Astrophysics IB PHYSICS HL – Flashcards

Unlock all answers in this set

Unlock answers
question
Solar system
answer
Mercury, venus, earth, mars, jupiter, saturn, uranus and neptune.
question
Stellar clusters
answer
Groupings of a large number of stars bound by gravity. 1. Globular clusters: large number of mainly old stars. 2. Open clusters: small number of young stars that are farther apart.
question
Galaxy
answer
A huge assembly of stars bound together by gravity.
question
Cluster of galaxies
answer
Galaxies close to one another and affecting one another gravitationally, behaving as one unit.
question
Supercluster of galaxies
answer
A cluster or collection of clusters of galaxies.
question
Nebula
answer
Clouds of dust, i.e. Compounds of carbon, oxygen, silicon and metals, as well as molecular hydrogen, in the space between stars.
question
Planetary nebula
answer
The ejected envelope of a red giant star.
question
Comet
answer
A small body (mainly ice and dust) orbiting around the sun in an elliptical orbit. Their tails lights up when close to the sun.
question
Dark matter
answer
Generic name given to matter that is too cold to radiate. Is said to exist around galaxies for them to be kept bound together and for their rotational velocities to be constant throughout.
question
Interstellar medium
answer
Gases (mainly hydrogen and helium) and dust grains (silicates, carbon and iron) filling the space between stars. The density is very low. The temperature of the gas is 100K.
question
Main-sequence star
answer
Normal star that is undergoing nuclear fusion of hydrogen into helium.
question
Constellation
answer
A group of stars in a recognizable pattern that appear to be next to each other in space.
question
Binary star
answer
Two stars orbiting a common center.
question
Black hole
answer
Singularity in space and time; the end result of the evolution of a very massive star.
question
Black dwarf
answer
The remnant of a white dwarf after it has cooled down.
question
Brown dwarf
answer
Gas and dust that did not reach a high enough temperature to initiate fusion of hydrogen into helium.
question
Supernova (type 1a)
answer
The explosion of a white dwarf that has accreted mass for my companion star (binary system) exceeding the Chandrasekhar limit. It doesn't have a hydrogen lines and its spectrum and its luminosity falls quickly.
question
White dwarf
answer
The end result of A red giant whose core doesn't exceed the Chandrasekhar limit. It is the small dents star with a very low luminosity.
question
Neutron star
answer
The end result of the explosion of a red supergiant; a very small star that is very dense. These form when the core of the star exceeds the Chandrasekhar limit but does not exceed the Oppenheimer-Volkoff limit.
question
Supernova (type II)
answer
Explosion a massive red supergiant. There are hydrogen lines in the spectrum and its luminosity falls gently.
question
Red giant and supergiants
answer
The main sequence star evolves into a red giant when the hydrogen has been used up. Red giants fuse helium into carbon. And more massive stars helium fuses with carbon to produce oxygen. And even more massive stars neon, sodium and magnesium are produced. Silicon is then produced by the fusion of oxygen and the process ends with iron. The stars are very large, cool and a reddish in appearance.
question
Proton proton cycle
answer
Cycle in which four hydrogen atoms fuse into helium.
question
CNO cycle
answer
And stars more massive than our sun, there is the second way to fuse hydrogen into helium which involves carbon, oxygen and nitrogen.
question
Radiation pressure
answer
The pressure caused by photons radiating outwards colliding with surrounding material. As long as the star is fusing hydrogen into helium in the main sequence, it will have the radiation pressure necessary to maintain a constant size.
question
Apparent brightness
answer
The received power per unit area.
question
Luminosity
answer
Total power radiated by a star.
question
Wein's displacement law
answer
Product of wavelength and temperature is equal to a constant (0.0029). This implies that the higher the temperature the lower the wavelength at which most of the energy is radiated.
question
Spectral classes
answer
O, B, A, F, G, K, M (oh be a fine guy kiss me).
question
Mass-luminosity relation
answer
This relation only applies to main sequence stars. L is proportional to M^3.5
question
Cepheid variable stars
answer
These stars periodically expand and contract as a result of helium ionization. As a result of the expansion and contraction their brightness also vary. The period of cepheid variable stars is proportional to their luminosity. They act as standard candles.
question
Chandrasekhar limit
answer
1.4 solar masses (mass of the core only). If this limit is surpassed, then the star will experience further collapse into a neutron star (electrons will be driven into protons to produce neutrons). If not, it will stay as a stable white dwarf.
question
Hubbles law
answer
Velocity of receding galaxies is proportional to their distance from us. This was discovered when observing the wavelengths from the emission spectrum of distant stars. They found red-shift.
question
Oppenheimer-Volkoff limit
answer
Equal to 2-3 solar masses. If this limit is exceeded then the neutron star will collapse into a black hole.
question
Electron degeneracy pressure
answer
Electron degeneracy pressure prevents for further collapse of the core and this is what maintains a stable white dwarf. This electron degeneracy pressure is the pressure that prevents two electrons from occupying the same space.
question
Neutron degeneracy pressure
answer
The pressure that prevents further collapse from a neutron star. This pressure prevents two neutrons from occupying the same space.
question
Big bang model
answer
The discovery of the expanding universe by Hubble implies a definite beginning and this model describes a singularity that began expanding indefinitely.
question
The age of the universe
answer
The inverse of the Hubble constant gives an upper bound on the age of the universe-that is, the actual age is less. This is because the estimate is based on a constant rate of expansion equal to the present rate.
question
Cosmic microwave background radiation
answer
Remnant of the Big Bang radiation. It is said to be isotropic, yet it has a few fluctuations. It's anistropies in the CMB are crucial in understanding of the formation of structures (if it didn't have fluctuations, then atoms would not have moved to form structures).
question
Standard candle
answer
A star of known luminosity.
question
Jeans criterion
answer
A criterion that involves mass of a gas cloud, it's temperature, it's radius and the number of particles, for the gas cloud to collapse into a protostar.
question
Protostar
answer
A very young star that is still accreting mass.
question
Nucleosynthesis
answer
An onion-like layered structure in the star, with the heaviest element in the core, surrounded by progressively lighter elements. Iron, silicon, magnesium, neon, oxygen, carbon, helium, hydrogen.
question
Neutron capture
answer
Heavier elements than iron are produced by neutron capture (the nuclei absorb neutrons). S-process: slow process. The isotope does have time to decay because the number of neutrons present is small. The isotopes will undergo a series of decays, producing new elements. R-process: the nuclei keep absorbing neutrons one by one, forming very heavy neutron-rich isotopes.
question
Cosmological principle
answer
Isotropy principle: whichever direction you look at, the universe is the same. Homogeneity principle: on a large enough scale, the universe looks uniform.
question
Critical density
answer
The density at which the universe will expand at a constant rate, and halt after an indefinite amount of time.
question
Types of universes
answer
1. Closed universe: If the density of matter is greater than the critical density, the universe will stop expanding and begin contracting. 2. Flat universe: If the density of matter is equal to the critical density, then the universe will expand at a constant rate indefinitely 3. Open universe: If the density of matter is less than the critical density, then the universe will expand at an accelerated rate indefinitely.
question
Dark energy
answer
The presence of this energy creates a repulsive force that counteracts and dominates over the effects on gravity, causing an accelerated expansion.
Get an explanation on any task
Get unstuck with the help of our AI assistant in seconds
New