Core Connections Integrated 1
Core Connections Integrated 1
2nd Edition
Brian Hoey, Judy Kysh, Leslie Dietiker, Tom Sallee
ISBN: 9781603283236
Textbook solutions

All Solutions

Page 186: Closure Activity

Exercise 142
Step 1
1 of 5
$$
{color{#4257b2}text{a)}}
$$

$$
begin{align*}
6xleft(2x+y-5right)& {=}quad :6xcdot :2x+6xy+6xleft(-5right)tag{Distribute parentheses}\
&=6xcdot :2x+6xy-6xcdot :5 \
&={color{#c34632}12x^2+6xy-30x}
end{align*}
$$

$$
color{#c34632} text{ } mathrm{Apply:minus-plus:rules}
$$

$$
text{ }
$$

Step 2
2 of 5
$$
{color{#4257b2}text{b)}}
$$

$$
begin{align*}
left(2x^2-11right)left(x^2+4right)& {=}quad : 2x^2cdot :x^2+2x^2cdot :4-11cdot :x^2-11cdot :4\
&=2x^4+2cdot :4x^2-11x^2-4cdot :11 \
&=2x^4+8x^2-11x^2-44 \
&={color{#c34632}2x^4-3x^2-44}
end{align*}
$$

$$
color{#c34632} text{ } mathrm{Distribute:parentheses:using}:quad left(a+bright)left(c+dright)=ac+ad+bc+bd
$$

$$
color{#c34632} text{ }a=2x^2,:b=-11,:c=x^2,:d=4
$$

Step 3
3 of 5
$$
{color{#4257b2}text{c)}}
$$

$$
begin{align*}
left(7xright)left(2xyright)& {=}quad : 7xcdot :2xytag{Remove parentheses}\
&=14xxy \
&=14x^{1+1}y \
&={color{#c34632}14x^2y}
end{align*}
$$

$$
color{#c34632} text{ }mathrm{Apply:exponent:rule}:quad :a^bcdot :a^c=a^{b+c}
$$

$$
text{ }
$$

Step 4
4 of 5
$$
{color{#4257b2}text{d)}}
$$

$$
begin{align*}
left(x-2right)left(3+yright)& {=}quad : xcdot :3+xcdot :y-2cdot :3-2cdot :y\
&={color{#c34632}3x+xy-6-2y}
end{align*}
$$

$$
color{#c34632} text{ }mathrm{Distribute:parentheses:using}:quad left(a+bright)left(c+dright)=ac+ad+bc+bd
$$

$$
color{#c34632} text{ } a=x,:b=-2,:c=3,:d=y
$$

Result
5 of 5
$$
color{#4257b2} text{ a) } 12x^2+6xy-30x
$$

$$
color{#4257b2}text{ b) }2x^4-3x^2-44
$$

$$
color{#4257b2}text{ c) }14x^2y
$$

$$
color{#4257b2}text{ d) } 3x+xy-6-2y
$$

Exercise 143
Step 1
1 of 2
From the figure attached below, we can see that the base of triangle is of 10 units and perpendicular height is 12 units.

The are of triangle is given by $dfrac{1}{2}times text{base}times text{perpendicular height}$

$Rightarrow$
$$
text{Area}=dfrac{1}{2}times 10times 12=60 text{unit}^2
$$

Exercise scan

Result
2 of 2
$$
text{Area}=60 text{unit}^2
$$
Exercise 144
Step 1
1 of 3
Exercise scan
Step 2
2 of 3
Exercise scan
Result
3 of 3
See figures inside.
Exercise 145
Solution 1
Solution 2
Step 1
1 of 5
$$
{color{#4257b2}text{ a) }}
$$

$$
begin{align*}
&text{
This example is solved in the following way}\
&=frac{1}{3^2}\\
&=boxed{{color{#c34632} frac{1}{9} } }
end{align*}
$$

$$
color{#c34632} text{}mathrm{Apply:exponent:rule}:quad :a^{-b}=frac{1}{a^b}
$$

$$
text{}
$$

Step 2
2 of 5
$$
{color{#4257b2}text{ b) }}
$$

$$
begin{align*}
&text{
This example is solved in the following way}\\
&=boxed{{color{#c34632} frac{1}{m^4} } }
end{align*}
$$

$$
color{#c34632} text{}mathrm{Apply:exponent:rule}:quad :a^{-b}=frac{1}{a^b}
$$

$$
text{}
$$

Step 3
3 of 5
$$
{color{#4257b2}text{ c) }}
$$

$$
begin{align*}
&text{
This example is solved in the following way}\
&=left(frac{2}{1}right)^3\\
&=2^3 tag{Refine} \\
&=boxed{{color{#c34632} 8 } }
end{align*}
$$

$$
color{#c34632} text{}mathrm{Apply:exponent:rule}:quad left(frac{a}{b}right)^{-c}=left(left(frac{a}{b}right)^{-1}right)^c=left(frac{b}{a}right)^c
$$

$$
text{}
$$

Step 4
4 of 5
$$
{color{#4257b2}text{ d) }}
$$

$$
begin{align*}
&text{
This example is solved in the following way}\\
&=boxed{{color{#c34632} frac{5x}{3} } }
end{align*}
$$

$$
color{#c34632} text{}mathrm{Apply:exponent:rule}:quad left(frac{a}{b}right)^{-1}=frac{1}{frac{a}{b}}=frac{b}{a}
$$

$$
text{}
$$

Result
5 of 5
$$
color{#4257b2} text{a)}frac{1}{9}
$$

$$
color{#4257b2} text{b)}frac{1}{m^4}
$$

$$
color{#4257b2} text{c)}8
$$

$$
color{#4257b2} text{d)} frac{5x}{3}
$$

Step 1
1 of 5
$$
3^{-2}=dfrac{1}{3^2}=dfrac{1}{9}
$$
$x^{-y}$ can also be written as $dfrac{1}{x^y}$, so that’s what we will do now.
Step 2
2 of 5
$$
m^{-4}=dfrac{1}{m^4}
$$
Same thing here. $x^{-y}$ can also be written as $dfrac{1}{x^y}$, so that’s what we will do now.
Step 3
3 of 5
$$
(dfrac{1}{2})^{-3}=dfrac{1^{-3}}{2^{-3}}=dfrac{2^3}{1^3}=dfrac{8}{1}=8
$$
Same as 2 examples before. $x^{-y}$ can also be written as $dfrac{1}{x^y}$, so that’s what we will do now.
Step 4
4 of 5
$$
(dfrac{3}{5x}^{-1})=dfrac{3^{-1}}{(5x)^{-1}}=dfrac{5x}{3}
$$
We do the same thing that we did in 3 examples before this one. $x^{-y}$ can also be written as $dfrac{1}{x^y}$, so that’s what we will do now.
Result
5 of 5
enter to see solution
Exercise 146
Step 1
1 of 4
Exercise scan
Step 2
2 of 4
$textbf{(a)}$ Slope of a line which passes through a pair or points $(x_1,y_1)$ and $(x_2,y_2)$ is given by

$$
text{slope}=dfrac{y_2-y_1}{x_2-x_1}
$$

Now, we have given points as $(-4,8)$ and $(6,3)$. Let $(x_1,y_1)=(-4,8)$ and $(x_2,y_2)=(6,3)$, therefore slope of line passing through these point is
$$
begin{align*}
text{slope}&= dfrac{3-8}{6-(-4)}\
&=dfrac{-5}{10}\
&=-dfrac{1}{2}
end{align*}
$$

Therefore, the slope of line passing through the points $(-4,8)$ and $(6,3)$ is equal to $-dfrac{1}{2}$

$textbf{(b)}$ The equation of a line of given slope $m$ passing through a point $(x_1,y_1)$ is given by

$$
y-y_1=mcdot (x-x_1)
$$

Now, the equation of a line of slope $-dfrac{1}{2}$ passing through a point $(6,3)$ is given by

$$
begin{align*}
y-(3)&=-dfrac{1}{2}cdot (x-6)\
y-3&=-dfrac{1}{2}cdot x -dfrac{1}{2}cdot (-6) \
y-3&=-dfrac{1}{2}cdot x +3 \
y&=boxed{-dfrac{1}{2}cdot x +6}
end{align*}
$$

Step 3
3 of 4
$textbf{(c)}$ The general equation if line is given by $y=mx+c$, where, $m$ is the slope of the line and $c$ is the $y$- intercept. Any line parallel to a given line will have same slope as the given line. hence, line parallel to the line AB will have slope $-dfrac{1}{2}$

Therefore, the equation of line with slope $-dfrac{1}{2}$ will be

$$
y=-dfrac{1}{2}x+c
$$

where, $c$ will be any $y$-intercept that will get define according to given conditions.

$textbf{(d)}$ Two perpendicular lines have product of their slope equal to $-1$. Therefore, the line perpendicular to the line of slope $-dfrac{1}{2}$ will have slope equal to 2. Now, using the argument in the above option, equation of line will be
$$
y=2x+p
$$

where, $p$ will be any $y$-intercept that will get define according to given conditions.

Result
4 of 4
$textbf{(a)}-dfrac{1}{2}$

$textbf{(b)}$ $y=-dfrac{1}{2}cdot x +6$

$textbf{(c)}$ $y=-dfrac{1}{2}x+c$

$textbf{(d)}$ $y=2x+p$

Exercise 147
Step 1
1 of 3
$textbf{(a)}$ From the graph we can see that the line passes through the points $(0,3)$ and $(2,-1)$

Slope of a line which passes through a pair or points $(x_1,y_1)$ and $(x_2,y_2)$ is given by

$$
text{slope}=dfrac{y_2-y_1}{x_2-x_1}
$$

The equation of a line of given slope $m$ passing through a point $(x_1,y_1)$ is given by

$$
y-y_1=mcdot (x-x_1)
$$

Now, we have given points as $(0,3)$ and $(2,-1)$. Let $(x_1,y_1)=(0,3)$ and $(x_2,y_2)=(2,-1)$, therefore slope of line passing through these point is
$$
begin{align*}
text{slope}&= dfrac{-1-3}{2-0}\
&=dfrac{-4}{2}\
&=-2
end{align*}
$$

Now, the equation of a line of slope $-2$ passing through a point $(0,3)$ is given by

$$
begin{align*}
y-(3)&=-2cdot (x-0)\
y-3&=-2cdot x\
y&=boxed{-2cdot x+3}
end{align*}
$$

$textbf{(b)}$ The equation of a line of given slope $m$ passing through a point $(x_1,y_1)$ is given by

$$
y-y_1=mcdot (x-x_1)
$$

Therefore, the equation of a line with a slope of $-dfrac{2}{3}$ and which passes through the point $(-3, 4)$ is given by

$$
begin{align*}
y-4&=-dfrac{2}{3}cdot (x-(-3)\
y-4&=-dfrac{2}{3}cdot x -dfrac{2}{3}cdot 3\
y-4&=-dfrac{2}{3}cdot x-2\
y&=boxed{-dfrac{2}{3}cdot x+2}
end{align*}
$$

Step 2
2 of 3
$textbf{(c)}$ For writing the equation of a line for the given data points, we just need 2 pair of points. then we can calculate the slope of line passing through these points like in part (a) and then can proceed for the equation.
Lets choose two points as $(-2,-7)$ and $(-1,-5)$.

Now, Slope of a line which passes through a pair or points $(x_1,y_1)$ and $(x_2,y_2)$ is given by

$$
text{slope}=dfrac{y_2-y_1}{x_2-x_1}
$$

The equation of a line of given slope $m$ passing through a point $(x_1,y_1)$ is given by

$$
y-y_1=mcdot (x-x_1)
$$

Now, we have points as $(-2,-7)$ and $(-1,-5)$. Let $(x_1,y_1)=(-2,-7)$ and $(x_2,y_2)=(-1,-5)$, therefore slope of line passing through these point is
$$
begin{align*}
text{slope}&= dfrac{-5-(-7)}{-1-(-2)}\
&=dfrac{2}{1}\
&=2
end{align*}
$$

Now, the equation of a line of slope $2$ passing through a point $(-2,-7)$ is given by

$$
begin{align*}
y-(-7)&=2cdot (x-(-2)\
y+7&=2cdot x+2cdot 2 \
y&=2cdot x+4-7 \
y&=boxed{2cdot x-3}
end{align*}
$$

Result
3 of 3
$textbf{(b)}y=-2cdot x+3$

$textbf{(a)}$ $y=-dfrac{2}{3}cdot x+2$

$textbf{(c)}$ $y=2cdot x-3$

Exercise 148
Step 1
1 of 5
$$
{color{#4257b2}text{ a) }}
$$

$$
begin{align*}
&text{Convert mixed numbers to improper fractions}\
&=-frac{74}{9}+frac{38}{5}\\
& =-frac{74cdot :5}{45}+frac{38cdot :9}{45} tag{Adjust fraction} \
&=frac{-74cdot :5+38cdot :9}{45}\
&=frac{-28}{45}\\
&=boxed{{color{#c34632} -frac{28}{45} } }
end{align*}
$$

$$
color{#c34632}text{}mathrm{Since:the:denominators:are:equal,:combine:the:fractions}:quad frac{a}{c}pm frac{b}{c}=frac{apm :b}{c}
$$

$$
color{#c34632} text{}mathrm{Apply:the:fraction:rule}:quad frac{-a}{b}=-frac{a}{b}
$$

Step 2
2 of 5
$$
{color{#4257b2}text{ b) }}
$$

$$
begin{align*}
&text{Convert mixed numbers to improper fractions}\
&=-frac{35}{8}-frac{43}{8}\\
& =frac{-35-43}{8} \
&=frac{-78}{8} tag{Subtract the numbers}\
&=-frac{78}{8}\
&=-frac{39}{4} tag{Cancel the common factor 2}\\
&=boxed{{color{#c34632} -9frac{3}{4} } }
end{align*}
$$

$$
color{#c34632}text{}mathrm{Apply:rule}:frac{a}{c}pm frac{b}{c}=frac{apm :b}{c}
$$

$$
color{#c34632} text{}mathrm{Apply:the:fraction:rule}:quad frac{-a}{b}=-frac{a}{b}
$$

Step 3
3 of 5
$$
{color{#4257b2}text{ c) }}
$$

$$
begin{align*}
&text{Convert mixed numbers to improper fractions}\
&=frac{43}{4}left(-frac{76}{9}right)\\
& =-frac{43}{4}cdot frac{76}{9}tag{Remove parentheses} \
&=-frac{43cdot :76}{4cdot :9} tag{Multiply fractions}\
&=-frac{43cdot :76}{36} tag{Multiply the numbers}\
&=-frac{3268}{36} tag{Multiply the numbers}\
&=-frac{817}{9} tag{Cancel the common factor 4}\\
&=boxed{{color{#c34632} -90frac{7}{9} } }
end{align*}
$$

$$
color{#c34632}text{}mathrm{Multiply:fractions}:quad frac{a}{b}cdot frac{c}{d}=frac{a:cdot :c}{b:cdot :d}
$$

Step 4
4 of 5
$$
{color{#4257b2}text{ d) }}
$$

$$
begin{align*}
&text{Convert mixed numbers to improper fractions}\
&=-frac{35}{4}div left(-frac{5}{7}right)\\
& =-left(-frac{245}{20}right) tag{Simplify} \
&=-left(-frac{49}{4}right) tag{Cancel the common factor 5}\
&=frac{49}{4}\\
&=boxed{{color{#c34632} 12frac{1}{4} } }
end{align*}
$$

$$
color{#c34632} text{}mathrm{Apply:rule}:-left(-aright)=a
$$

Result
5 of 5
$$
color{#4257b2} text{a)} -frac{28}{45}
$$

$$
color{#4257b2} text{b)} -9frac{3}{4}
$$

$$
color{#4257b2} text{c)}-90frac{7}{9}
$$

$$
color{#4257b2} text{d)} 12frac{1}{4}
$$

Exercise 149
Step 1
1 of 4
A. Reflection
Since is vertex letter is on the opposite side of the hexagon of their their respective prime letter, we can conclude that the image was reflected.
Step 2
2 of 4
B. Rotation
As each vertex letter is seen shifted counterclockwise by about 90 degrees, we can conclude that this was a rotation
Step 3
3 of 4
C. TranslationExercise scan
In a translation, the location of the vertices do not move however the shape is moved entirely, in tact.
Result
4 of 4
View steps for answers
Exercise 150
Result
1 of 1
Possible answer: Most likely, you will feel confident about questions that are already familiar from previous courses like solving equations, rewriting equations, adding fractions, and exponents. You may find the lessons in this chapter to be hard (or simply tedious) since it may be your first time answering such problems but with practice and in time, you will eventually find them easy to solve.
unlock
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New