac{sin R}{PQ}
$$
We use the Law of Sines:
Step 3
3 of 4
$$
sin Q=sin R
$$
Because $mangle Q=mangle R$:
Step 4
4 of 4
$$
PR=PQ
$$
In the equatin $dfrac{sin Q}{PR}=dfrac{sin R}{PQ}$ the numerators are equal, thus we have:
Exercise 105
Step 1
1 of 5
Exercise scan
We are given:
Step 2
2 of 5
$tan 38text{textdegree}=dfrac{AB}{FB}$

$AB=FBtan 38text{textdegree}=253cdot 0.78128563$

$$
=197.67
$$

We must determine $AC$.

First we determine $AB$ using the tangent function:

Step 3
3 of 5
$tan 46text{textdegree}=dfrac{BC}{FB}$

$BC=FBtan 46text{textdegree}=253cdot 1.03553031$

$$
=261.99
$$

Then we determine $BC$ using the tangent function:
Step 4
4 of 5
$$
AC=AB+BC=197.67+261.99=459.66
$$
We find $AC$:
Result
5 of 5
$459.66$ feet
Exercise 106
Step 1
1 of 3
The diagram as per the given situation is shown below.

![‘slader’](https://slader-solution-uploads.s3.amazonaws.com/d1ff00b4-d729-49f5-9027-90eba8bc2ea3-1622370614980263.png)

Step 2
2 of 3
Now determine BC to find the distance by using the Law of Cosines.

$$begin{aligned}
BC^{2} &= AB^{2} + AC^{2} – 2cdot ABcdot ACcdot cos A\\
BC^{2} &= (5)^{2} + (7.4)^{2} – 2 times 5 times 7.4 times cos(38degree)\\
BC^{2} &= 25 + 54.76 – 58.312\\
BC^{2} &= 21.4472\\
BC &= sqrt{21.4472}\\
BC &approx 4.63 miles.\
end{aligned}$$
So, 4.63 miles far will Lisa have to hike from the lake to meet
Aaron at the campsite.

Result
3 of 3
$$approx 4.63 miles$$
Exercise 107
Step 1
1 of 6
Exercise scan
We are given the triangle:
Step 2
2 of 6
$AB^2=BC^2+AC^2-2cdot BCcdot ACcdot cos C$

$=17^2+10^2-2cdot 17cdot 10cdot cos 45text{textdegree}$

$=389-340cdot 0.70710678$

$=148.5837$

$$
AB=sqrt{148.5837}approx 12.19
$$

We use the Law of Cosines to determine $AB$:
Step 3
3 of 6
$dfrac{sin B}{AC}=dfrac{sin C}{AB}$

$ABsin B=ACsin C$

$sin B=dfrac{ACsin C}{AB}=dfrac{10cdot 0.70710678}{12.19}$

$approx 0.5801$

$$
B=sin^{-1} 0.5801=35.5text{textdegree}
$$

We use the Law of Sines to determine angle $B$:
Step 4
4 of 6
$$
A=180text{textdegree}-45text{textdegree}-35.5text{textdegree}=99.5text{textdegree}
$$
We determine the angle $A$:
Step 5
5 of 6
$dfrac{ACcdot BCcdot sin C}{2}$

$$
=dfrac{10cdot 17cdot 0.70710678}{2}approx 60.1
$$

b) We determine the area of the triangle:
Result
6 of 6
a. angle A = 99.5$^{circ}$

b. Area $approx 60.1$

Exercise 108
Solution 1
Solution 2
Step 1
1 of 3
$$
text{textcolor{#c34632}{textbf{Pythagorean theorem}}}
$$

$$
boxed{a^2+b^2=c^2}
$$

$$
textit{*where $a$ and $b$ are length of legs and $c$ is length of hypotenuse of the right triangle}
$$

From the picture we can see this is a right triangle with both legs with the same length $x$ and length of hypotenuse is $7$. Now we can set the equation as:

$$
x^2+x^2=7^2
$$

$$
2x^2=49
$$

$$
x^2=dfrac{49}{2}
$$

$$
boxed{xapprox4.95}
$$

Step 2
2 of 3
$$
text{textcolor{#c34632}{textbf{Sine function}}}
$$

$$
boxed{sin theta=dfrac{a}{c}}
$$

$$
textit{*where $theta$ is angle $theta$, $a$ is length of opposite side, $c$ is length of hypotenuse of the right triangle}
$$

Since this is right triangle with legs which are same length, both angles will be $45$ degrees.

Now we can apply sine function as:

$$
sin 45text{textdegree}=dfrac{x}{7}
$$

$$
x=sin 45 text{textdegree} cdot 7
$$

$$
boxed{xapprox 4.95}
$$

Result
3 of 3
$xapprox 4.95$
Step 1
1 of 4
Exercise scan
We are given the triangle:
Step 2
2 of 4
$x^2+x^2=7^2$

$2x^2=49$

$x^2=dfrac{49}{2}=24.5$

$$
x=sqrt{24.5}approx 4.95
$$

Method 1: We use the Pythagorean Theorem.
Step 3
3 of 4
$B=C=45text{textdegree}$

$sin C=dfrac{x}{7}$

$x=7sin C=7sin 45text{textdegree}=7cdot 0.70710678$

$$
approx 4.95
$$

Method 2: We use the sine function.
Result
4 of 4
$$
x=4.95
$$
Exercise 109
Step 1
1 of 7
Exercise scan
We are given the triangle:
Step 2
2 of 7
$AD=BD=5$

$$
AB=BDsqrt 2=5sqrt 2approx 7.07
$$

$triangle ABD$ is a $45text{textdegree}-45text{textdegree}-90text{textdegree}$ triangle, therefore we have:
Step 3
3 of 7
$BC=2BD=2(5)=10$

$CD^2+5^2=10^2$

$CD^2=100-25=75$

$$
CD=sqrt{75}=5sqrt 3approx 8.66
$$

$triangle BDC$ is a $30text{textdegree}-60text{textdegree}-90text{textdegree}$ triangle, therefore we have:
Step 4
4 of 7
$$
AC=AD+CD=5+5sqrt 3=5+8.66=13.66
$$
We determine $AC$:
Step 5
5 of 7
$P_{triangle ABC}=AB+BC+CA$

$=5sqrt 2+10+5+5sqrt 3$

$$
=7.07+10+13.66=30.73
$$

We compute the perimeter of $triangle ABC$:
Step 6
6 of 7
$A_{triangle ABC}=dfrac{ACcdot BD}{2}$

$=dfrac{(5+5sqrt 3)cdot 5}{2}=dfrac{25(1+sqrt 3)}{2}$

$$
=dfrac{13.66cdot 5}{2}=34.15
$$

We compute the aea of $triangle ABC$:
Result
7 of 7
Perimeter: $5sqrt 2+15+5sqrt 3approx30.73$

Area: $dfrac{25(1+sqrt 3)}{2}approx34.15$

Exercise 110
Step 1
1 of 2
a. We also already found that $i^3=-i$ and $i^4=1$. Then

$$
i^5=i
$$

$$
i^6=-1
$$

$$
i^7=-i
$$

$$
i^8=1
$$

$$
i^9=i
$$

$$
i^{10}=-1
$$

$$
i^{11}=-i
$$

$$
i^{12}=1
$$

$$
i^{13}=i
$$

$$
i^{14}=-1
$$

$$
i^{15}=-i
$$

Thus we know that if $n$ is a multiple of 4, then $i^n=1$; if $n$ is one more than a multiple of 4, then $i^n=i$; if $n$ is 2 more than a multiple of 4, then $i^n=-1$. if $n$ is 3 more than a multiple of 4, then $i^n=-i$.

Step 2
2 of 2
b.
$$
i^{16}=1
$$

$$
i^{25}=i
$$

$$
i^{39}=-i
$$

$$
i^{100}=1
$$

c.
$$
i^{4n}=(i^4)^n=1^n=1
$$

d.
$$
i^{4n+1}=i^{4n}i=i
$$

$$
i^{4n+2}=i^{4n}i^2=-1
$$

$$
i^{4n+3}=i^{4n}i^3=-i
$$

e.
$$
i^{396}=1
$$

$$
i^{397}=i
$$

$$
i^{398}=-1
$$

$$
i^{399}=-i
$$

Exercise 111
Step 1
1 of 8
$P=400,000$

$r=0.035$

We are given:
Step 2
2 of 8
$A(t)=P(1+r)^t$

$A(t)=400,000(1+0.035)^t$

$$
A(t)=400,000(1.035)^t
$$

a) We determine the equation of the model (where 2005 corresponds to $t=0$):
Step 3
3 of 8
$$
A(10)=400,000(1.035)^{10}approx 564,240
$$
We compute $A(t)$ for $t=2015-2005=10$:
Step 4
4 of 8
$A(t)=800,000$

$400,000(1.035)^t=800,000$

$(1.035)^t=dfrac{800,000}{400,000}$

$(1.035)^t=2$

$log_{10} (1.035)^t=log_{10} 2$

$tlog_{10} 1.035=log_{10} 2$

$$
t=dfrac{log_{10} 2}{log_{10} 1.035}approx 20
$$

b) We solve the equation:
Step 5
5 of 8
$t=20$ corresponds to the year $2005+20=2025$.
Step 6
6 of 8
$r=0.02$

$$
P=200,000
$$

c) We are given:
Step 7
7 of 8
$A(t)=P(1-r)^t$

$A(t)=200,000(1-0.02)^t$

$$
A(t)=200,000(0.98)^t
$$

The equation of the model is:
Step 8
8 of 8
$$
P-A(10)=200,000-200,000(0.98)^{10}=36,585
$$
We compute the lost value in 10 years:
Exercise 112
Step 1
1 of 5
a-

$5x-3y=12$          (Given)

$3y=5x-12$

$$
y=dfrac {5x-12}{3}
$$

Step 2
2 of 5
b-

$F=dfrac {Gm_{1}m_{2}}{r^2}$          (Given)

$Fr^2=Gm_{1}m_{2}$

$$
m_{2}=dfrac {Fr^2}{Gm_{1}}
$$

Step 3
3 of 5
c-

$E=dfrac {1}{2}mv^2$          (Given)

$2E=mv^2$

$$
m=dfrac {2E}{v^2}
$$

Step 4
4 of 5
d-

$(x-4)^2+(y-1)^2=10$          (Given)

$(y-1)^2=10-(x-4)^2$

$y-1=pm sqrt {10-(x-4)^2}$

$$
y=1 pm sqrt {10-(x-4)^2}
$$

Result
5 of 5
a-          $5x-3y=12 qquad rightarrow qquad y=dfrac {5x-12}{3}$

b-          $F=dfrac {Gm_{1}m_{2}}{r^2} qquad rightarrow qquad m_{2}=dfrac {Fr^2}{Gm_{1}}$

c-          $E=dfrac {1}{2}mv^2 qquad rightarrow qquad m=dfrac {2E}{v^2}$

d-          $(x-4)^2+(y-1)^2=10 qquad rightarrow qquad y=1 pm sqrt {10-(x-4)^2}$

Exercise 113
Solution 1
Solution 2
Step 1
1 of 4
$textbf{a.)}$

$$
begin{align*}
&dfrac{3}{x}+dfrac{2}{x+1}=5 tag{Given}\ \
&dfrac{3(x+1)+2x}{x(x+1)}=5 tag{Taking LCM}\ \
&3x+3+2x=5x(x+1) tag{Cross-multiplying}\ \
&5x+3=5x^2+5x tag{Adding and multiplying}\ \
&5x^2=3 tag{Simplifying}\ \
&x^2=dfrac{3}{5} tag{Dividing both side by 5}\ \
&x=pmsqrt{dfrac{3}{5}}tag{Solution}
end{align*}
$$

Step 2
2 of 4
$textbf{b.)}$

$$
begin{align*}
&x^2+6x+9=2x^2+3x+5 tag{Given}\ \
&6x+9=x^2+3x+5tag{Subtracting $x^2$ from both side}\ \
&x^2-3x-4=0 tag{Subtracting $6x$ $&$ 9 from both side}\ \
&x^2-4x+x-4=0 tag{$-3x$ as sum of $-4x+x$}\ \
&(x-4)(x+1)=0 tag{Factorising}\ \
&x=4 &x=-1 tag{Solution}\
end{align*}
$$

Step 3
3 of 4
$textbf{c.)}$

$$
begin{align*}
&8-sqrt{9-2x}=x+3 tag{Given}\ \
&-sqrt{9-2x}=x-5 tag{Simplifying}\ \
&9-2x=x^2-10x+25 tag{Squaring on both side}\ \
&x^2-8x+16=0 tag{Simplifying}\ \
&x^2-4x-4x+16=0 tag{$-8x$ as sum of $-4x & -4x$ }\ \
&(x-4)(x-4)=0 tag{Factorising}\ \
&x=4 tag{Solution}\
end{align*}
$$

Result
4 of 4
$$
a.) x=pmsqrt{dfrac{3}{5}}
$$
Step 1
1 of 10
$$
dfrac{3}{x}+dfrac{2}{x+1}=5
$$
a) We are given the equation:
Step 2
2 of 10
$dfrac{3}{x}cdot x(x+1)+dfrac{2}{x+1}cdot x(x+1)=5cdot x(x+1)$

$3(x+1)+2x=5x(x+1)$

$3x+3+2x=5x^2+5x$

$5x+3=5x^2+5x$

$5x^2+5x-5x-3=0$

$5x^2-3=0$

$x^2=dfrac{3}{5}$

$$
x=pmsqrt{dfrac{3}{5}}
$$

We multiply all terms by $x(x+1)$:
Step 3
3 of 10
The two solutions belong to the equation’s domain which is $(-infty,-1)cup(-1,0)cup(0,infty)$.
Step 4
4 of 10
$$
x^2+6x+9=2x^2+3x+5
$$
b) We are given the equation:
Step 5
5 of 10
$$
(-infty,infty)
$$
The equation’s domain is:
Step 6
6 of 10
$x^2+6x+9-(x^2+6x+9)=2x^2+3x+5-(x^2+6x+9)$

$x^2-3x-4=0$

$x^2+x-4x-4=0$

$x(x+1)-4(x+1)=0$

$(x+1)(x-4)=0$

$x+1=0Rightarrow x_1=-1$

$x-4=0Rightarrow x_2=4$

We have:
Step 7
7 of 10
Both solutions belong to the equation’s domain.
Step 8
8 of 10
$$
8-sqrt{9-2x}=x+3
$$
c) We are given the equation:
Step 9
9 of 10
$8-sqrt{9-2x}-8=x+3-8$

$$
-sqrt{9-2x}=x-5
$$

$(-sqrt{9-2x})^2=(x-5)^2$

$9-2x=x^2-10x+25$

$9-2x-9+2x=x^2-10x+25-9+2x$

$x^2-8x+16=0$

$(x-4)^2=0$

$$
x-4=0Rightarrow x=4
$$

We have:
Step 10
10 of 10
$8-sqrt{9-2(4)}stackrel{?}{=}4+3$

$8-1stackrel{?}{=}4+3$

$$
7=7checkmark
$$

We check the result:
Exercise 114
Step 1
1 of 4
Exercise scan
a) We draw a diagram of the situation:
Step 2
2 of 4
$$
BD=CD=dfrac{BC}{2}=dfrac{10}{2}=5
$$
b) We draw $ADperp BC$. $triangle ABC$ is isosceles, therefore we have:
Step 3
3 of 4
$cos B=dfrac{BD}{AB}$

$cos 30text{textdegree}=dfrac{5}{x}$

$xcdot dfrac{sqrt 3}{2}=5$

$xsqrt 3=5(2)$

$$
x=dfrac{10}{sqrt 3}=dfrac{10sqrt 3}{3}approx 5.77
$$

We determine $x$ using cosine:
Result
4 of 4
$approx 5.77$ feet
Exercise 115
Step 1
1 of 7
Exercise scan
We are given the graph:
Step 2
2 of 7
Exercise scan
a) The graph is a function because it passes the Vertical Line Test:
Step 3
3 of 7
Exercise scan
b We sketch the inverse of the graph as a reflection of the graph across the $y=x$ line:
Step 4
4 of 7
Exercise scan
c) The inverse is not a function as it doesn’t pass the Vertical Line Test:
Step 5
5 of 7
d) The functions that have inverse functions are one-to-one functions.
Step 6
6 of 7
Exercise scan
e) Let’s consider the non-function:
Step 7
7 of 7
Exercise scan
Its inverse its a function:
Exercise 116
Step 1
1 of 5
We have the equation:

$$
log_5 (2x) = 3
$$

Apply $log$ rules:

$$
begin{align*}
2x &= 5^3 \
2x &= 125 \
x &= dfrac{125}{2}
end{align*}
$$

Step 2
2 of 5
We have the equation: $log_5 (x+1) = -1$.
Solve the equation. Apply log rules.

$$
begin{align*}
5^{-1} &= x+1 \
dfrac{1}{5} &= x+1 \
&text{Isolate $x$} \
x &= dfrac{1}{5} -1 \
x&= dfrac{-4}{5}
end{align*}
$$

Step 3
3 of 5
We have the equation: $log 4 – log x = 2$.
Solve the equation. Apply log rules.

$$
begin{align*}
log dfrac{4}{x} &= 2 \
dfrac{4}{x} &= 10^2 \
dfrac{4}{x} &= 100 \
100 x &= 4 \
&text{Isolate $x$:} \
x&= dfrac{4}{100} = 0.04
end{align*}
$$

Step 4
4 of 5
We have the equation: $2log_3 6 + log_3 y =4$.
Solve the equation. Apply log rules.

$$
begin{align*}
log_3 6^2 + log_3 y &= 4 \
log_3 36y &= 4 \
3^4 &= 36 y \
81 &= 36y \
&text{Isolate $y$:} \
y&= dfrac{81}{36} \
y&= 2.25
end{align*}
$$

Result
5 of 5
a) $62.5$
b) $-0.8$
c) $0.04$
d) $2.25$
Exercise 117
Step 1
1 of 9
$f(x)=3x^2-5$

$$
g(x)=x-3
$$

We are given the functions:
Step 2
2 of 9
$$
f(-5)=3(-5)^2-5=70
$$
a) We determine $f(-5)$:
Step 3
3 of 9
$$
7g(x)=7(x-3)=7x-21
$$
b) We write an expression for $7g(x)$:
Step 4
4 of 9
$$
f(4)=3(4)^2-5=43
$$
c) We determine $f(4)$:
Step 5
5 of 9
$$
g(3x)=3x-3
$$
d) We write an expression for $g(3x)$:
Step 6
6 of 9
$f(x+4)=3(x+4)^2-5=3x^2+24x+48-5$

$$
=3x^2+24x+43
$$

e) We write an expression for $f(x+4)$:
Step 7
7 of 9
$$
g(x)-f(x)=x-3-3x^2+5=-3x^2+x+2
$$
f) We write an expresssion for $g(x)-f(x)$:
Step 8
8 of 9
g) The domain of $f$ is all the set of real numbers.
Step 9
9 of 9
h) The domain of $g$ is all the set of real numbers.
Exercise 118
Step 1
1 of 11
(a.) Given points $(1, 15)$ and $(4, 3885)$ with the given asymptotes $y = -3$.

Substituting in the equation of the exponential function of form i.e,
$$begin{aligned}
y &= ab^{x} + k
end{aligned}$$
Now determine $k$ using the asymptotes, i.e
$$begin{aligned}
k &= -3\
end{aligned}$$

Step 2
2 of 11
Put the given points in the exponential form to get the system:

For the point $(1, 15)$,
$$begin{aligned}
15 &= tag{1} ab^{1} – 3\
end{aligned}$$

For the point $(4, 3885)$,
$$begin{aligned}
3885 &= tag{2} ab^{4} – 3\
end{aligned}$$

Step 3
3 of 11
Now, solve the system to get the value of $a$ and $b$.

From equation (1), we get.
$$begin{aligned}
15 + 3 &= ab^{1}\\
18 &= tag{3} ab^{1}\\
end{aligned}$$
From equation (2), we get.

$$begin{aligned}
3885 + 3 &= ab^{4}\\
3888 &= tag{4} ab^{4}\\
end{aligned}$$

Step 4
4 of 11
Equate both values,
$$begin{aligned}
dfrac {ab^{4}}{ab} &= dfrac {3888}{18}\\
b^{3} &= 216\\
b &= sqrt [3]{216}\\
b &=6\
end{aligned}$$
Put this value of $b$ in equation (3),
$$begin{aligned}
18 &= ab\\
18 &= a times 6\\
a &= dfrac {18}{6}\\
a &= 3
end{aligned}$$
Step 5
5 of 11
So, the function is given below:
$$begin{aligned}
y &= 3 (6)^{x}-3\
end{aligned}$$
Step 6
6 of 11
(b.) Given points $(-2, -7)$ and $(3, 0.75)$ with the given asymptotes $y = 1$.

Substituting in the equation of the exponential function of form i.e,
$$begin{aligned}
y &= ab^{x} + k
end{aligned}$$
Now determine $k$ using the asymptotes, i.e
$$begin{aligned}
k &= 1\
end{aligned}$$

Step 7
7 of 11
Put the given points in the exponential form to get the system:

For the point $(-2, -7)$,
$$begin{aligned}
-7 &= tag{1} ab^{-2} +1\
end{aligned}$$

For the point $(3, 0.75)$,
$$begin{aligned}
0.75 &= tag{2} ab^{3} +1\
end{aligned}$$

Step 8
8 of 11
Now, solve the system to get the value of $a$ and $b$.

From equation (1), we get.
$$begin{aligned}
-7 – 1 &= ab^{-2}\\
-8 &= tag{3} ab^{-2}\\
end{aligned}$$
From equation (2), we get.

$$begin{aligned}
0.75 – 1 &= ab^{3}\\
-0.25 &= tag{4} ab^{3}\\
end{aligned}$$

Step 9
9 of 11
Equate both values,
$$begin{aligned}
dfrac {ab^{3}}{ab^{-2}} &= dfrac {-0.25}{-8}\\
b^{5} &= dfrac{1}{32}\\
b &= sqrt [5]{dfrac{1}{32}}\\
b &= dfrac{1}{2}\\
end{aligned}$$
Put this value of $b$ in equation (4),
$$begin{aligned}
-0.25 &= ab^{3}\\
-0.25 &= a times (dfrac{1}{2})^{3}\\
dfrac {a}{8} &= -dfrac{1}{4}\\
-4a &= 8\\
a &= -2\
end{aligned}$$
Step 10
10 of 11
So, the function is given below:
$$begin{aligned}
y &= -2 (dfrac{1}{2})^{x} + 1\
end{aligned}$$
Result
11 of 11
$$begin{aligned}
(a.) y &= 3 (6)^{x}-3\
(b.) y &= -2 (dfrac{1}{2})^{x} + 1\
end{aligned}$$
Exercise 119
Step 1
1 of 4
We can conclude from the expression that:

$$
2^x=2^3
$$

By dividing both sides by $2^3$ we get:

$$
dfrac{2^x}{2^3}=2^{x-3}=1
$$

$$
2^{x-3}=1=2^0
$$

This leads us to $x-3=0$, so $text{underline{x=3}}$.

Step 2
2 of 4
From the expression we can also conclude that

$$
3^y=3^{x-2}
$$

Now by substituting $3$ for $x$ we get

$$
3^y=3^{3-2}=3^1
$$

This leads us to $text{underline{$y=1$}}$.

Step 3
3 of 4
We can conclude from the expression that:

$$
5^z=5^{2x-3y}
$$

By substituting $3$ for $x$ and $1$ for $y$ we get:

$$
5^z=5^{6-3}=5^3
$$

By dividing both sides by $5^3$ we get:

$$
dfrac{5^z}{5^3}=1=5^0
$$

$$
5^{z-3}=5^0
$$

This leads us to $z-3=0$, so $text{underline{$z=3$}}$.

$$
boxed{(x,y,z)=(3,1,3)}
$$

Result
4 of 4
$(x,y,z)=(3,1,3)$
Exercise 120
Step 1
1 of 4
Since they want their plates to be the best they can be, the lower control bound should be $0$. If plates do not have any or have only few flaws, they should the expectations.
Step 2
2 of 4
Let us find the mean of the given data. We need to find the sum of the given number of flaws and then divide it by the total number of plates $(50)$.
Step 3
3 of 4
Therefore, the mean is $dfrac{360}{50}=7.2$. Standard deviation from the mean is approximately $4.2$. By using the control limit calculator, we get that the lower control bound is approximately $3$ and upper is $11.4$.
Result
4 of 4
LCL is $3$ and UCL is $11.4$
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New
Chapter 1: Investigations and Functions
Chapter 2: Transformations of Parent Graphs
Page 53: Questions
Page 100: Closure Activity
Chapter 3: Solving and Inequalities
Page 107: Questions
Page 151: Closure Activity
Chapter 4: Normal Distributions and Geometric Modeling
Page 157: Questions
Page 217: Closure Activity
Chapter 7: Logarithms and Triangles
Page 321: Questions
Page 368: Closure Activity
Chapter 8: Polynomials
Page 373: Questions
Page 425: Closure Activity
Chapter 9: Trigonometric Functions
Page 431: Questions
Page 483: Closure Activity
Chapter 10: Series
Page 489: Questions
Page 557: Closure Activity
Chapter 11: Rational Expressions and Three-Variable Systems
Page 563: Questions
Page 605: Closure Activity
Chapter 12: Analytic Trigonometry
Page 611: Questions
Page 643: Closure Activity