History of Welding Essay Example
History of Welding Essay Example

History of Welding Essay Example

Available Only on StudyHippo
  • Pages: 4 (858 words)
  • Published: January 15, 2017
  • Type: Essay
View Entire Sample
Text preview

The history of joining metals goes back several millennia, called forge welding, with the earliest examples of welding from the Bronze Age and the Iron Age in Europe and the Middle East. The ancient Greek historian Herodotus states in The Histories of the 5th century BC that Glaucus of Chios "was the man who single-handedly invented iron-welding. " Welding was used in the construction of the iron pillar in Delhi, India, erected about 310 AD and weighing 5. The Middle Ages brought advances in forge welding, in which blacksmiths pounded heated metal repeatedly until bonding occurred.

In 1540, Vannoccio Biringuccio published De la pirotechnia, which includes descriptions of the forging operation. Renaissance craftsmen were skilled in the process, and the industry continued to grow during the following centuries. In 1802, Russian scientist Vasily Petrov discovered the electric arc and subse

...

quently proposed its possible practical applications, including welding. In 1881–82 a Russian inventor Nikolai Benardos created the first electric arc welding method known as carbon arc welding, using carbon electrodes.

The advances in arc welding continued with the invention of metal electrodes in the late 1800s by a Russian, Nikolai Slavyanov (1888), and an American, C. L. Coffin (1890). Around 1900, A. P. Strohmenger released a coated metal electrode in Britain, which gave a more stable arc. In 1905 Russian scientist Vladimir Mitkevich proposed the usage of three-phase electric arc for welding. In 1919, alternating current welding was invented by C. J. Holslag but did not become popular for another decade.

Resistance welding was also developed during the final decades of the 19th century, with the first patents going to Elihu Thomson in 1885, who produced further advances over

View entire sample
Join StudyHippo to see entire essay

the next 15 years. Thermite welding was invented in 1893, and around that time another process, oxyfuel welding, became well established. Acetylene was discovered in 1836 by Edmund Davy, but its use was not practical in welding until about 1900, when a suitable blowtorch was developed. At first, oxyfuel welding was one of the more popular welding methods due to its portability and relatively low cost.

As the 20th century progressed, however, it fell out of favor for industrial applications. It was largely replaced with arc welding, as metal coverings (known as flux) for the electrode that stabilize the arc and shield the base material from impurities continued to be developed. World War caused a major surge in the use of welding processes, with the various military powers attempting to determine which of the several new welding processes would be best. The British primarily used arc welding, even constructing a ship, the Fulagar, with an entirely welded hull.

Arc welding was first applied to aircraft during the war as well, as some German airplane fuselages were constructed using the process. Also noteworthy is the first welded road bridge in the world, designed by Stefan Bryla of the Warsaw University of Technology in 1927, and built across the river Sludwia Maurzyce near Lowicz, Poland in 1929. During the 1920s, major advances were made in welding technology, including the introduction of automatic welding in 1920, in which electrode wire was fed continuously.

Shielding gas became a subject receiving much attention, as scientists attempted to protect welds from the effects of oxygen and nitrogen in the atmosphere. Porosity and brittleness were the primary problems, and the solutions that developed included the

use of hydrogen, argon, and helium as welding atmospheres. During the following decade, further advances allowed for the welding of reactive metals like aluminum and magnesium. This in conjunction with developments in automatic welding, alternating current, and fluxes fed a major expansion of arc welding during the 1930s and then during World War II.

During the middle of the century, many new welding methods were invented. 1930 saw the release of stud welding, which soon became popular in shipbuilding and construction. Submerged arc welding was invented the same year and continues to be popular today. In 1932 a Russian, Konstantin Khrenov successfully implemented the first underwater electric arc welding. Gas tungsten arc welding, after decades of development, was finally perfected in 1941, and gas metal arc welding followed in 1948, allowing for fast welding of non-ferrous materials but requiring expensive shielding gases.

Shielded metal arc welding was developed during the 1950s, using a flux-coated consumable electrode, and it quickly became the most popular metal arc welding process. In 1957, the flux-cored arc welding process debuted, in which the self-shielded wire electrode could be used with automatic equipment, resulting in greatly increased welding speeds, and that same year, plasma arc welding was invented. Electroslag welding was introduced in 1958, and it was followed by its cousin, electrogas welding, in 1961. In 1953 the Soviet scientist N. F. Kazakov proposed the diffusion bonding method.

Other recent developments in welding include he 1958 breakthrough of electron beam welding, making deep and narrow welding possible through the concentrated heat source. Following the invention of the laser in 1960, laser beam welding debuted several decades later, and has proved to be especially useful

in high-speed, automated welding. Electromagnetic pulse welding is industrially used since 1967. In 1991 friction stir welding was invented in the UK and found high-quality applications all over the world. All of these four new processes continue to be quite expensive due the high cost of the necessary equipment, and this has limited their applications.

Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New