Available Only on StudyHippo
  • Pages: 9 (4379 words)
  • Published: September 25, 2017
Text preview

The Dynamic Crust. Earthquakes and the Earth’s Interior
Why is the Earth’s crust described as being dynamic?
Crust- solid stone outer zone of Earth
The crust is portion of the geosphere.
The Earth’s crust is dynamic which means invariably altering. Earthquakes
Crustal motions along mistake zones
Other grounds indicates that parts of the Earth’s crust have been traveling to different locations for one million millions of old ages. Describe pieces of grounds that suggest minor alterations in the Earth’s crust. Displaced & A ; Deformed Rock Strata

Sedimentary stones appear to organize in horizontal beds. However. observations of the Earth’s surface indicate that the original formations of stone have changed through past motions. Leaning
Earth motion ensuing in a alteration in the place of stone beds. “rocks at an angle”
Folded Stratum
Bend in the stone beds produced during the mountain edifice procedure Blaming
Motion of stone along a cleft ( mistake ) in the crust
Displaced Fossils
Displaced means “moved. ”
Marine fossils- remains or imprints of one time populating ocean beings such as coral. fish. etc. found in sedimentary stone Marine fossils found in beds of sedimentary stone in mountains. frequently 1000s of pess above sea degree. These marine dodos found at high lift suggest past upheaval of stone strata. Sinking or subsiding of stone strata

Rock beds that have been moved.
Horizontal Displacement ( Blaming )
Earth displacements sideways along a transform mistake in the crust
Vertical Displacement ( Blaming )
Part of Earth


’s surface is either uplifted or subsides along a mistake or cleft. Benchmark
Permanent cement or brass marker in land bespeaking a mensural lift.
Condition of balance or equilibrium in Earth’s crust.
Since the upper mantle Acts of the Apostless like a really heavy fluid. the crustal home bases float on top of it. Any alteration in one portion of the crust is offset by a corresponding alteration in another portion of the crust. Example of Isostasy

If a piece of crust loses some of its stuff due to eroding. it becomes lighter and drift higher in the mantle. When the eroded stuff gets deposited. the crust is weighted down doing that country to drop lower into the mantle. Another isostatic illustration.

The deposition of 2 stat mis thick ice on NY during a glacial ice age caused the country to lessen somewhat. This forced other countries to lift higher in response to the settling under the ice. Subsequently after the ice receded or melted. the part responded with gradual upheaval doing minor seismal activity or temblors. Give illustrations of crustal activity and explain where the zones of crustal activity are located. Areas of Crustal Activity

Crustal activities such as temblors and vents occur for the most portion in specific zones or parts of the Earth. These parts are normally along the boundary lines of continents and oceans. These zones grade boundaries or borders of big pieces of the Earth’s crust called crustal boundaries. ESRT p. 5

What is an temblor? Explain the difference between an epicentre and a focal point of an temblor.

Describe belongingss of the 3 types of temblor moving ridges and state the difference betwee

View entire sample
Join StudyHippo to see entire essay
View entire sample
Join StudyHippo to see entire essay

a seismograph and a seismogram. I. Earthquakes
Sudden shaking or shaking of land normally caused by motion along a interruption or a mistake let go ofing built up emphasis When an temblor occurs. seismal moving ridges are created and travel out in all waies from the focal point or point of beginning. The earthquake’s focal point or point of beginning is normally deep below the Earth’s surface. The point on the Earth’s surface straight above the focal point is called the epicentre. Describe belongingss of the 3 types of temblor moving ridges and state the difference between a seismograph and a
seismogram. II. Earthquake Waves

Seismograph: Instrument that detects and records seismal moving ridges. Earthquakes generate several sorts of seismal moving ridges that can be detected by a seismograph. 3 types of seismal moving ridges are p. s. & A ; l moving ridges.

L moving ridges
Long moving ridges
Do non go through through the Earth.
Ripple along the surface of the Earth
Make the harm associated with temblors
P moving ridges
Primary moving ridges
Besides called compressional because they cause the stuff through which they pass to vibrate back and Forth ( compress ) in the same way as the moving ridge is going. Called primary because they move rapidly through the Earth with a greater speed than secondary moving ridges and hence are the first moving ridges to make a distant location. S moving ridges

Secondary moving ridges
Besides called shear moving ridges because they cause the stuff through which they pass to vibrate at right angles ( up & A ; down ) to the way in which the moving ridge is going III. Speeds of Waves

When going in the same stuff. primary moving ridges travel at a greater speed than secondary moving ridges. So a seismograph will read the primary moving ridges before the secondary moving ridges arrive. A individual seismogram demoing the arrival times of P & A ; s moving ridges may be used to find the distance to the temblor and its clip of beginning. The greater the difference in arrival times of the primary and secondary moving ridges. the greater the distance to the temblor epicentre. Finding the Distance to an Earthquake’s Epicenter

To happen out how far an epicentre was off from a location. a seismograph reading or seismogram is necessary that shows the reaching of both Ps and s moving ridges. Determining the Exact Location of an Earthquake’s Epicenter Epicenter location is found by the comparing of differences in travel clip of P & A ;
s seismal moving ridges. Knowing the separation clip between reaching of both p & A ; s waves gives the distance to the point on the Earth’s surface straight above the temblor called the epicentre. Since merely the distance to epicenter and non way is known. a circle is drawn with the radius equal to the distance. The epicentre is on the circle.

To happen the existent location of the epicentre you must happen the distance from 3 different seismograph Stationss. Why non 2? Draw 3 circles around the 3 seismograph Stationss and where they intersect is the

View entire sample
Join StudyHippo to see entire essay