Main Organic Chemistry Reagents – Flashcards

Unlock all answers in this set

Unlock answers
question
H+,H20
answer
reduces an alkene to an alocohol will do hydride shifts
question
1.Hg(Oac)2,THF/H2O 2. NaBh4
answer
reduces an alkene to an alcohol, with no hydride shifts
question
1. BH3 2. NaOH H2O2
answer
reduces an alkene to an alcohol at the very end of the molecule
question
H2,, Pd/C, BaSO4
answer
reduces an alkyne to a cis alkene
question
Na, NH3
answer
reduces an alkyne to a trans alkene
question
-NH2
answer
takes a proton off of an alkyne
question
Mg/THF
answer
takes an alkane and forms a grignard reagent (Mg)
question
tBuli/THF
answer
takes an alkane and forms a grignard reagent (Li)
question
H2NNH2, KOH
answer
reduces carbonyls into alkanes (Basic Conditions)
question
Zn/Hg, HCl
answer
reduces carbonyls into alkanes (Acidic conditions)
question
Na2Cr2O7, HCl, ∆
answer
substitutes a carboxylic acid for a methly group on a aromatic compound
question
NaNO2, HCl
answer
turns a primary amine into a diazonium group
question
AIBN
answer
AIBN is a free radical initiator. Upon heating, it decomposes to give nitrogen gas and 2 free radicals
question
AlBr3
AlBr3
answer
AlBr3 is a Lewis acid. It is useful for promoting electrophilic aromatic substitution, both in bromination of aromatics and also in the Friedel-Crafts reaction.
question
AlCl3
answer
Aluminum chloride is a strong Lewis acid. It is used to promote reactions such as chlorination of aromatic compounds, as well as Friedel-Crafts reactions. It can also be used in the Meerwein-Ponndorf-Verley reduction.
question
BF3
BF3
answer
Boron trifluoride is a strong Lewis acid and is commonly used for the formation of thioacetals from ketones (or aldehydes) with thiols. The product is a thioacetal.
question
BH3
answer
Borane (BH3) is a reagent for the hydroboration of alkenes and alkynes. It is sometimes written as B2H6.
question
Br2
answer
Bromine will react with alkenes, alkynes, aromatics, enols, and enolates, producing brominated compounds. In the presence of light, bromine will also replace hydrogen atoms in alkanes. Finally, bromine is used to promote the Hoffmann rearrangement of amides to amines.
question
CH2N2 (Diazomethane)
CH2N2 (Diazomethane)
answer
Diazomethane is used for two main purposes. First, it converts carboxylic acids into methyl esters, and second it is used in the Wolff rearrangement as a means of extending carboxylic acids by one carbon.
question
Cl2
answer
Chlorine is a very good electrophile. It will react with double and triple bonds, as well as aromatics, enols, and enolates to give chlorinated products. In addition it will substitute Cl for halogens when treated with light (free radical conditions). Finally, it assists with the rearrangement of amines to amines (the Hoffmann rearrangement).
question
CN (cyanide)
answer
Cyanide ion, commonly written as KCN or NaCN, is a good nucleophile for substitution reactions (such as the SN2). It is also used to form cyanohydrins. Cyanide ion will also catalyze the benzoin condensation.
question
CrO3
answer
Chromium trioxide is an oxidizing agent for alcohols. Its strength depends on the additives present. When in the presence of pyridine, it will oxidize primary alcohols to aldehydes, as well as secondary alcohols to ketones. When acid is present, primary alcohols and aldehydes are oxidized to carboxylic acids.
question
CuBr
answer
Copper (I) bromide is used in the Sandmeyer reaction, where an aryl diazoniuim salt is converted to an aryl bromide. Occasionally, it is also used for the preparation of organocuprates.
question
CuCl
answer
Copper (I) chloride is used for the conversion of aryl diazonium salts to aryl chlorides (the Sandmeyer reaction). It is also occasionally used for the formation of organocuprates.
question
CuI
answer
Copper (I) Iodide is used to form organocuprates (Gilman reagents) when two equivalents of organolithium reagents are added.
question
DCC (dicyclohexyl carbodiimide)
answer
Dicyclohexyl carbodiimide (DCC) is a reagent used for the synthesis of amides from amines and carboxylic acids. It is essentially a reagent for dehydration (removes water).
question
Dess-martin periodinane
Dess-martin periodinane
answer
Dess-martin periodinane is an oxidizing agent. It will oxidize primary alcohols to aldehydes without going to the carboxylic acid (similar to PSS). It will oxidize secondary alcohols to ketones.
question
DIBAL (diisobutylaluminum hydride)
DIBAL (diisobutylaluminum hydride)
answer
Di-isobutyl aluminum hydride (DIBAL) is a strong, bulky reducing agent. It is most useful for the partial reduction of esters to aldehydes. It will also reduce other carbonyl compounds such as amides, aldehydes, ketones, and nitriles.
question
FCl3
answer
Iron (III) chloride (ferric chloride) is a Lewis acid. It is useful in promoting the chlorination of aromatic compounds with Cl2, as well as in the Friedel-Crafts reaction.
question
Fe
answer
Iron metal will reduce nitro groups to amines in the presence of an acid such as HCl.
question
FeBr3
answer
Iron (III) bromide (ferric bromide) is a Lewis acid. It is useful for promoting the bromination of aromatic compounds, as well as in the Friedel-Crafts reaction.
question
Gilman reagents
Gilman reagents
answer
Organocuprate reagents (Gilman reagents) are carbon nucleophiles. They will do [1,4] additions to alpha-beta unsaturated ketones, as well as SN2 reactions with certain types of alkyl halides. They can also add to acyl halides to give ketones.
question
Grignard reagents
answer
Grignard reagents are extremely good nucleophiles and strong bases. They react with many electrophiles containing a C=O (carbonyl) group such as aldehydes, ketones, esters, and carbon dioxide, as well as epoxides.
question
H2
H2
answer
Hydrogen gas is used for the reduction of alkenes, alkynes, and many other species with multiple bonds, in concert with catalysts such as Pd/C and Pt.
question
H2CrO4
H2CrO4
answer
Chromic acid is a strong acid and an oxidant. It will oxidize secondary alcohols to ketones and primary alcohols to carboxylic acids. It is sometimes generated by using K2Cr2O7 in the presence of a strong acid.
question
H2O2
answer
Hydrogen peroxide (H2O2) is the preferred oxidant in the hydroboration reaction, resulting in the formation of alcohols. Furthermore, it will oxidize aldehydes to carboxylic acids. This is seen in its use for the oxidative workup in ozonolysis.
question
H2SO4
H2SO4
answer
Sulfuric acid is a strong acid. It is particularly useful as an acid for elimination reactions, since the conjugate base is a very poor nucleophile. It is used in many other reactions simply as a strong acid.
question
HBr
answer
Hydrobromic acid is a strong acid. It can add to compounds with multiple bonds such as alkenes and alkynes. It can also react with primary, secondary, and tertiary alcohols fo form alkyl bromides.
question
HCl
answer
Hydrochloric acid is a strong acid. As a reagent, it can react with multiple bonds in alkenes and alkynes, forming chlorinated compounds. It can also concert alcohols to alkyl chlorides.
question
Hg(OAc)2
answer
Mercuric acetate is a useful reagent for the oxymercuration of alkenes and alkynes. It makes double bonds more reactive towards nucleophilic attack by nucleophiles such as water and alcohols. The mercury is removed using NaBH4 or H2SO4 in the case of addition to alkynes.
question
HgSO4
answer
Mercuric sulfate is a Lewis acid. In the presence of aqueous acid (H3O+) it will perform the oxymercuration of alkynes to ketones.
question
HI
answer
Hydroiodic acid is a strong acid. As a reagent, it can add iodine to compounds with multiple bonds such as alkenes and alkynes. It can also convert alcohols to alkyl halides, and cleave ethers.
question
HIO4
answer
Periodic acid is an oxidant that is useful for the cleavage of 1,2 diols (vicinal diols) into aldehydes or ketones.
question
HNO2
answer
Nitrous acid is primarily used to convert aromatic amines to diazonium salts, which can be converted into many different compounds via the Sandmeyer reaction. It can also be made from NaNO2 if a strong acid such as H2SO4 or HCl is added.
question
HNO3
answer
Nitric acid is a strong acid. It will add NO2 to aromatic compounds (usually in the presence of another acid such as H2SO4) and will also oxidize primary alcohols and aldehydes to carboxylic acids.
question
I2
answer
Iodine is a good electrophile. It will react with carbon-carbon multiple bonds such as alkenes and alkynes, along with other nucleophiles. It is also used in the iodoform reaction.
question
KMnO4
answer
Potassium permanganate is a very strong oxidizing agent. It will oxidize primary alcohols and aldehydes to carboxylic acids, secondary alcohols to ketones, form diols from alkenes, and oxidatively cleave carbon-carbon multiple bonds.
question
KOC(CH3)3
KOC(CH3)3
answer
Potassium tert-butoxide is a strong, sterically hindered base. It is the prototypical "bulky base", useful for forming less substituted (Hoffmann) alkenes in elimination reactions.
question
LDA (lithium diisopropylamide)
LDA (lithium diisopropylamide)
answer
Lithium di-isopropylamide (LDA) is a strong, bulky, non-nucleophilic base. It is the reagent of choice for selectively removing a proton from the least hindered carbon next to a ketone. It can also be used to form the Hofmann product in E2 reactions.
question
Li
answer
Lithium is a metal reducing agent similar to sodium and potassium, although weaker. It will convert alkyl halides to alkyl lithium compounds. It will also form alkoxides from alcohols and reduce aromatic groups (The Birch reduction).
question
LiAlH[OC(CH3)3]3
answer
LiAlH[OC(CH3)3]3 is a strong but bulky reducing agent. Less reactive than LiAlH4, it will convert acyl halides to aldehydes.
question
LiAlH4
LiAlH4
answer
Lithium aluminum hydride is a very strong reducing agent. It will reduce aldehydes, ketones, esters, and carboxylic acids to alcohols, and amides and nitriles to amines. It will also open epoxides.
question
Lindlar Catalyst
answer
Lindlar's catalyst is a poisoned palladium metal catalyst that performs partial hydrogenation of alkynes in the presence of hydrogen gas. It always gives the cis-alkene, in contrast to Na/NH3, which gives the trans.
question
mCPBA (m-chloroperoxybenzoic acid)
answer
meta-chloroperoxybenzoic acid (m-CPBA) is an oxidizing agent. One of its main uses is in the formation of epoxides from alkenes. It will also oxidize ketones to form esters, a reaction known as the Baeyer-Villiger reaction.
question
Me2S
answer
Dimethyl sulfide is used in the "reductive workup" for ozonolysis, especially when one wants to obtain aldehydes from alkenes. It reduces the ozonide that is formed, leading to formation of dimethyl silfoxide (DMSO)
question
Mg
answer
Magnesium metal is used for the formation of Grignard reagents from alkyl and alkenyl halides.
question
MsCl
answer
Methanesulfonyl chloride (mesyl chloride or MsCl) is used to turn alcohols into good leaving groups. It behaves essentially identically to TsCl for this purpose.
question
Na
Na
answer
Sodium is a strong reducing agent. It will reduce alkynes to trans-alkenes, and form hydrogen gas when added to alcohols, forming alkoxides. It is also used in the Birch reduction of aromatic groups.
question
NaBH(OAc)3
answer
NaBH(OAc)3 (sodium triacetoxy borohydride) is a reducing agent for the reductive amination of ketones and aldehydes to amines. In this respect, it is identical to sodium cyanoborohydride, NaCNBH3
question
NaBH4
answer
Sodium borohydride is a reagent for the reduction of ketones and aldehydes, it will also reduce acid halides. It is also used in the oxymercuration reaction to replace mercury with H.
question
NaCNBH3
answer
Sodium cyanoborohydride is a reducing agent. It is generally used for reductive amination - the reduction of imines to amines. Its common to perform this reaction under slightly acidic conditions.
question
NaH
answer
Sodium hydride is a very strong base and a poor nucleophile. It is useful for deprotonating alcohols and alkynes, among others. One advantage is that the byproduct is H2, which is a gas.
question
NaIO4
answer
Sodium periodate is a strong oxidant. It will cleave 1,2 diols (vicinal diols) to give aldehydes and ketones.
question
NaN3
NaN3
answer
Sodium azide is a good nucleophile that will participate in SN2 reactions.
question
NaNH2
NaNH2
answer
Sodium amide is a very strong base, useful for the deprotonation of alkynes and in elimination reactions toward the formation of alkynes from dihalides. It can also be used to generate arynes, which can undergo nucleophilic attack.
question
NBS (n-bromosuccinimide)
NBS (n-bromosuccinimide)
answer
NBS is a source of reactive bromine. It is most often used for allylic bromination and in the formation of halohydrines from alkenes.
question
NCS (n-chlorosuccinimide)
answer
N-chlorosuccinimide is a source of reactive, electrophilic, chlorine. It is used for the formation of chlorohydrins from alkenes.
question
NH2NH2
answer
Hydrazine is a good reductant and nucleophile. It is used in the Wolff-Kishner reaction, a way of converting ketones to alkanes. It is also used in the final step of the Gabriel amine synthesis to liberate the free amine.
question
NH2OH
answer
Hydroxylamine is used to the formation of oximes from aldehydes or ketones. The resulting oximes can be converted into amides using the Beckman rearrangement.
question
NH3
answer
Ammonia is a base and a nucleophile. It is often used as a solvent in reactions involving Li, Na, and K. It has a fairly low boiling point of -33 celcius.
question
Ni-B
answer
Nickle boride is a reagent that acts similarly to the Lindlar catalyst, reacting with alkynes to give cis-alkenes.
question
NIS (n-iodosuccinimide)
answer
N-iodosuccinimide is a source of electrophilic iodine, similar to NBS and NCS. When added to an alkene in the presence of water, it will form iodohydrins.
question
O3 (ozone)
answer
Ozone will cleave alkenes and alkynes to give carbonyl compounds. This is called oxidative cleavage. The products formed can be dependent on the type of workup used. Reductive workup preserves aldehydes, whereas oxidative workup will oxidize any aldehydes to carboxylic acids.
question
OH-
answer
Hydroxide ion is a strong base and good nucleophile.
question
Organolithium reagents
Organolithium reagents
answer
Organolithium reagents are extremely strong bases and good nucleophiles. They react with carbonyl compounds (aldehydes, ketones, esters, etc) and epoxides. Being strong bases, they will also react with groups containing acidic hydrogens.
question
OsO4
OsO4
answer
Osmium tetroxide is a reagent for the formation of 1,2-diols (vicinal diols) from alkenes. The selectivity for this reaction is always syn.
question
P2O5
P2O5
answer
P2O5 is a dehydration reagent. It is used for conversion of carboxylic acids to anhydrides, and also the formation of nitriles from amides.
question
Pb(OAc)4
answer
Lead tetraacetate will cleave 1,2-diols (vicinal diols) into aldehydes/ketones, similar to NaIO4 and HIO4.
question
PBr3
PBr3
answer
Phosphorus tribromide is a reagent for converting alcohols to alkyl bromides. It will also convert carboxylic acids to acid bromides (acyl bromides)
question
PCC (pyridinium chlorochromate)
answer
Pyridinium chlorochromate (PCC) is reagent for the oxidation of primary alcohols to aldehydes and secondary alcohols to ketones. It is much milder than reactants such as H2CrO4 and KmnO4, which will oxidize primary alcohols to carboxylic acids.
question
PCl3
answer
Phosphorus trichloride is a reagents for the conversion of alcohols to alkyl chlorides. It will also convert carboxylic acids to acid chlorides (acyl chlorides)
question
PCl5
answer
Phosphorus pentachloride will convert alcohols to alkyl chlorides, and carboxylic acids to acid chlorides (acyl chlorides)
question
Pd-C
Pd-C
answer
Palladium adsorbed on charcoal (carbon) is a heterogeneous catalyst. In the presence of hydrogen gas H2, it will convert alkenes and alkynes to alkanes. The hydrogens are delivered syn.
question
POCl3
answer
Phosphorus oxychloride (POCl3) is used for the dehydration of alcohols to alkenes. Essentially it converts alcohols to a good leaving group, which is then removed by an added base (often pyridine). It can also be used to convert amides to nitriles.
question
Potassium phthalimide
answer
Sodium (or potassium) pthalimide is a nitrogen-containing nucleophile used in the Gabriel synthesis. Potassium pthalimide reacts with alkyl halides to form a C-N bond, which is then hydrolyzed by treatment with hydrazine (NH2NH2) to give a primary amine.
question
PPh3
PPh3
answer
PPh3 is used for the formation of ylides in the Wittig reaction. It can also be used for reductive workup in the ozonolysis of alkenes.
question
Pt
answer
Platinum is a "noble metal," is used as a catalyst for the reduction of carbon-carbon multiple bonds in the presence of hydrogen gas.
question
Pyridine
Pyridine
answer
Pyridine is a mild base. Since it bears no charges it is especially soluble in organic solvents. It is often used in reactions that generate HCl and other strong acids - think of it like a sponge for strong acid.
question
Ra-Ni (Rayney nickle)
answer
Rayney nickle is a reagent for the reduction (hydrogenation) of double bonds. It sees the most use as a reagent for the replacement of sulfur by hydrogen.
question
RO-OR (peroxides)
answer
Peroxides are used to initiate free-radical reactions. The oxygen-oxygen is very weak, and will fragment homolytically to generate radicals.
question
AgNO3 (silver nitrate)
AgNO3 (silver nitrate)
answer
Silver nitrate will react with alkyl halides to form silver halides and the corresponding carbocation.
question
Ag2O (silver oxide)
answer
Silver oxide is used in the Tollens reaction to oxidize aldehydes to carboxylic acids. This is the basis of a test for the presence of aldehydes, since a mirror of metallic silver will be deposited on the flask. It is also commonly used as a base for the Hofmann elimination.
question
Sn
answer
In the presence of acid, tin will reduce nitro groups to form amines.
question
SO3
answer
Sulfur trioxide is a reagent for the sulfonylation of aromatic groups. In the presence of acid, it will lead to the formation of sulfonic acids.
question
SOBr2
answer
Thionyl bromide is a useful reagent for the formation of alkyl bromides from alcohols, as well as acid bromides (acyl bromides) from carboxylic acids.
question
SOCl2
answer
Thionyl chloride is used for the formation of alkyl chlorides from alcohols and acid chlorides (acyl chlorides) from carboxylic acids.
question
TBAF (tetra-n-butylammonium fluoride)
answer
Tetrabutylammonium fluoride (TBAF) is a source of fluoride ion. It is used to cleave silyl ethers, which are common protecting groups for alcohols.
question
TMSCI
answer
TMSCl is a protecting group for alcohols. When added to alcohols, it forms a silyl ether, which is inert to most reagents except for fluoride ion and acid. Note that the reagent can be written two ways (CH3)3SiCl and TMSCl.
question
TsCl (toluenesulfonyl chloride)
answer
Tosyl chloride TsCl will convert alcohols to sulfonates, which are excellent leaving groups in elimination and substitution reactions.
question
TsOH (p-toluenesulfonic acid)
TsOH (p-toluenesulfonic acid)
answer
Tosic acid (p-toluenesulfonic acid) is a very strong acid. The conjugate base is a very poor nucleophile, which makes it a good acid for elimination reactions. It is similar to H2SO4
question
Zn
answer
Zinc is a metal reducing agent. It is useful for the reduction of ozonides, and also in the reduction of nitro groups to amines (in the presence of acid).
question
Zn-Cu
Zn-Cu
answer
Zinc-copper couple is reducing agent, used to form carbenes (actually carbenoids) from alkyl dihalides. When these are added to alkenes, they form cyclopropanes.
question
Zn-Hg
answer
In the presence of acid, zinc amalgam will reduce ketones alkanes, in a process called the Clemmensen reaction.
question
Magnesium monoperoxypthalate hexahydrate (MMPP)
answer
MMPP forms epoxides
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New